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Preface

A computer can be viewed from many different levels. Many people are interested only in using
applications such as word processing or games. A computer programmer, however, often sees the
computer as an instrument to create new applications software. A high-level language programmer's
image of the computer is provided by the language compiler, which gives the impression that the
computer stores object types like integer, real, and array of char in named memory locations,
calculates values of expressions, calls procedures, executes while loops, and so forth.

However, an actual computer works at even lower levels. This book emphasizes the architectural level,
that is, the level defined by the machine instructions that the processor can execute. Assembly-
language instructions translate directly into machinelanguage instructions, so that when you write an
assembly-language program, you gain an understanding of how the computer works at the machine-
language level.

Although this book emphasizes the assembly-language/machine-language level of computer
operations, it also looks at other levels. For instance, it describes how high-level language concepts
such as if statements are realized at the machine level. It discusses some of the functions of the

operating system. It briefly describes the logic gates that are used at the hardware level. It also looks at
how assembly language is translated into machine language.

To program effectively at any level, programmers must understand certain fundamental principles at the
machine level. These apply to most computer architectures. Introduction to 80x86 Assembly Language
and Computer Architecture teaches these fundamental concepts:

memory addressing, CPU registers and their uses

representation of data in a computer in numeric formats and as character strings

instructions to operate on 2's complement integers

instructions to operate on individual bits

instructions to handle strings of characters

instructions for branching and looping

coding of procedures: transfer of control, parameter passing, local variables, and preserving the
environment for the calling program

The primary architecture covered is the Intel 80x86 CPU family used in many personal computers.
However, almost every chapter includes information about other architectures, or about different
computer levels. Programming in assembly language and studying related concepts in Introduction to
80x86 Assembly Language and Computer Architecture prepares the student to program effectively in
any programming language, to pursue advanced studies in computer design and architecture, or to
learn more about system details for specific computers.

Text Organization and Content

Much of the material in this book is based on my previous book, Fundamentals of Assembly Language
Programming Using the IBM PC and Compatibles. While teaching this material through the years, I
have increasingly come to the conclusion that an assembly language course is the best place to
introduce computer architecture to most students. This book reflects a stronger emphasis on
architecture than on programming. It also concentrates on general concepts as opposed to the details
of a particular computer system.

The minimal prerequisite for my assembly language class is a good understanding of a structured high-
level language. Chapters 3 through 6 and Chapter 8 form the core of my one-semester course. I
normally cover Chapters 1-8 thoroughly, Chapter 9 quickly, and then choose topics from Chapters 10-
12 depending on time and resources available. For instance, I sometimes introduce floating-point
operations via in-line assembly statements in a C++ program.



Style and Pedagogy

The text primarily teaches by example. A complete assembly-language program is presented very
early, in Chapter 3, and its components are carefully examined at a level that the student is able to
understand. Subsequent chapters include many examples of assembly language code along with
appropriate explanations of new or difficult concepts.

The text uses numerous figures and examples. Many series of "before" and "after" examples are given
for instructions. Examples are included that illustrate the use of a debugger. These examples give the
student a stronger sense of what is happening inside the computer.

Exercises appear at the end of each section. Short-answer exercises reinforce understanding of the
material just covered, and programming exercises offer an opportunity to apply the material to
assembly-language programs.



Software Environment

The "standard" 80x86 assembler is Microsoft's Macro Assembler (MASM), version 6.11. Although this
assembler can produce code for 32-bit flat memory model programming appropriate to a Windows 95,
Windows NT, or other 32-bit Microsoft operating system environment, the linker and debugger that
come with this software package are not suitable for use in such an environment. This book comes with
a CD containing the assembler program from MASM (ML), a more recent Microsoft linker, the 32-bit
fullscreen debugger WinDbg (also from Microsoft), and necessary supporting files. This software
package provides a good environment for producing and debugging console applications.

The CD included with the book also contains a package designed to simplify input/output for the
student, so that the emphasis remains on architecture rather than operating system details. This I/O
package is used extensively through most of the book. Finally, the CD contains source code for each
program that appears as a figure in the book.



Instructor's Support

Supplementary materials for this book include an Instructor's Guide that contains some teaching tips
and solutions to many exercises. In addition, the author can be contacted at rdetmer@mtsu.edu with
questions or comments.
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Chapter 1: Representing Data in a Computer

When programming in a high-level language like Java or C++, you use variables of different types
(such as integer, float, or character). Once you have declared variables, you don't have to worry about
how the data are represented in the computer. When you deal with a computer at the machine level,
however, you must be more concerned with how data are stored. Often you have the job of converting
data from one representation to another. This chapter covers some common ways that data are
represented in a microcomputer. Chapter 2 gives an overview of microcomputer hardware and
software. Chapter 3 illustrates how to write an assembly language program that directly controls
execution of the computer's native instructions.

1.1 Binary and Hexadecimal Numbers

A computer uses bits (binary digits, each an electronic state representing zero or one) to denote
values. We represent such binary numbers using the digits 0 and 1 and a base 2 place-value system.
This binary number system is like the decimal system except that the positions (right to left) are 1's, 2's,
4's, 8's, 16's (and higher powers of 2) instead of 1's, 10's, 100's, 1000's, 10000's (powers of 10). For
example, the binary number 1101 can be interpreted as the decimal number 13,

1   1   0   1    

one 8 + one 4 + no 2 + one 1 = 13

Binary numbers are so long that they are awkward to read and write. For instance, it takes the eight bits
11111010 to represent the decimal number 250, or the fifteen bits 111010100110000 to represent the
decimal number 30000. The hexadecimal (base 16) number system represents numbers using about
one-fourth as many digits as the binary system. Conversions between hexadecimal and binary are so
easy that hex can be thought of as shorthand for binary. The hexadecimal system requires sixteen
digits. The digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are used just as in the decimal system; A, B, C, D, E,
and F are used for the decimal numbers 10, 11, 12, 13, 14, and 15, respectively. Either uppercase or
lowercase letters can be used for the new digits.

The positions in hexadecimal numbers correspond to powers of 16. From right to left, they are 1's, 16's,
256's, etc. The value of the hex number 9D7A is 40314 in decimal since

        9   ×   4096     36864   [ 4096 = 163 ]
     + 13   ×    256      3328   [ D is 13, 256 = 162 ]
     +  7   ×     16       112
     + 10   ×      1        10   [ A is 10 ]
                       = 40314

Figure 1.1 shows small numbers expressed in decimal, hexadecimal, and binary systems. It is
worthwhile to memorize this table or to be able to construct it very quickly.



Decimal Hexadecimal Binary

  0 0      0

  1 1      1

  2 2    10

  3 3    11

  4 4   100

  5 5   101

  6 6   110

  7 7   111

  8 8 1000

  9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Figure 1.1: Decimal, hexadecimal, and binary numbers

You have seen above how to convert binary or hexadecimal numbers to decimal. How can you convert
numbers from decimal to hex? From decimal to binary? From binary to hex? From hex to binary? We'll
show how to do these conversions manually, but often the easiest way is to use a calculator that allows
numbers to be entered in decimal, hexadecimal, or binary. Conversion between bases is normally a
matter of pressing a key or two. These calculators can do arithmetic directly in binary or hex as well as
decimal and often have a full range of other functions available. One warning: Many of these
calculators use seven segment displays and display the lowercase letter b so that it looks almost like
the numeral 6. Other characters may also be difficult to read.

A calculator isn't needed to convert a hexadecimal number to its equivalent binary form. In fact, many
binary numbers are too long to be displayed on a typical calculator. Instead, simply substitute four bits
for each hex digit. The bits are those found in the third column of Fig. 1.1, padded with leading zeros as
needed. For example,

     3B8E216 = 11 1011 1000 1110 00102

The subscripts 16 and 2 are used to indicate the base of the system in which a number is written; they
are usually omitted when there is little chance of confusion. The extra spaces in the binary number are
just to make it more readable. Note that the rightmost hex digit 2 was converted to 0010, including
leading zeros. While it's not necessary to convert the leading 3 to 0011, the conversion would have
been correct since leading zeros do not change the value of a binary number.

To convert binary numbers to hexadecimal format, reverse the above steps: Break the binary number
into groups of four bits, starting from the right, and substitute the corresponding hex digit for each group
of four bits. For example,

     1011011101001101111 = 101 1011 1010 0110 1111 = 5BA6F

You have seen how to convert a binary number to an equivalent decimal number. However, instead of
converting a long binary number directly to decimal, it is faster to convert it to hex, and then convert the
hex number to decimal. Again, using the above 19-bit-long number,

     10110111010011011112
     = 101 1011 1010 0110 1111



     = 5BA6F16
     = 5 × 65536 + 11 × 4096 + 10 × 256 + 6 × 16 + 15 × 1
     = 37540710

The following is an algorithm for converting a decimal number to its hex equivalent. It produces the hex
digits of the answer right to left. The algorithm is expressed in pseudocode, which is the way that
algorithms and program designs will be written in this book.

until DecimalNumber = 0 loop
      divide DecimalNumber by 16, getting Quotient and Remainder;
      Remainder (in hex) is the next digit (right to left);
      DecimalNumber := Quotient;
end until;

Example

As an example, the decimal-to-hex algorithm is traced for the decimal number 5876:

Since this is an until loop, the controlling condition is not checked until after the body has been
executed the first time.

The octal (base 8) number system is used with some computer systems. Octal numbers are written
using digits 0 through 7. Most calculators that do hex arithmetic also handle octal values. It is easy to
convert a binary number to octal by writing the octal equivalent for each group of three bits, or to
convert from octal to binary by replacing each octal digit by three bits. To convert from decimal to octal,
one can use an algorithm that is the same as the decimal to hex scheme except that you divide by 8
instead of 16 at each step.

Exercises 1.1

Complete the table below by supplying the missing two forms for each number.



  Binary Hexadecimal Decimal

1. 100 ________ ________

2. 10101101 ________ ________

3. 1101110101 ________ ________

4. 11111011110 ________ ________

5. 10000000001 ________ ________

6. ________ 8EF ________

7. ________ 10 ________

8. ________ A52E ________

9. ________ 70C ________

10. ________ 6BD3 ________

11. ________ ________ 100

12. ________ ________ 527

13. ________ ________ 4128

14. ________ ________ 11947

15. ________ ________ 59020



1.2 Character Codes

Letters, numerals, punctuation marks, and other characters are represented in a computer by assigning
a numeric value to each character. Several schemes for assigning these numeric values have been
used. The system commonly used with microcomputers is the American Standard Code for Information
Interchange (abbreviated ASCII and pronounced ASK-ee).

The ASCII system uses seven bits to represent characters, so that values from 000 0000 to 111 1111
are assigned to characters. This means that 128 different characters can be represented using ASCII
codes. The ASCII codes are usually given as hex numbers from 00 to 7F or as decimal numbers from 0
to 127.[1] Appendix A has a complete listing of ASCII codes. Using this table, you can check that the
message

     Computers are fun.

can be coded in ASCII, using hex numbers, as

43 6F 6D 70 75 74 65 72 73 20 61 72 65 20 66 75 6E 2E

C o m p u t e r s   a r e   f u n .

Note that a space, even though it is invisible, has a character code (hex 20).

Numbers can be represented using character codes. For example, the ASCII codes for the date
October 21, 1976 are

4F 63 74 6F 62 65 72 20 32 31 2C 20 31 39 37 36

O c t o b e r   2 1 ,   1 9 7 6

with the number 21 represented using ASCII codes 32 31, and 1976 represented using 31 39 37 36.
This is very different from the binary representation in the last section, where 2110 = 101012 and
197010 = 111101110002. Computers use both of these representations for numbers: ASCII for input
and output, and binary for internal computations.

The ASCII code assignments may seem rather arbitrary, but there are certain patterns. The codes for
uppercase letters are contiguous, as are the codes for lowercase letters. The codes for an uppercase
letter and the corresponding lowercase letter differ by exactly one bit. Bit 5 is 0 for an uppercase letter
and 1 for the corresponding lowercase letter while other bits are the same. (Bits in most computer
architectures are numbered right to left, starting with 0 for the rightmost bit.) For example,

uppercase M codes as 4D16 = 10011012

lowercase m codes as 6D16 = 11011012

The printable characters are grouped together from 2016 to 7E16. (A space is considered a printable
character.) Numerals 0, 1, …, 9 have ASCII codes 3016, 3116, …, 3916, respectively.

The characters from 0016 to 1F16, along with 7F16, are known as control characters. For example, the
ESC key on an ASCII keyboard generates a hex 1B code. The abbreviation ESC stands for extra
services control but most people say "escape." The ESC character is often sent in combination with
other characters to a peripheral device like a printer to turn on a special feature. Since such character
sequences are not standardized, they will not be covered in this book.

The two ASCII control characters that will be used the most frequently in this book are 0D16 and 0A16,
for carriage return (CR) and line feed (LF). The 0D16 code is generated by an ASCII keyboard when the
Return or Enter key is pressed. When it is sent to an ASCII display, it causes the cursor to move to the
beginning of the current line without going down to a new line. When carriage return is sent to an ASCII
printer (at least one of older design), it causes the print head to move to the beginning of the line. The



line feed code 0A16 causes an ASCII display to move the cursor straight down, or a printer to roll the
paper up one line, in both cases without going to the beginning of the new line. To display a message
and move to the beginning of a new line, it is necessary to send the message characters plus CR and
LF characters to the screen or printer. This may be annoying sometimes as you program in assembly
language, but you will also have the option to not use CR and/or LF when you want to leave the cursor
on a line after prompting for input, or to piece together a line using several output instructions.

Lesser-used control characters include form feed (0C16), which causes many printers to eject a page;
horizontal tab (0916), which is generated by the tab key on the keyboard; backspace (0816) generated
by the Backspace key; and delete (7F16) generated by the Delete key. Notice that the Backspace and
Delete keys do not generate the same codes. The bell character (0716) causes an audible signal when
output to the display. Good programming practice is to sound the bell only when really necessary.

Many large computers represent characters using Extended Binary Coded Decimal Information Code
(abbreviated EBCDIC and pronounced ib-SEE-dick or eb-SEE-dick). The EBCDIC system will only be
used in this book as an example of another coding scheme when translation from one coding system to
another is discussed.

Exercises 1.2

Each of the following hexadecimal numbers can be interpreted as representing a decimal
number or a pair of ASCII codes. Give both interpretations.

(a) 2A45 (b) 7352 (c) 2036 (d) 106E

1.

Find the ASCII codes for the characters in each of the following strings. Don't forget spaces and
punctuation. Carriage return and line feed are shown by CR and LF, respectively (written
together as CRLF so that it will be clear that there is no space character between them).

January 1 is New Year's Day.CRLFa.

George said, "Ouch!"b.

R2D2 was C3P0's friend.CRLF ["0" is the numeral zero]c.

Your name? [put two spaces after the question mark]d.

Enter value: [put two spaces after the colon]e.

2.

What would be displayed if you output each of the following sequences of ASCII codes to a
computer's screen?

62 6C 6F 6F 64 2C 20 73 77 65 61 74 20 61 6E 64 20 74 65 61 72 73a.

6E 61 6D 65 0D 0A 61 64 64 72 65 73 73 0D 0A 63 69 74 79 0D 0Ab.

4A 75 6E 65 20 31 31 2C 20 31 39 34 37 0D 0Ac.

24 33 38 39 2E 34 35d.

49 44 23 3A 20 20 31 32 33 2D 34 35 2D 36 37 38 39e.

3.

[1]Some computers, including the IBM PC and compatible systems, use an extended character set,
additionally assigning characters to hex numbers 80 to FF (decimal 128 to 255). Extended character
sets will not be used in this book.



1.3 2's Complement Representation for Signed Integers

It is now time to look more carefully at how numbers are actually represented in a computer. We have
looked at two schemes to represent numbers-by using binary integers (often expressed in hex) or by
using ASCII codes. However, these methods have two problems: (1) the number of bits available for
representing a number is limited, and (2) it is not clear how to represent a negative number.

Chapter 2 will discuss computer hardware, but for now you need to know that memory is divided into
bytes, each byte containing eight bits.[2] Suppose you want to use ASCII codes to represent a number
in memory. A single ASCII code is normally stored in a byte. Recall that ASCII codes are seven bits
long; the extra (left-hand, or high order) bit is set to 0. To solve the first representation problem
mentioned above, you can simply include the code for a minus sign. For example, the ASCII codes for
the four characters -817 are 2D, 38, 31, and 37. To solve the first problem, you could always agree to
use a fixed number of bytes, perhaps padding on the left with ASCII codes for zeros or spaces.
Alternatively, you could use a variable number of bytes, but agree that the number ends with the last
ASCII code for a digit, that is, terminating the string with a nondigit.

Suppose you want to use internal representations for numbers corresponding to their binary values.
Then you must choose a fixed number of bits for the representation. Most central processing units can
do arithmetic on binary numbers having a few chosen lengths. For the Intel 80×86 family, these lengths
are 8 bits (a byte), 16 bits (a word),[3] 32 bits (a doubleword), and 64 bits (a quadword).

As an example, look at the word-length binary representation of 697.

     69710 = 10101110012 = 00000010101110012

Leading zeros have been added to make 16 bits. Writing this in hex in a word, you have

02 B9

This illustrated convention will be followed throughout this book. Strips of boxes will represent
sequences of bytes. The contents of a single byte will be represented in hex, with two hex digits in each
byte since a single hex digit corresponds to four bits. The double-word representation of 697 simply has
more leading zeros.

00 00 02 B9

What we now have is a good system of representing nonnegative, or unsigned, numbers. This system
cannot represent negative numbers. Also, for any given length, there is a largest unsigned number that
can represented, for example FF16 or 25510 for byte length.

The 2's complement system is similar to the above scheme for unsigned numbers, but it allows
representation of negative numbers. Numbers will be a fixed length, so that you might find the "word-
length 2's complement representation" of a number. The 2's complement representation for a
nonnegative number is almost identical to the unsigned representation; that is, you represent the
number in binary with enough leading zeros to fill up the desired length. Only one additional restriction
exists-for a positive number, the left-most bit must be zero. This means, for example, that the most
positive number that can be represented in word-size 2's complement form is 01111111111111112 or
7FFF16 or 3276710.

As you have probably already guessed, the leftmost bit is always one in the 2's-complement
representation of a negative number. You might also guess that the rest of the representation is just the
same as for the corresponding positive number, but unfortunately the situation is more complicated
than that. That is, you cannot simply change the leading bit from 0 to 1 to get the negative version of a
number.

A hex calculator makes it easy to convert a negative decimal number to 2's complement form. For
instance, if the decimal display shows 565 and the convert-to-hex key is pressed, a typical calculator
will display FFFFFFFDCB (perhaps with a different number of leading F's). For a word-size
representation, ignore all but the last four hex digits; the answer is



FD CB

or 1111 1101 1100 1011 in binary. (Note the leading 1 bit for a negative number.) the doubleword
representation is

FF FF FD CB

which is almost too long to write in binary.

The 2's complement representation of a negative number can also be found without a calculator. One
method is to first express the unsigned number in hex, and then subtract this hex number from 1000016

to get the word length representation. The number you subtract from is, in hex, a 1 followed by the
number of 0's in the length of the representation; for example, 10000000016 to get the doubleword
length representation. (What would you use for a byte-length 2's complement representation? For a
quadword-length 2's complement representation?) In binary, the number of zeros is the length in binary
digits. This binary number is a power of two, and subtraction is sometimes called "taking the
complement," so this operation is the source of the term "2's complement."

Example

The word-length 2's complement representation of the decimal number 76 is found by first converting
the unsigned number 76 to its hex equivalent 4C, then by subtracting 4C from 10000.

     1 0 0 0 0
         - 4 C

Since you cannot subtract C from 0, you have to borrow 1 from 1000, leaving FFF.

     F F F 10
       - 4  C
     --------
     F F B  4

After borrowing, the subtraction is easy. The units digit is

1016 -  C16 = 1610 -  1210 = 4 (in decimal or hex),

and the 16's position is

     F16 -  4 = 1510 -  410 = 1110 = B16

It is not necessary to convert the hex digits to decimal to subtract them if you learn the addition and
subtraction tables for single hex digits.

The operation of subtracting a number from 1 followed by an appropriate number of 0's is called taking
the 2's complement, or complementing the number. Thus "2's complement" is used both as the name
of a representation system and as the name of an operation. The operation of taking the 2's
complement corresponds to pressing the change sign key on a hex calculator.

Since a given 2's complement representation is a fixed length, obviously there is a maximum size
number that can be stored in it. For a word, the largest positive number stored is 7FFF, since this is the
largest 16 bit long number that has a high order bit of 0 when written in binary. The hex number 7FFF is
32767 in decimal. Positive numbers written in hex can be identified by a leading hex digit of 0 through
7. Negative numbers are distinguished by a leading bit of 1, corresponding to hex digits of 8 through F.

How do you convert a 2's complement representation to the corresponding decimal number? First,
determine the sign of a 2's complement number. To convert a positive 2's complement number to
decimal, just treat it like any unsigned binary number and convert it by hand or with a hex calculator.



For example, the word-length 2's complement number 0D43 represents the decimal number 3395.

Dealing with a negative 2's complement number-one starting with a 1 bit or 8 through F in hex-is a little
more complicated. Note that any time you take the 2's complement of a number and then take the 2's
complement of the result, you get back to the original number. For a word size number N, ordinary
algebra gives you

     N = 10000 -  (10000 N)

For example, using the word length 2's complement value F39E

     10000 -  (10000 -  F39E) = 10000 -  C62 = F39E

This says again that the 2's complement operation corresponds to negation. Because of this, if you
start with a bit pattern representing a negative number, the 2's complement operation can be used to
find the positive (unsigned) number corresponding it.

Example

The word-length 2's complement number E973 represents a negative value since the sign bit (leading
bit) is 1 (E = 1110). Taking the complement finds the corresponding positive number.

10000 -  E973 = 168D = 577310

This means that the decimal number represented by E973 is - 5773.

The word-length 2's complement representations with a leading 1 bit range from 8000 to FFFF. These
convert to decimal as follows:

     10000 -  8000 = 8000 = 3276810,

so 8000 is the representation of 32768. Similarly,

     10000 -  FFFF = 1,

so FFFF is the representation of - 1. Recall that the largest positive decimal integer that can be
represented as a word-length 2's complement number is 32767; the range of decimal numbers that can
be represented in word-length 2's complement form is - 32768 to 32767.

Using a calculator to convert a negative 2's complement representation to a decimal number is a little
tricky. For example, if you start with the word length representation FF30 and your calculator displays
10 hex digits, you must enter the 10 hex digit long version of the number FFFFFFFF30, with six extra
leading F's. Then push the convert to decimal button(s) and your calculator should display 208.

Exercises 1.3

Find the word-length 2's complement representation of each of the following decimal numbers:

845a.

15000b.

100c.

-10d.

-923e.

1.

Find the doubleword-length 2's complement representation of each of the following decimal
numbers:

3874a.

b.

c.

2.



a.

1000000b.

-100c.

-55555d.

2.

Find the byte-length 2's complement representation of each of the following decimal numbers:

23a.

111b.

-100c.

-55d.

3.

Find the decimal integer that is represented by each of these wordlength 2's complement
numbers:

00 A3a.

FF FEb.

6F 20c.

B6 4Ad.

4.

Find the decimal integer that is represented by each of these doubleword-length 2's complement
numbers:

00 00 F3 E1a.

FF FF FE 03b.

98 C2 41 7Dc.

5.

Find the decimal integer that is represented by each of these byte-length 2's complement
numbers:

E1a.

7Cb.

FFc.

6.

Find the range of decimal integers that can be stored in 2's complement form in a byte.7.

Find the range of decimal integers that can be stored in 2's complement form in a doubleword.8.

This section showed how to take the 2's complement of a number by subtracting it from an
appropriate power of 2. An alternative method is to write the number in binary (using the correct
number of bits for the length of the representation), change each 0 bit to 1 and each 1 bit to zero
(this is called "taking the 1's complement"), and then adding 1 to the result (discarding any carry
into an extra bit). Show that these two methods are equivalent.

9.

[2]Some early computer systems used byte sizes different than eight bits.

[3]Other computer architectures use a word size different than 16 bits.



1.4 Addition and Subtraction of 2's Complement Numbers

One of the reasons that the 2's complement representation scheme is commonly used to store signed
integers in computers is that addition and subtraction operations can be easily and efficiently
implemented in computer hardware. This section discusses addition and subtraction of 2's complement
numbers and introduces the concepts of carry and overflow that will be needed later.

To add two 2's complement numbers, simply add them as if they were unsigned binary numbers. The
80×86 architecture uses the same addition instructions for unsigned and signed numbers. The following
examples use word-size representations.

First, 0A07 and 01D3 are added. These numbers are positive whether they are interpreted as unsigned
numbers or as 2's complement numbers. The decimal version of the addition problem is given on the
right.

       0A07      2567
     + 01D3    +  467
       0BDA      3034

The answer is correct in this case since BDA16 = 303410.

Next, 0206 and FFB0 are added. These are, of course, positive as unsigned numbers, but interpreted
as 2's complement signed numbers, 0206 is a positive number and FFB0 is negative. This means that
there are two decimal versions of the addition problem. The signed one is given first, then the unsigned
version.

       0206       518          518
     + FFB0    + (-80)     + 65456
      101B6       438        65974

There certainly appears to be a problem since it will not even fit in a word. In fact, since 101B6 is the
hex version of 65974, there is no way to represent the correct sum of unsigned numbers in a word.
However, if the numbers are interpreted as signed and you ignore the extra 1 on the left, then the word
01B6 is the 2's complement representation of the decimal number 438.

Now FFE7 and FFF6 are added, both negative numbers in a signed interpretation. Again, both signed
and unsigned decimal interpretations are shown.

       FFE7        (-25)     65511
     + FFF6      + (-10)   + 65526
      1FFDD         -35     131037

Again, the sum in hex is too large to fit in two bytes, but if you throw away the extra 1, then FFDD is the
correct word-length 2's complement representation of 35.

Each of the last two additions have a carry out of the usual high order position into an extra digit. The
remaining digits give the correct 2's complement representation. The remaining digits are not always
the correct 2's complement sum, however. Consider the addition of the following two positive numbers:

       483F     18495
     + 645A   + 25690
       AC99     44185

There was no carry out of the high order digit, but the signed interpretation is plainly incorrect since
AC99 represents the negative number 21351. Intuitively, what went wrong is that the decimal sum
44185 is bigger than the maximal value 32767 that can be stored in the two bytes of a word. However,
when these numbers are interpreted as unsigned, the sum is correct.

The following is another example showing a "wrong" answer, this time resulting from adding two
numbers that are negative in their signed interpretation.



       E9FF         (-5633)      59903
    +  8CF0      + (-29456)    + 36080
      176EF      -   35089       95983

This time there is a carry, but the remaining four digits 76 EF cannot be the right-signed answer since
they represent the positive number 30447. Again, intuition tells you that something had to go wrong
since -32768 is the most negative number that can be stored in a word.

In the above "incorrect" examples, overflow occurred. As a human being, you detect overflow by the
incorrect signed answer. Computer hardware can detect overflow as it performs addition, and the
signed sum will be correct if there is no overflow. The computer actually performs addition in binary, of
course, and the process is logically a right-to-left pairwise addition of bits, very similar to the procedure
that humans use for decimal addition. As the computer adds a pair of bits, sometimes a carry (of 1) into
the next column to the left is generated. This carry is added to the sum of these two bits, etc. The
column of particular interest is the leftmost one: the sign position. There may be a carry into this
position and/or a carry out of this position into the "extra" bit. This "carry out" (into the extra bit) is what
was called just "carry" above and was seen as the extra hex 1. Figure 1.2 identifies when overflow does
or does not occur. The table can be summarized by saying that overflow occurs when the number of
carries into the sign position is different from the number of carries out of the sign position.

Carry into sign bit? Carry out sign bit? Overflow?

no no no

no  yes  yes

 yes no  yes

 yes  yes no

Figure 1.2: Overflow in addition

Each of the above addition examples is now shown again, this time in binary. Carries are written above
the two numbers.

                       111
       0000 1010 0000 0111      0A07
     + 0000 0001 1101 0011    + 01D3
       0000 1011 1101 1010      0BDA

This example has no carry into the sign position and no carry out, so there is no overflow.

     1 1111 11
       0000 0010 0000 0110       0206
     + 1111 1111 1011 0000    +  FFB0
     1 0000 0001 1011 0110      101B6

This example has a carry into the sign position and a carry out, so there is no overflow.

     1 1111 1111 11   11
       1111 1111 1110 0111       FFE7
     + 1111 1111 1111 0110    +  FFF6
     1 1111 1111 1101 1101      1FFDD

Again, there is both a carry into the sign position and a carry out, so there is no overflow.

       1         1111 11
       0100 1000 0011 1111       483F
      + 0110 0100 0101 1010    + 645A
       1010 1100 1001 1001       AC99



Overflow does occur in this addition since there is a carry into the sign position, but no carry out.

     1    1   11 111
       1110 1001 1111 1111       E9FF
     + 1000 1100 1111 0000    +  8CF0
     1 0111 0110 1110 1111      176EF

There is also overflow in this addition since there is a carry out of the sign bit, but no carry in.

In a computer, subtraction a -  b of numbers a and b is usually performed by taking the 2's complement
of b and adding the result to a. This corresponds to adding the negation of b. For example, for the
decimal subtraction 195 - 618 = -423,

     00C3
   - 026A

is changed to addition of FD96, the 2's complement of 026A.

     00C3
   + FD96
     FE59

The hex digits FE59 do represent - 423. Looking at the above addition in binary, you have

         11           11
       0000 0000 1100 0011
     + 1111 1101 1001 0110
       1111 1110 0101 1001

Notice that there was no carry in the addition. However, this subtraction did involve a borrow. A borrow
occurs in the subtraction a -  b when b is larger than a as unsigned numbers. Computer hardware can
detect a borrow in subtraction by looking at whether on not a carry occurred in the corresponding
addition. If there is no carry in the addition, then there is a borrow in the subtraction. If there is a carry
in the addition, then there is no borrow in the subtraction. (Remember that "carry" by itself means "carry
out.")

Here is one more example. Doing the decimal subtraction 985 411 = 574 using word-length 2's
complement representations,

     03D9
   - 019B

is changed to addition of FE65, the 2's complement of 019B.

            1 1111 1111 1    1
      03D9    0000 0011 1101 1001
    + FE65  + 1111 1110 0110 0101
     1023E  1 0000 0010 0011 1110

Discarding the extra 1, the hex digits 023E do represent 574. This addition has a carry, so there is no
borrow in the corresponding subtraction.

Overflow is also defined for subtraction. When you are thinking like a person, you can detect it by the
wrong answer that you will expect when you know that the difference is going to be outside of the range
that can be represented in the chosen length for the representation. A computer detects overflow in
subtraction by determining whether or not overflow occurs in the corresponding addition problem. If
overflow occurs in the addition problem, then it occurs in the original subtraction problem; if it does not
occur in the addition, then it does not occur in the original subtraction. There was no overflow in either
of the above subtraction examples. Overflow does occur if you use word-length 2's complement



representations to attempt the subtraction - 29123 - 15447. As a human, you know that the correct
answer - 44570 is outside the range - 32,768 to +32,767. In the computer hardware

     8E3D
   - 3C57

is changed to addition of C3A9, the 2's complement of 3C57.

                 1    1   11  111   1
       8E3D        1000 1110 0011 1101
     + C3A9      + 1100 0011 1010 1001
      151E6      1 0101 0001 1110 0110

There is a carry out of the sign position, but no carry in, so overflow occurs.

Although examples in this section have use word-size 2's complement representations, the same
techniques apply when performing addition or subtraction with byte-size, doubleword-size, or other size
2's complement numbers.

Exercises 1.4

Perform each of the following operations on word-size 2's complement numbers. For each, find the
specified sum or difference. Determine whether overflow occurs. For a sum, determine whether there is
a carry. For a difference, determine whether there is a borrow. Check your answers by converting the
problem to decimal.

1. 003F + 02A4   2. 1B48 + 39E1

3. 6C34 + 5028   4. 7FFE + 0002

5. FF07 + 06BD   6. 2A44 + D9CC

7. FFE3 + FC70   8. FE00 + FD2D

9. FFF1 + 8005 10. 8AD0 + EC78

11. 9E58 -  EBBC 12. EBBC -  9E58

13. EBBC -  791C 14. 791C - EBBC



1.5 Other Systems for Representing Numbers

Sections 1.2 and 1.3 presented two commonly-used systems for representing numbers in computers,
strings of character codes (often ASCII), and 2's complement form. This section introduces three
additional schemes, 1's complement, binary coded decimal (BCD), and floating point. The 1's
complement system is an alternative scheme for representing signed integers; it is used in a few
computer systems, but not the Intel 80×86 family. Binary coded decimal and floating point forms are
used in 80×86 computers, as well as many other systems. They will be discussed more fully when
appropriate instructions for manipulating data in these forms are covered. The primary reason for
introducing them here is to illustrate that there are many alternative representations for numeric data,
each valid when used in the correct context.

The 1's complement system is similar to 2's complement. A fixed length is chosen for the
representation and a positive integer is simply the binary form of the number, padded with one or more
leading zeros on the left to get the desired length. To take the negative of the number, each bit is
"complemented"; that is, each zero is changed to one and each one is changed to zero. This operation
is sometimes referred to as taking the 1's complement of a number. Although it is easier to negate an
integer using 1's complement than 2's complement, the 1's complement system has several
disadvantages, the most significant being that it is harder to design circuitry to add or subtract numbers
in this form. There are two representations for zero (why?), an awkward situation. Also, a slightly
smaller range of values can be represented; for example, - 127 to 127 for an 8 bit length, instead of
- 128 to 127 in a 2's complement system.

The byte length 1's complement representation of the decimal number 97 is just the value 0110 0001 in
binary (61 in hex). Changing each 0 to 1 and each 1 to 0 gives 1001 1110 (9E in hex), the byte length
1's complement representation of - 97.

There is a useful connection between taking the 1's complement and taking the 2's complement of a
binary number. If you take the 1's complement of a number and then add 1, you get the 2's
complement. This is sometimes easier to do by hand than the subtraction method presented in Section
1.3. You were asked to verify the equivalence of these methods in Exercise 1.3.9.

In binary coded decimal (BCD) schemes, each decimal digit is coded with a string of bits with fixed
length, and these strings are pieced together to form the representation. Most frequently four bits are
used for each decimal digit; the choices for bit patterns are shown in Fig. 1.3. Only these ten bit
patterns are used.

Decimal BCD bit pattern

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Figure 1.3: Binary coded decimal representation

One BCD representation of the decimal number 926708 is 1001 0010 0110 0111 0000 1000. Using one
hex digit as shorthand for four bits, and grouping two hex digits per byte, this BCD representation can
be expressed in three bytes as

92 67 08



Notice that the BCD representation in hex looks just like the decimal number.

Often BCD numbers are encoded using some fixed number of bytes. For purposes of illustration,
assume a four-byte representation. For now, the question of how to represent a sign will be ignored;
without leaving room for a sign, eight binary-coded decimal digits can be stored in four bytes. Given
these choices, the decimal number 3691 has the BCD representation

00 00 36 91

Notice that the doubleword 2's complement representation for the same number would be 00 00 0E 6B,
and that the ASCII codes for the four numerals are 33 36 39 31.

It is not as efficient for a computer to do arithmetic with numbers in a BCD format as with 2's
complement numbers. It is usually very inefficient to do arithmetic on numbers represented using ASCII
codes. However, ASCII codes are the only method so far for representing a number that is not an
integer. For example, 78.375 can be stored as 37 38 2E 33 37 35. Floating point representation
systems allow for nonintegers to be represented, or at least closely approximated.

Floating point schemes store numbers in a form that corresponds closely to scientific notation. The
following example shows how to convert the decimal number 78.375 into IEEE single format that is 32
bits long. (IEEE is the abbreviation for the Institute of Electrical and Electronics Engineers.) This format
was one of several sponsored by the Standards Committee of the IEEE Computer Society and
approved by the IEEE Standards Board and the American National Standards Institute (ANSI). It is one
of the floating point formats used in Intel 80×86 processors.

First, 78.375 must be converted to binary. In binary, the positions to the right of the binary point (it is not
appropriate to say decimal point for the "." in a binary number) correspond to negative powers of two
(1/2, 1/4, 1/8, etc.), just as they correspond to negative powers of 10 (1/10, 1/100, etc.) in a decimal
number. Since 0.375 = 3/8 = 1/4 + 1/8 = .012 + .0012, 0.37510 = 0.0112. The whole part 78 is 1001110
in binary, so

     78.37510 = 1001110.0112.

Next this is expressed in binary scientific notation with the mantissa written with 1 before the radix
point.

     1001110.0112 = 1.001110011 × 26

The exponent is found exactly as it is in decimal scientific notation, by counting the number of positions
the point must be moved to the right or left to produce the mantissa. The notation here is really mixed;
it would be more proper to write 26 as 10110, but it is more convenient to use the decimal form. Now the
floating point number can be pieced together:

left bit 0 for a positive number (1 means negative)

1000 0101 for the exponent. This is the actual exponent of 6, plus a bias of 127, with the sum,
133, in 8 bits.

00111001100000000000000, the fraction expressed with the leading 1 removed and padded with
zeros on the right to make 23 bits

The entire number is then 0 10000101 00111001100000000000000. Regrouping gives 0100 0010 1001
1100 1100 0000 0000 0000, or, in hex

42 9C C0 00

This example worked out easily because 0.375, the noninteger part of the decimal number 78.375, is a
sum of negative powers of 2. Most numbers are not as nice, and usually a binary fraction is chosen to
closely approximate the decimal fraction. Techniques for choosing such an approximation are not
covered in this book.

1.



To summarize, the following steps are used to convert a decimal number to IEEE single format:

The leading bit of the floating point format is 0 for a positive number and 1 for a negative
number.

1.

Write the unsigned number in binary.2.

Write the binary number in binary scientific notation f23.f22 … f0 2e, where f23 = 1. There are 24
fraction bits, but it is not necessary to write trailing 0's.

3.

Add a bias of 12710 to the exponent e. This sum, in binary form, is the next 8 bits of the answer,
following the sign bit. (Adding a bias is an alternative to storing the exponent as a signed
number.)

4.

The fraction bits f22f21 … f0 form the last 23 bits of the floating point number. The leading bit f23

(which is always 1) is dropped.
5.

Computer arithmetic on floating point numbers is usually much slower than with 2's complement
integers. However the advantages of being able to represent nonintegral values or very large or small
values often outweigh the relative inefficiency of computing with them.

Exercises 1.5

Express each of the following decimal numbers as a word-length 1's complement number.

1. 175 2. -175

3. -43 4. 43

Use BCD to encode each of the following decimal numbers in four bytes. Express each answer in hex
digits, grouped two per byte.

5. 230 6. 1

7. 12348765 8. 17195

Use IEEE single format to encode each of the following decimal numbers in floating point.

9. 175.5 10. -1.25

11. -11.75 12. 45.5



Chapter Summary

All data are represented in a computer using electronic signals. These can be interpreted as patterns of
binary digits (bits). These bit patterns can be thought of as binary numbers. Numbers can be written in
decimal, hexadecimal, or binary forms.

For representing characters, most microcomputers use ASCII codes. One code is assigned for each
character, including nonprintable control characters.

Integer values are represented in a predetermined number of bits in 2's complement form; a positive
number is stored as a binary number (with at least one leading zero to make the required length), and
the pattern for a negative number can be obtained by subtracting the positive form from a 1 followed by
as many 0's as are used in the length. A 2's complement negative number always has a leading 1 bit. A
hex calculator, used with care, can simplify working with 2's complement numbers.

Addition and subtraction are easy with 2's complement numbers. Since the length of a 2's complement
number is limited, there is the possibility of a carry, a borrow, or overflow.

Other formats in which numbers are stored are 1's complement, binary coded decimal (BCD), and
floating point.



Chapter 2: Parts of a Computer System

A practical computer system consists of hardware and software. The major hardware components of a
typical microcomputer system are a central processing unit (CPU), memory circuits, a keyboard for
input, a monitor or some other display device, specialized input/output devices like a mouse, a modem,
or a sound card, and one or more disk drives to store programs and data. Software refers to the
programs that the hardware executes, including system software and application software.

These basic components vary from one computer system to another. This chapter discusses how the
memory and CPU look to the assembly language programmer for a particular class of microcomputers,
the IBM PC and compatible systems. These computers have an Intel 80×86 CPU; that is, an 8086 or
8088, an 80286, an 80386, an 80486, or a Pentium processor.[1] This book assumes a system that has
an 80386 or higher processor and a 32-bit operating system such as Windows 95 or Windows NT. The
remainder of the book is concerned with using assembly language to program these systems, with the
intent of showing how such systems work at the hardware level.

2.1 PC Hardware: Memory

The memory in an IBM PC or compatible microcomputer is logically a collection of "slots," each of
which can store one byte of instructions or data. Each memory byte has a 32-bit numeric label called its
physical address. A physical address can always be expressed as eight hex digits. The first address is
0000000016 and the last address can be as large as the unsigned number FFFFFFFF16. Figure 2.1
shows a logical picture of the possible memory in a PC. Since FFFFFFFF16 = 4,294,967,295, a PC can
contain up to 4,294,967,296 bytes of memory, or four gigabytes. In practice, the user memory in most
PCs is smaller than this.

Figure 2.1: Logical picture of PC memory

Prior to the 80386 chip, the Intel 80×86 family of processors could only directly address 220 bytes of
memory. They used 20-bit physical addresses, often expressed as 5-hex-digit addresses ranging from
00000 to FFFFF.

Physically a PC's memory consists of integrated circuits (ICs). Many of these chips provide random
access memory (RAM), which can be written to or read from by program instructions. The contents of
RAM chips are lost when the computer's power is turned off. Other ICs are read-only memory (ROM)
chips, which permanently retain their contents and can be read from but not written to.

The assembly language programs in this book will use a flat memory model. This means that the
programs will actually encode 32-bit addresses to logically reference locations in a single memory
space where data and instructions are stored.

The Intel 80×86 architecture also provides for a segmented memory model. In the original 8086/8088
CPU, this memory model was the only one available. With the 8086/8088, the PC's memory is
visualized as a collection of segments, each segment 64 Kbytes long, starting on an address that is a
multiple of 16. This means that one segment starts at address 00000, another (overlapping the first)
starts at address 16 (0001016), another starts at address 32 (0002016), etc. Notice that the starting
address of a segment ends in 0 when written in hex. The segment number of a segment consists of the
first four hex digits of its physical address.

A program written for the 8086/8088 does not encode a five-hex-digit address. Instead, each memory
reference depends on its segment number and a 16-bit offset from the beginning of the segment.
Normally only the offset is encoded, and the segment number is deduced from context. The offset is
the distance from the first byte of the segment to the byte being addressed. In hex, an offset is between
0000 and FFFF16. The notation for a segment-offset address is the four-hex-digit segment number



followed by a colon (:) followed by the four-hex-digit offset.

As an example, 18A3:5B27 refers to the byte that is 5B27 bytes from the beginning of the segment
starting at address 18A30. Add the starting address and the offset to get the five-hex-digit address.

       18A30    starting address of segment 18A3
     +  5B27    offset
       1E557    five-hex-digit address

From the 80386 on, 80×86 processors have had both 16-bit and 32-bit segmented memory models
available. Segment numbers are still 16-bits long, but they do not directly reference a segment in
memory. Instead, a segment number is used as an index into a table that contains the actual 32-bit
starting address of the segment. In the 32-bit segmented model, a 32-bit offset is added to that starting
address to compute the actual address of the memory operand. Segments can be logically useful to a
programmer: In the segmented Intel model, the programmer normally assigns different memory
segments to code, data, and a system stack. The 80×86 flat memory model is really a 32-bit
segmented model with all segment registers containing the same value.

In reality, the 32-bit address generated by a program is not necessarily the physical address at which
an operand is stored as the program executes. There is an additional layer of memory management
performed by the operating system and the Intel 80×86 CPU. A paging mechanism is used to map the
program's 32-bit addresses into physical addresses. Paging is useful when a logical address generated
by a program exceeds the physical memory actually installed in a computer. It can also be used to
swap parts of a program from disk as needed when the program is too large to fit into physical memory.
The paging mechanism will be transparent to us as we program in assembly language.

Exercises 2.1

Suppose that you buy a PC with 32 MBytes of RAM. What is the 8-hex-digit address of the "last"
byte?

1.

Suppose that you discover that RAM addresses 000C0000 to 000C7FFF are reserved for a PC's
video adapter. How many bytes of memory is this?

2.

Suppose that you have an Intel 8086. Find the five-hex-digit address that corresponds to each of
these segment:offset pairs:

(a) 2B8C:8D21 (b) 059A:7A04 (c) 1234:5678

3.

[1]Intel produced an 80186 CPU, but it was rarely used in commercial micro computers.



2.2 PC Hardware: The CPU

The original 8086/8088 CPU could execute over 200 different instructions. This instruction set has
been extended as the 80×86 processor family has expanded to include the 80286, 80386, 80486, and
Pentium processors. Much of this book will be concerned with using these instructions to implement
programs so that you understand the machine-level computer capabilities. Other manufacturers make
CPUs that execute essentially the same instruction set, so that a program written for an Intel 80×86
runs without change on such CPUs. Many other processor families execute different instruction sets.
However, most have a similar architecture, so that the basic principles you learn about the 80×86 CPUs
also apply to these systems.

A CPU contains registers, each an internal storage location that can be accessed much more rapidly
than a location in RAM. The application registers are of most concern to the programmer. An 80×86
CPU (from 80386 on) has 16 application registers. Typical instructions transfer data between these
registers and memory or perform operations on data stored in the registers or in memory. All of these
registers have names, and some of them have special purposes. Their names are given below and
some of their special purposes are described. You will learn more special purposes later.

The EAX, EBX, ECX, and EDX registers are called data registers or general registers. The EAX
register is sometimes known as the accumulator since it is the destination for many arithmetic results.
An example of an instruction using the EAX register is

     add eax, 158

which adds the decimal number 158 (converted to doubleword length 2's complement form) to the
number already in EAX, replacing the number originally in EAX by the sum. (Full descriptions of the add
instruction and others mentioned below will appear in Chapter 4.)

Each of EAX, EBX, ECX, and EDX is 32 bits long. The Intel convention is to number bits right to left
starting with 0 for the low-order bit, so that if you view one of these registers as four bytes, then the bits
are numbered like this

Parts of the EAX register can be addressed separately from the whole. The low-order word, bits 0-15, is
known as AX.

The instruction

     sub ax, 10

subtracts 10 from the word stored in AX, without changing any of the high-order bits (16-31) of EAX.

Similarly, the low-order byte (bits 0-7) and the high-order byte (bits 8-15) of AX are known as AL and
AH, respectively.



The instruction

     mov ah, '*'

copies 2A, the ASCII code for an asterisk, to bits 8-15, without changing any of the other bits of EAX.

The EBX, ECX, and EDX registers also have low-order words BX, CX, and DX, which are divided into
high-order and low-order bytes BH and BL, CH and CL, and DH and DL. Each of these parts can be
changed without altering other bits. It may be a surprise that there are no comparable names for the
high-order words in EAX, EBX, ECX, and EDX-you cannot reference bits 16-31 independently by name.

The 8086 through 80286 processors had four 16-bit general registers called AX, BX, CX, and DX. The
"E" was added for "extended" with the 32-bit 80386 registers. However, the 80386 and later
architectures effectively include the older 16-bit architecture.

There are four additional 32-bit registers that Intel also calls general, ESI, EDI, ESP, and EBP. In fact,
you can use these registers for operations like arithmetic, but normally you should save them for their
special purposes. The ESI and EDI registers are index registers, where SI stands for source index and
DI stands for destination index. One of their uses is to indicate memory addresses of the source and
destination when strings of characters are moved from one place to another in memory. They can also
be used to implement array indexes. The names SI and DI can be used for the low-order words of ESI
and EDI, respectively, but we will have little occasion to do this.

The ESP register is the stack pointer for the system stack. It is rarely changed directly by a program,
but is changed when data is pushed onto the stack or popped from the stack. One use for the stack is
in procedure (subroutine) calls. The address of the instruction following the procedure call instruction is
stored on the stack. When it is time to return, this address is retrieved from the stack. You will learn
much more about the stack and the stack pointer register in Chapter 6. The name SP can be used for
the low-order word of ESP, but this will not be done in this book.

The EBP register is the base pointer register. Normally the only data item accessed in the stack is the
one that is at the top of the stack. However, the EBP register is often used to mark a fixed point in the
stack other than the stack top, so that data near this point can be accessed. This is also used with
procedure calls, particularly when parameters are involved.

There are six 16-bit segment registers: CS, DS, ES, FS, GS, and SS. In the older 16-bit segmented
memory model, the CS register contains the segment number of the code segment, the area of
memory where the instructions currently being executed are stored. Since a segment is 64K long, the
length of a program's collection of instructions is often limited to 64K; a longer program requires that
the contents of CS be changed while the program is running. Similarly DS contains the segment
number of the data segment, the area of memory where most data is stored. The SS register contains
the segment number of the stack segment, where the stack is maintained. The ES register contains the
segment number of the extra data segment that could have multiple uses. The FS and GS registers
were added with the 80386 and make possible easy access to two additional data segments.

With the flat 32-bit memory model we will use, the segment registers become essentially irrelevant to
the programmer. The operating system will give each of CS, DS, ES, and SS the same value. Recall
that this is a pointer to table entry that includes the actual starting address of the segment. That table
also includes the size of your program, so that the operating system can indicate an error if your
program accidentally or deliberately attempts to write in another area. However, all of this is transparent
to the programmer who can just think in terms of 32-bit addresses.

The 32-bit instruction pointer, or EIP register, cannot be directly accessed by an assembly language
programmer. The CPU has to fetch instructions to be executed from memory, and EIP keeps track of
the address of the next instruction to be fetched. If this were a older, simpler computer architecture, the
next instruction to be fetched would also be the next instruction to be executed. However, an 80×86
CPU actually fetches instructions to be executed later while it is still executing prior instructions, making
the assumption (usually correct) that the instructions to be executed next will follow sequentially in
memory. If this assumption turns out to be wrong, for example if a procedure call is executed, then the
CPU throws out the instructions it has stored, sets EIP to contain the offset of the procedure, and then
fetches its next instruction from the new address.



In addition to prefetching instructions, an 80×86 CPU actually starts execution of an instruction before it
finishes execution of prior instructions. This use of pipelining increases effective processor speed.

The final register is called the flags register. The name EFLAGS refers to this register, but this
mnemonic is not used in instructions. Some of its 32 bits are used to set some characteristic of the
80×86 processor. Other bits, called status flags, indicate the outcome of execution of an instruction.
Some of the flag register's 32 bits are named, and the names we will use most frequently are given in
Fig. 2.2.

Bit Mnemonic Usage

0 CF carry flag

2 PF parity flag

6 ZF zero flag

7 SF sign flag

10 DF direction flag

11 OF overflow flag

Figure 2.2: Selected EFLAGS bits

Bit 11 is the overflow flag (OF). It is set to 0 following an addition in which no overflow occurred, and to
1 if overflow did occur. Similarly, bit 0, the carry flag (CF), indicates the absence or presence of a carry
out from the sign position after an addition. Bit 7, the sign flag, contains the left bit of the result after
some operations. Since the left bit is 0 for a nonnegative two's complement number and 1 for a
negative number, SF indicates the sign. Bit 6, the zero flag (ZF) is set to 1 if the result of some
operation is zero, and to 0 if the result is nonzero (positive or negative). Bit 2, the parity flag, is set to 1
if the number of 1 bits in a result is even and to 0 if the number of 1 bits in the result is odd. Other flags
will be described later when their uses will be clearer.

As an example of how flags are set by instructions, consider again the instruction

     add eax, 158

This instruction affects CF, OF, PF, SF, and ZF. Suppose that EAX contains the word FF FF FF F3
prior to execution of the instruction. Since 15810 corresponds to the word 00 00 00 9E, this instruction
adds FF FF FF F3 and 00 00 00 9E, putting the sum 00 00 00 91 in the EAX register. It sets the carry
flag CF to 1 since there is a carry, the overflow flag OF to 0 since there is no overflow, the sign flag SF
to 0 (the leftmost bit of the sum 00 00 00 91), and the zero flag ZF to 0 since the sum is not zero. The
parity flag PF is set to 0 since 0000 0000 0000 0000 0000 0000 1001 0001 contains three 1 bits, an
odd number.

In summary, the 80×86 CPU executes a variety of instructions, using its 16 internal registers for
operands and results of operations, and for keeping track of segment selectors and addresses. The
registers are summarized in Fig. 2.3.



Name Length (bits) Use/comments

EAX 32 accumulator, general use;

    low-order-word AX, divided into bytes AH and AL

EBX 32 general use;

    low-order-word BX, divided into bytes BH and BL

ECX 32 general use;

    low-order-word CX, divided into bytes CH and CL

EDX 32 general use;

    low-order-word DX, divided into bytes DH and DL

ESI 32 source index; source address in string moves, array index

EDI 32 destination index; address of destination, array index

ESP 32 stack pointer; address of top of stack

EBP 32 base pointer; address of reference point in the stack

CS 16 holds selector for code segment

DS 16 holds selector for data segment

ES 16 holds selector for extra segment

SS 16 holds selector for stack segment

FS 16 holds selector for additional segment

GS 16 holds selector for additional segment

EIP 32 instruction pointer; address of next instruction to be

    fetched

EFLAGS 32 collection of flags, or status bits

Figure 2.3: 80×86 registers

Exercises 2.2

For each add instruction below, assume that EAX contains the given contents before the
instruction is executed, and give the contents of EAX as well as the values of the CF, OF, SF,
and ZF flags after the instruction is executed:

  EAX before Instruction

(a) 00 00 00 45 add eax, 45

(b) FF FF FF 45 add eax, 45

(c) 00 00 00 45 add eax, -45

(d) FF FF FF 45 add eax, -45

(e) FF FF FF FF add eax, 1

(f) 7F FF FF FF add eax, 100

1.

In an 8086 program, suppose that the data segment register DS contains the segment number
23D1 and that an instruction fetches a word at offset 7B86 in the data segment. What is the five-
hex-digit address of the word that is fetched?

2.

In an 8086 program, suppose that the code segment register CS contains the segment number
014C and that the instruction pointer IP contains 15FE. What is the five-hex-digit address of the
next instruction to be fetched?

3.



2.3 PC Hardware: Input/Output Devices

A CPU and memory make a computer, but without input devices to get data or output devices to display
or write data, the computer is not usable for many purposes. Typical input/output (I/O) devices include
a keyboard or a mouse for input, a monitor to display output, and a disk drive for data and program
storage.

An assembly language programmer has multiple ways to look at I/O devices. At the lowest level, each
device uses a collection of addresses or ports in the I/O address space. The 80×86 architecture has
64K port addresses, and a typical I/O device uses three to eight ports. These addresses are distinct
from ordinary memory addresses. The programmer uses instructions that output data or commands to
these ports or that input data or status information from them. Such programming is very tedious and
the resulting programs are difficult to reuse with different computer systems.

Instead of using separate port addresses, a computer system can be designed to use addresses in the
regular memory address space for I/O device access. Such a design is said to use memory-mapped
input/output. Although memory-mapped I/O is possible with the 80×86, it is not used with most PCs.

Because of the difficulty of low-level programming of I/O devices, a common approach is to use
procedures that do the busywork of communicating with the devices, while allowing the programmer a
higher-level, more logical view of the devices. Many such routines are still fairly low-level; examples are
procedures to display a single character on the CRT or get a single character from the keyboard. A
higher-level procedure might print a string of characters on a printer.

An assembly language programmer may write input/output procedures, using knowledge of input/output
ports and devices. Some computers have input/output procedures built into ROM. Many operating
systems (see Section 2.4) also provide input/output procedures.

Exercises 2.3

The previous discussion states that there are 64K port addresses.

How many addresses is this (in decimal)?1.

Assuming that the first address is 0, what is the last address?2.

Express the range of port addresses in hex.3.



2.4 PC Software

Without software, computer hardware is virtually useless. Software refers to the programs or
procedures executed by the hardware. This section discusses different types of software.

PC Software: The Operating System

A general-purpose computer system needs an operating system to enable it to run other programs. The
original IBM PC usually ran the operating system known as PC-DOS; compatible systems used the
very similar operating systems called MS-DOS. DOS stands for disk operating system. All of these
operating systems were developed by Microsoft Corporation; PC-DOS was customized by IBM to work
on the IBM PC, and the versions of MS-DOS that ran on other computer systems were sometimes
customized by their hardware manufacturers. Later versions of PC-DOS were produced solely by IBM.

The DOS operating systems provide the user a command line interface. DOS displays a prompt (such
as C:\>) and waits for the user to type a command. When the user presses the Enter (or Return) key,

DOS interprets the command. The command may be to perform a function that DOS knows how to do
(such as displaying the directory of file names on a disk), or it may be the name of a program to be
loaded and executed.

Many users prefer a graphical user interface that displays icons representing tasks or files, so that the
user can make a selection by clicking on an icon with a mouse. Microsoft Windows provided a
graphical user interface for PCs. The versions through Windows 3.1 enhanced the operating
environment, but still required DOS to run. Windows 95 included a major revision of the operating
system, which was no longer sold separately from the graphical user interface. In Windows 95 the
graphical user interface became the primary user interface, although a command line interface was still
available.

PC Software: Text Editors

A text editor is a program that allows the user to create or modify text files that are stored on disk. A
text file is a collection of ASCII codes. The text files of most interest in this book will be assembly
language source code files, files that contain assembly language statements. An editor is sometimes
useful to prepare a data file as well.

Later versions of MS-DOS and Windows 95 provide a text editor called Edit. Edit is invoked from the
command line prompt. This full-screen editor uses all or part of the monitor display as a window into the
file. The user can move the window up or down (or left or right) to display different portions of the file.
To make changes to the file, cursor control keys or the mouse are used to move the cursor to the place
to be modified, and the changes are entered.

Microsoft Windows includes a text editor called Notepad. It is also a full-screen editor. Either Edit or
Notepad work well for writing assembly language source programs.

Word processors are text editors that provide extra services for formatting and printing documents. For
example, when one uses a text editor, usually the Enter key must be pressed at the end of each line.
However, a word processor usually wraps words automatically to the next line as they are typed, so that
Enter or some other key is used only at the end of a paragraph. The word processor takes care of
putting the words on each line within specified margins. A word processor can sometimes be used as
an editor to prepare an assembly language source code file, but some word processors store formatting
information with the file along with the ASCII codes for the text. Such extra information may make the
file unsuitable as an assembly language source code file, so it is safest to avoid a word processor when
creating an assembly language source program.

PC Software: Language Translators and the Linker

Language translators are programs that translate a programmer's source code into a form that can be
executed by the computer. These are usually not provided with an operating system. Language
translators can be classified as interpreters, compilers, or assemblers.



Interpreters directly decipher a source program. To execute a program, an interpreter looks at a line of
source code and follows the instructions of that line. Basic or Lisp language programs are often
executed by an interpreter. Although the interpreter itself may be a very efficient program, interpreted
programs sometimes execute relatively slowly. An interpreter is generally convenient since it allows a
program to be quickly changed and run. The interpreter itself is often a very large program.

Compilers start with source code and produce object code that consists mostly of instructions to be
executed by the intended CPU. High-level languages such as Pascal, Fortran, Cobol, C, and C++ are
commonly compiled. The object code produced by a compiler must often be linked or combined with
other object code to make a program that can be loaded and executed. This requires a utility called a
linker, usually provided with a compiler.

A debugger allows a programmer to control execution of a program, pausing after each instruction or at
a preset breakpoint. When the program is paused, the programmer can examine the contents of
variables in a high-level language or registers or memory in assembly language. A debugger is useful
both to find errors and to "see inside" a computer to find out how it executes programs.

Integrated development environments use a single interface to access an editor, a compiler, and a
linker. They also initiate execution of the program being developed and frequently provide other utilities,
such as a debugger. An integrated development environment is convenient, but may not always be
available for a particular programming language.

An assembler is used much like a compiler, but translates assembly language rather than a high-level
language into machine code. The resulting files must normally be linked to prepare them for execution.
Because assembly language is closer to machine code than a high-level language, the job of an
assembler is somewhat simpler than the job of a compiler. Assemblers historically existed before
compilers.

Using again the assembly language instruction cited in Section 2.2,

     add eax, 158

is translated by the assembler into the five bytes 05 00 00 00 9E. The first byte 05 is the op code
(operation code), which says to add the number contained in the next four bytes to the doubleword
already in the EAX register. The doubleword 00 00 00 9E is the 2's complement representation of
15810.



Chapter Summary

This chapter has discussed the hardware and software components that make up a PC microcomputer
system.

The major hardware components are the CPU and memory. The CPU executes instructions and uses
its internal registers for instruction operands and results and to determine addresses of data and
instructions stored in memory. Objects in memory can be addressed by 32-bit addresses. In a flat
memory model, such addresses are effectively actual addresses. In a segmented memory model,
addresses are calculated from a starting address determined from a segment number and an offset
within the segment.

Input/output at the hardware level uses a separate collection of addresses called ports. Input/output is
often done through operating systems utilities.

An operating system is a vital software component. Through a command line or a graphical user
interface, it interprets the user's requests to carry out commands or to load and execute programs.

A text editor, an assembler, and a linker are necessary software tools for the assembly language
programmer. These may be separate programs or available as part of an integrated development
environment. A debugger is also a useful programmer's tool.



Chapter 3: Elements of Assembly Language

Chapter 3 explains how to write assembly language programs. The first part describes the types and
formats of statements that are accepted by MASM, the Microsoft Macro Assembler. Then follows an
example of a complete assembly language program, with instructions on how to assemble, link, and
execute this and other programs. The last portion of the chapter fills in details about constructs that
have been illustrated in the example, laying the groundwork for programs in future chapters.

3.1 Assembly Language Statements

An assembly language source code file consists of a collection of statements. Most statements fit
easily on an 80-character line, a good limit to observe so that source code can easily be printed or
displayed on a monitor. However, MASM 6.1 accepts statements up to 512 characters long; these can
be extended over more than one physical line using backslash (\) characters at the end of each line
except the last.

Because assembly language programs are far from self-documenting, it is important to use an
adequate number of comments. Comments can be used with any statement. A semicolon (;) begins the
comment, and the comment then extends until the end of the line. An entire line is a comment if the
semicolon is in column 1 or if a comment can follow working parts of a statement. In those rare cases
where you use a backslash character to break a statement into multiple lines, a comment can follow the
backslash.

There are three types of functional assembly language statements: instructions, directives, and macros.
An instruction is translated by the assembler into one or more bytes of object code (machine code),
which will be executed at run time. Each instruction corresponds to one of the operations that can be
executed by the 80×86 CPU. The instruction

     add eax, 158

was used as an example in Chapter 2.

A directive tells the assembler to take some action. Such an action does not result in machine
instructions and often has no effect on the object code. For example, the assembler can produce a
listing file showing the original source code, the object code, and other information. The directive

     .NOLIST

anywhere in the source file tells the assembler to stop displaying source statements in the listing file.
The object code produced is the same with or without the .NOLIST directive. (There is a .LIST

directive to resume listing source statements.) These directives and many others start with a period, but
others do not.

A macro is "shorthand" for a sequence of other statements, be they instructions, directives, or even
other macros. The assembler expands a macro to the statements it represents and then assembles
these new statements. Several macros will appear in the example program later in this chapter.

A statement that is more than just a comment almost always contains a mnemonic that identifies the
purpose of the statement, and may have three other fields: name, operand, and comment. These
components must be in the following order:

     name mnemonic operand(s) ;comment

For example, a program might contain the statement

     ZeroCount: mov ecx, 0 ; initialize count to zero

The name field always ends with a colon (:) when used with an instruction. When used with a directive,
the name field has no colon. The mnemonic in a statement indicates a specific instruction, directive, or



macro. Some statements have no operand, others have one, others have more. If there is more than
one operand, they are separated by commas; spaces can also be added. Sometimes a single operand
has several components with spaces between them, making it look like more than one operand.

In the instruction

     add eax, 158

the mnemonic is add and the operands are eax and 158. The assembler recognizes add as a

mnemonic for an instruction that will perform some sort of addition. The operands provide the rest of
the information that the assembler needs. The first operand eax tells the assembler that the

doubleword in the EAX register is to be one of the values added, and that the EAX register will be the
destination of the sum. Since the second operand is a number (as opposed to another register
designation or a memory designation), the assembler knows that it is the actual value to be added to
the doubleword in the EAX register. The resulting object code is 05 00 00 00 9E, where 05 stands for
"add the doubleword immediately following this byte in memory to the doubleword already in EAX." The
assembler takes care of converting the decimal number 158 to its doubleword length 2's complement
representation 0000009E. The bytes of this doubleword are actually stored backwards in the object
code, a fact that we can almost always ignore.

One use for the name field is to label what will be symbolically, following assembly and linking of the
program, an address in memory for an instruction. Other instructions can then easily refer to the
labeled instruction. If the above add instruction needs to be repeatedly executed in a program loop,
then it could be coded

     addLoop: add eax, 158

The instruction can then be the destination of a jmp (jump) instruction, the assembly language version

of a goto:

     jmp addLoop ; repeat addition

Notice that the colon does not appear at the end of the name addLoop in the jmp instruction. High-

level language loop structures like while or for are not available in machine language although they can
be implemented using jmp or other instructions.

It is sometimes useful to have a line of source code consisting of just a name, for example

     EndIfBlank:

Such a label might be used as the last line of code implementing an if-then-else-endif structure. This
name effectively becomes a label for whatever instruction follows it, but it is convenient to implement a
structure without worrying about what comes afterwards.

It is considered good coding practice to make labels descriptive. The label addLoop might help to

clarify the assembly language code, identifying the first instruction of a program loop that includes an
addition. Other labels, like EndIfBlank above, may parallel key words in a pseudocode design.

Names and other identifiers used in assembly language are formed from letters, digits, and special
characters. The allowable special characters are underscore (_), question mark (?), dollar sign ($), and
at sign (@). In this book, the special characters will be rarely used. A name may not begin with a digit.
An identifier may have up to 247 characters, so that it is easy to form meaningful names. The Microsoft
Macro Assembler will not allow instruction mnemonics, directive mnemonics, register designations, and
other words that have a special meaning to the assembler to be used as names. Appendix C contains a
list of such reserved identifiers.

The assembler will accept code that is almost impossible for a human to read. However, since your
programs must also be read by other people, you should make them as readable as possible. Two
things that help are good program formatting and use of lowercase letters.

Recall that assembly language statements can contain name, mnemonic, operand, and comment



fields. A well-formatted program has these fields aligned as you read down the program. Always put
names in column 1. Mnemonics might all start in column 12, operands might all start in column 18, and
comments might all start in column 30-the particular columns are not as important as being consistent.
Blank lines are allowed in an assembly language source file. Use blank lines to visually separate
sections of assembly language code, just like breaking a written narrative into paragraphs.

Assembly language statements can be entered using either uppercase or lowercase letters. Normally
the assembler does not distinguish between uppercase and lowercase. It can be instructed to
distinguish within identifiers, but this is only needed when you are communicating with a program
written in a language that is case-sensitive. Mixed-case code is easier for people to read than code
written all in uppercase or lowercase. All uppercase code is especially difficult to read. One convention
is to use mostly lowercase source code except for uppercase directives. This is the convention that will
be followed for programs in this book.

Exercises 3.1

Name and describe the three types of assembly language statements.1.

For each combination of characters below, determine whether or not it is an allowable label
(name). If not, give a reason.

(a) repeat (b) exit

(c) more (d) EndIf

(e) 2much (f) add

(g) if (h) add2

(i) EndOfProcessLoop

2.



3.2 A Complete Example

This section presents a complete example of an assembly language program. We start with a
pseudocode design for the program. It is easy to get lost in the details of assembly language, so your
programming job will be much easier if you make a design first and then implement the design in
assembly language code. This program will prompt for two numbers and then find and display their
sum. The algorithm implemented by this program is

prompt for the first number;

input ASCII characters representing the first number;

convert the characters to a 2's complement doubleword;

store the first number in memory;

prompt for the second number;

input ASCII characters representing the second number;

convert the characters to a 2's complement doubleword;

add the first number to the second number;

convert the sum to a string of ASCII characters;

display a label and the characters representing the sum;

Figure 3.1 lists the complete program which implements this design. The parts are explained below.

  ; Example assembly language program -- adds two numbers
  ; Author: R. Detmer
  ; Date:   revised 7/97
  .386
  .MODEL FLAT

  ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

  INCLUDE io.h            ; header file for input/output

  cr      EQU     0dh     ; carriage return character
  Lf      EQU     0ah     ; line feed

  .STACK  4096            ; reserve 4096-byte stack

  .DATA                   ; reserve storage for data
  number1 DWORD   ?
  number2 DWORD   ?
  prompt1 BYTE    "Enter first number: ", 0
  prompt2 BYTE    "Enter second number: ", 0
  string  BYTE    40 DUP (?)
  label1  BYTE    cr, Lf, "The sum is "
  sum     BYTE    11 DUP (?)
          BYTE    cr, Lf, 0

  .CODE                          ; start of main program code
  _start:
          output  prompt1        ; prompt for first number
          input   string, 40     ; read ASCII characters
          atod    string         ; convert to integer
          mov     number1, eax   ; store in memory

          output  prompt2        ; repeat for second number
          input   string, 40
          atod    string



          mov     number2, eax

          mov     eax, number1   ; first number to EAX
          add     eax, number2   ; add second number
          dtoa    sum, eax       ; convert to ASCII characters
          output  label1         ; output label and sum

          INVOKE  ExitProcess, 0 ; exit with return code 0

  PUBLIC _start                  ; make entry point public

  END                            ; end of source code

Figure 3.1: A complete assembly language program

The example program begins with comments identifying the purpose of the program, the author, and
the date the program was written. This is minimal documentation for any program; most organizations
require much more. In the interest of saving space, the program documentation in this book will be
relatively brief, although most lines of code will include comments.

The statements

     .386
     .MODEL FLAT

are both directives. Without the directive .386, MASM accepts only 8086/8088 instructions; with it, the

assembler accepts the additional instructions that are executed by 80186, 80286, and 80386
processors. The .486 and .586 directives enable use of even more instructions, but we will not be
programming with these instructions. There is also a .386P directive that allows the assembler to
recognize privileged 80386 instructions; we will not use these instructions. The directive .MODEL FLAT

tells the assembler to generate 32-bit code using a flat memory model. With MASM 6.1, this directive
must follow the .386 directive.

The next statement

     ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

is another directive. The PROTO directive is used to prototype a function. In this instance, the name of

the function is ExitProcess, a system function used to terminate a program. It has one parameter, a
doubleword symbolically called dwExitCode.

The next statement

     INCLUDE io.h

is yet another directive. (In spite of the way it looks at this point, a program doesn't consist of only
directives!) It instructs the assembler to copy the file IO.H into your program as the program is
assembled.[1] The source file is not modified: It still contains just the INCLUDE directive, but for
purposes of the assembly, the lines of IO.H are inserted at the point of the INCLUDE directive. In order

to be included, this file should be in the same directory/folder as your source program when the
assembler is invoked.

The file IO.H contains mostly definitions for macros that are described in Section 3.7. There are also
several directives. The only statements from IO.H that you will see in your listing file are .NOLIST,
.LIST, and a few comments. The .NOLIST directive, described above, suppresses listing most of the
lines from IO.H. The last statement in IO.H is the directive .LIST that instructs the assembler to

resume listing source statements. Another directive in IO.H tells the assembler to suppress listings of
the statements into which a macro expands. This results in a shorter program listing.

The next two statements



     cr      EQU   0dh   ; carriage return character
     Lf      EQU   0ah   ; linefeed character

use the directive EQU to equate symbols to values. Following an EQU directive, the symbol can be used

as a synonym for the value in subsequent source code. Using names rather than numbers can make
clearer source code. In this example, cr is being equated to the hexadecimal number 0D, which is the
ASCII code for a carriage return character; Lf is given the hex value 0A, the ASCII code for a linefeed

character. An uppercase L has been used to avoid confusion with the number 1. Carriage return and
linefeed characters are needed to move down to a new output line, and are frequently used in defining
data to be displayed on a monitor or printed.

In these EQU directives the assembler recognizes the values 0dh and 0ah as hexadecimal because
each has a trailing h. Numeric values in assembly language statements are in decimal unless otherwise

indicated in the source code. Suffixes that indicate types of values other than hex will be introduced in
Section 3.5. A hexadecimal value must start with a digit, not one of the hex digits "a" through "f" so that
the assembler can distinguish it from a name.

The .STACK directive tells the assembler how many bytes to reserve for a run-time stack-4096 bytes is

generous for the programs we will be writing. The stack is used primarily for procedure calls. Each
macro in IO.H generates a procedure call to an associated procedure that actually does the task, and
some of these procedures in turn call other procedures.

The directive .DATA starts the data segment of the program, the portion of the code where memory
space for variables is reserved. In this program, the BYTE and DWORD directives are used to reserve

bytes and doublewords of storage, respectively.

The directive

     number1 DWORD ?

reserves a single doubleword of storage, associating the symbolic name number1 with the address

00000000 since it is the first data item. The question mark (?) indicates that this doubleword will have
no designated initial value, although actually MASM 6.1 will initialize it to zero. The statement

     number2 DWORD ?

reserves another doubleword of storage, associating the symbolic name number2 with the next

available address, 00000004, since it follows the doubleword already reserved. The run-time addresses
for number1 and number2 will be different than 00000000 and 00000004, but these doublewords will

be stored consecutively in memory.

The directive

     prompt1 BYTE   "Enter first number: ", 0

has two operands, the string "Enter first number" and the number 0. It reserves one byte for

each character inside the quotation marks and one byte for the number 0. For each character, the byte
reserved is the ASCII code of the letter. For the number, it is simply its byte-length 2's complement
representation. This directive thus reserves 22 bytes of memory containing 45 6E 74 65 72 20 66 69 72
73 74 20 6E 75 6D 62 65 72 3A 20 20 00. The name prompt1 is associated with the address

00000008 since eight previous bytes have been allocated.

The next BYTE directive reserves 23 bytes of memory, with the name prompt2 associated with

address 0000001E. Then the directive

     string BYTE 40 DUP (?)

reserves 40 uninitialized bytes of memory that will have the symbolic address string. The DUP

operator says to repeat the item(s) in parentheses. The directive



     label1 BYTE cr, Lf, "The sum is "

has three operands and reserves 13 bytes of storage. The first two bytes contain 0D and 0A since
these are the values to which cr and Lf are equated. The next 11 bytes are the ASCII codes of the
characters in quotation marks. Notice that there is no trailing 0 operand for this BYTE directive or the
next, so there will be no trailing 00 byte generated. The next-to-last BYTE directive reserves 11
uninitialized bytes with address associated with the name sum. Even though the last BYTE directive
has no label, it reserves three initialized bytes of memory immediately following the 11 for sum.

The next segment of the program contains executable statements. It begins with the directive

     .CODE

The line of code with only the label

     _start:

marks the entry point of the program, the address of the first statement to be executed. The name used
is the programmer's choice, but we will consistently use _start for this purpose.

Finally we come to the statements that really do something! Since this program performs mostly input
and output, the bulk of its statements are macros to perform these functions. The macro

     output  prompt1

displays characters stored at the address referenced by prompt1, using a null (00) byte to terminate

the display. In this program, the user will be prompted to enter the first number. Since there is no
carriage return or line feed character at the end of the prompt, the cursor will remain on the line
following the colon and the two blanks. The statement

     input   string, 40      ; read ASCII characters

is a macro that functionally causes the computer to pause and wait for characters to be entered at the
keyboard until the user presses the Enter key to terminate the input. The first operand (string)
identifies where the ASCII codes for these characters will be stored. The second operand (40)

identifies the maximum number of characters that can be entered. Notice that 40 uninitialized bytes
were reserved at address string. More details about the input macro are in Section 3.6, but for now

just note that you want to be fairly generous with the number of bytes you reserve in an input area.

The input macro inputs ASCII codes, but the CPU does arithmetic with numbers in 2's complement
form. The atod (for "ASCII to double") macro scans memory at the address specified by its single

operand and converts the ASCII codes there to the corresponding 2's complement doubleword; the
result is stored in EAX. In this program

     atod    string          ; convert to integer

scans memory starting at string, skips leading blanks, notes any plus (+) or minus (- ) sign, and

builds a number from ASCII codes for digits. The scan stops when any non digit is encountered.

The statement

     mov      number1, eax      ; store in memory

is an instruction. The mnemonic mov stands for "move" but the instruction really performs a copy

operation like an assignment statement in a high-level language. This particular instruction copies the
value in the EAX register to the doubleword of memory at address number1.

The next four statements



     output   prompt2           ; repeat for second number
              input     string, 40
              atod      string
              mov       number2, eax

repeat the tasks just performed: prompt for the second number; input ASCII codes; convert the ASCII
codes to a 2's complement doubleword; and copy the doubleword to memory. Note that the input area
is reused.

The next two instructions add the numbers. Addition must be done in a register, so the first number is
copied to the EAX register with the instruction

     mov      eax, number1      ; first number to AX

and then the second is added to the first with the instruction

     add      eax, number2      ; add second number

(Do you see a more efficient way to get the sum in EAX?)

The sum is now in the EAX register in 2's complement form. For display purposes we need a sequence
of ASCII characters that represent this value. The dtoa ("double to ASCII") macro takes the

doubleword specified by its second operand and converts it to a string exactly 11 bytes long at the
destination specified by the first operand. In this program, the macro

     dtoa     sum, eax          ; convert to ASCII characters

uses the contents of EAX as the source, and fills in the 11 bytes at sum with ASCII codes

corresponding to this value. For a typical small number, leading space characters are used fill a total of
11 bytes. The macro

     output   label1            ; output label and sum

will display bytes of memory, starting at label1 and continuing until a null byte (00) is encountered.

Since the undefined bytes at sum have been replaced by ASCII codes, the first null byte in memory will
be the one following the carriage return and line feed codes in the unlabeled BYTE directive-a total of
26 characters will be displayed.

The statement

     INVOKE   ExitProcess, 0    ; exit with return code 0

is a directive that generates code to call the procedure ExitProcess with the value 0 for the
parameter symbolically called dwExitCode in the prototype. Functionally this terminates the program,

with exit code value 0 telling the operating system that the program terminated normally. (Nonzero
values can be used to indicate error conditions.)

Normally the names used inside a file are visible only inside the file. The directive

     PUBLIC _start                    ; make entry point public

makes the entry point address visible outside this file, so that the linker can identify the first instruction
to be executed as it constructs an executable program file. We will later use this directive to make
names of separately assembled procedures visible.

The final statement in an assembly language source file is the directive END. This marks the physical
end of the program. There should be no statement following END.

Exercises 3.2

1.

2.



Identify three directives that appear in the example program.1.

Identify three macros that appear in the example program.2.

Identify three instructions that appear in the example program.3.

In the example program, why is prompt2 associated with address 0000001E? What are the

contents of the 23 bytes reserved by this directive?

4.

[1]The files IO.H, IO.OBJ, and IO.ASM are written by the author of this book and are available to the
user.



3.3 How to Assemble, Link, and Run a Program

This book includes a CD with software to assemble and link a program. This software should be
installed on your computer.

The source code for a program is entered using any standard text editor such as Notepad or Edit; no
text editor is included on the CD. Assembly language source code is normally stored in a file with a
.ASM type. For this section, we will assume that the source program from Fig. 3.1 is stored in the file
EXAMPLE.ASM.

We will use the ML assembler from MASM 6.1 to assemble programs. To assemble EXAMPLE.ASM,
you enter

ml /c /coff example.asm

at a DOS prompt in a MS-DOS window. Assuming there is no error in your program, you will see a
display like

     Microsoft (R) Macro Assembler Version 6.11
     Copyright (C) Microsoft Corp 1981- 1993. All rights reserved.

     Assembling: example.asm

followed by a DOS prompt. The file EXAMPLE.OBJ will be added to your directory. If your program
contains errors, error messages are displayed and no .OBJ file is produced.

There are two switches, /c and /coff, in this invocation of the assembler. The ML product is capable
of both assembly and linking, and the switch /c says to assemble only. The /coff switch says to

generate common object file format. ML switches are case-sensitive: They must be entered exactly as
shown-these are in lowercase.

The linker we will use is named LINK. For this example, invoke it at the DOS prompt with

link /subsystem:console /entry:start /out:example.exe
                           example.obj io.obj kernel32.lib

This is entered as a single command, although it may wrap to a new line as you type. Again, assuming
no errors, you will see

Microsoft (R) 32-Bit Incremental Linker Version 5.10.7303
Copyright (C) Microsoft Corp 1992- 1997. All rights reserved.

followed by a DOS prompt. This LINK command links together EXAMPLE.OBJ, IO.OBJ, and
KERNEL32.LIB to produce the output file EXAMPLE.EXE. The switch /subsystem:console tells
LINK to produce a console application, one that runs in a DOS window. The switch /entry:start

identifies the label of the program entry point; notice that you do not use an underscore here even
though _start was the actual label for the entry point.

A program is executed by simply typing its name at the DOS prompt. Figure 3.2 shows a sample run of
EXAMPLE.EXE, with user input underlined. Once the executable file has been produced, you can run
the program as many times as you wish without assembling or linking it again.

   C:\AsmFiles>example
   Enter first number:   98
   Enter second number:     -35



   The sum is            63

   C:\AsmFiles>

Figure 3.2: Execution of EXAMPLE.EXE

This book's software package includes Microsoft's Windbg, a symbolic debugger that can be used to
trace execution of an assembly language program. This is a useful tool for finding errors and for seeing
how the computer works at the machine level.

To use Windbg, you must add the /Zi switch (uppercase Z, lowercase i) to the assembly with ML. This

causes the assembler to add debug information to its output. The assembly command now looks like

ml /c /coff /Zi example.asm

Linking is changed to add one new switch, /debug, giving

link /debug /subsystem:console /entry:start /out:example.exe
                               example.obj io.obj kernel32.lib

Start the debugger by typing Windbg at the DOS prompt. You will be see a window similar to the one
shown in Fig. 3.3. From the menu bar choose File, then Open Executable… Select example.exe or the
name of your executable file, and click OK to get back to a window that looks almost like the opening
screen shown in Fig. 3.3 except that example.exe appears in its title bar and a few lines appear in the
Command window.

Figure 3.3: Windbg opening screen

Now press the step into button 

Click OK in the information window and then press the step into button again. Your source code now
appears in a Windbg child window behind the Command window. Minimize the Command window. Next
select View and then Registers to open a window that shows contents of the 80×86 registers. Then
select View and Memory… to open a window that shows contents of memory. For this window you must
enter the starting memory address; for the example program, use &number1 as the starting address-
the C/C++ address-of operator (&) is used to indicate the address of number1, the first item in the data
section. Finally size and rearrange windows until your screen looks something like the screen shown in
Fig. 3.4. Notice that the right edge of the example program's output window is visible under the Windbg
window. The rest of the desktop is covered by the window in which the assembler and linker were run,
as well as a small strip of Microsoft Word that the author was also using.



Figure 3.4: Windbg ready for tracing a program

The first statement of the example program is highlighted. Clicking the step into button causes this
statement to be executed. Although this statement is a macro, it is executed as a single instruction, and
Enter first number: appears on the output screen. (You can click on the edge of the output

screen to put it on top.) Clicking step into again causes the input macro to be executed. When you
enter a number and press return, Windbg returns to the debugger screen with the third statement
highlighted. Two more clicks of the step into button causes the ASCII to double the macro to be
executed, and the first mov instruction to be executed. The Windbg window now looks like the one

shown in Fig. 3.5.

Figure 3.5: Windbg tracing a program

At this point, the Registers window shows that EAX contains 00000062, the 2's complement
doubleword version of 98. The number 98 was entered in response to the prompt. You can see its
ASCII codes stored in memory on the fourth line of the Memory window. Each line of the Memory
window has three parts: its starting address, hex values for the bytes stored at that address, and
printable characters that correspond to those bytes, if any. The first five characters of the fourth line are
the end of prompt2, ASCII codes for r and colon, two spaces, and a null byte. The 40 bytes reserved
for string come next in memory, and the first four have been replaced by 39, 38, 00, and 0A, ASCII

codes for 98, a null byte, and a line feed. When 98 and Enter were pressed, the operating system
stored 39 and 38 plus a carriage return character and a line feed character. The input macro replaced
the carriage return by a null byte, but you can still see the line feed in memory. The atod macro

scanned these ASCII codes to produce the value in EAX. The Memory window also shows a value of
62 00 00 00 for number1, the bytes of the number stored backwards, copied there by the mov



instruction.

The rest of the program is traced similarly. Figure 3.6 shows Windbg just before program termination.
The Memory window has been scrolled to show the part containing the output label. At this point, 35
has been entered for the second number, the sum 98 + (- 35) has been calculated as a 2's
complement number still visible in EAX, and this sum has been converted to an 11-byte-long string by
the dtoa macro. You can see ten ASCII space characters (20) in memory prior to the codes for 6 and

3, 36 and 33.

Figure 3.6: Windbg before program termination

Exercises 3.3

Suppose that EXAMPLE.ASM is assembled and linked according to the first instructions (non-
debugging) in this section. What additional files are generated by the assembler? By the linker?

1.

Suppose that EXAMPLE.ASM is assembled and linked according to the second instructions
(debugging) in this section. What additional files are generated by the assembler? By the linker?

2.

Programming Exercises 3.3

Run the example program given in this section. Use a text editor to create the source code file
EXAMPLE.ASM or copy it from the book's CD. Assemble, link, and execute it without generating
debugging code. Run the program several times with different data.

1.

Trace the example program given in this section. Use a text editor to create the source code file
EXAMPLE.ASM or copy it from the book's CD. Assemble, link, and execute it, generating
debugging code. Trace the program several times with different data.

2.

Modify the example program given in this section to prompt for, input, and add three numbers.
Call the source code file ADD3.ASM. Follow steps parallel to those of this section to assemble
and link the program, producing ADD3.EXE. Run ADD3 several times with different data. Use
the debugger if you have any trouble or if you want to trace the execution.

3.

The instruction4.

sub eax, label

will subtract the word at label from the word already in the EAX register. Modify the example

program given in this section to prompt for and input two numbers, and then subtract the second
number from the first. Call the source code file SUBTRACT.ASM. Follow steps parallel to those of
this section to assemble and link the program, producing SUBTRACT.EXE. Run SUBTRACT
several times with different data.





3.4 The Assembler Listing File

The ML assembler can produce a listing file as part of the assembly process. This .LST file shows the source code, the object code to
which it is translated, and additional information. Examination of the listing file can help you understand the assembly process. When
your source file contains errors, this .LST file displays error messages at the points of the errors, helping to locate the offending
statements.

Suppose that we modify the example program EXAMPLE.ASM from Fig. 3.1, changing

     atod   string         ; convert to integer
     mov    number1, eax   ; store in memory

to

     atod   eax, string    ; convert to integer
     mov    number1, ax    ; store in memory

This introduces two errors: The atod macro only allows one operand, and the source and destination operands for the mov

instruction are different sizes. Suppose that this revised file is stored in EXAMPLE1.ASM.

An additional switch, /Fl (uppercase F, lowercase letter l), is needed to generate a listing file during assembly

     ml /c /coff /Fl example1.asm

When this command is entered at a DOS prompt, the console shows

     Assembling: example1.asm
example1.asm(32): error A2022: instruction operands must be the
same size
example1.asm(31): error A2052: forced error : extra operand(s) in
ATOD
 atod(7): Macro Called From
        example1.asm(31): Main Line Code

These error messages are fairly helpful-they indicate errors on lines 32 and 31 of the source file and describe the errors. However, if
you look at the corresponding part of EXAMPLE1.LST, you see

00000000                _start:
                              output prompt1        ; prompt for first number
                              input  string, 40     ; read ASCII characters
                              atod   eax, string         ; convert to integer
                    1             .ERR <extra operand(s) in ATOD>
example1.asm(31): error A2052: forced error : extra operand(s) in ATOD
 atod(7): Macro Called From
  example1.asm(31): Main Line Code
                              mov   number1, ax     ; store in memory
example1.asm(32): error A2022: instruction operands must be the same size

                              output prompt2        ; repeat for second number

with the error messages under the statements with the errors. Viewing the listing file frequently makes it easier to find errors in source
code.

Figure 3.7 shows a listing file for EXAMPLE.ASM, the original example program without errors. Parts of this file will be examined to
better understand the assembly process.

Microsoft (R) Macro Assembler Version 6.11                08/04/97 21:21:16
example.asm                                                Page 1 - 1



                                ; Example assembly language program - adds two numbers
                                ; Author:  R. Detmer
                                ; Date:    revised 7/97

                                .386
                                .MODEL FLAT

                                ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

                                INCLUDE io.h        ; header file for input/output
                              C ; IO.H - header file for I/O macros
                              C ; 32-bit version for flat memory model
                              C ; R. Detmer July 1997
                              C .NOLIST      ; turn off listing
                              C .LIST         ; begin listing
                              C
= 0000000D                      cr     EQU      0dh      ; carriage return character
                                Lf     EQU      0ah      ; line feed
                                -STACK 4096              ; reserve 4096-byte stack

00000000                        .DATA                    ; reserve storage for data
00000000 00000000               number1 DWORD   ?
00000004 00000000               number2 DWORD   ?
00000008 00000000               number1 DWORD   ?
00000008 45 6E 74 65 72         prompt1 BYTE    "Enter first number:    ", 0
          20 66 69 72 73
          74 20 6E 75 6D
          62 65 72 3A 20
          20 00
0000001E 45 6E 74 65 72         prompt2 BYTE    "Enter second number:   ", 0
           20 73 65 63 6F
           6E 64 20 6E 75
           6D 62 65 72 3A
           20 20 00
 00000035  00000028 [            string  BYTE   40 DUP (?)
            00
           ]
 0000005D  0D 0A 54 68 65        label1  BYTE   cr, Lf, "The sum is "
            20 73 75 6D 20
            69 73 20
 0000006A   0000000B [           sum     BYTE   11 DUP (?)
             00
           ]
 00000075  0D 0A 00                      BYTE   cr, Lf, 0

 00000000                        .CODE                          ; start of main program code
 00000000                        _start:
                                         output prompt1         ; prompt for first number
                                         input  string, 40      ; read ASCII characters
                                         atod   strin           ; convert to integer
 0000002E  A3 00000000 R                 mov    number1, eax    ; store in memory

                                         output prompt2         ; prompt for second number
                                         input  string, 40
                                         atod   strin
 00000061  A3 00000004 R                 mov    number2, eax

 00000066  A1 00000000 R                 mov    eax, number1    ; first number to EAX
 0000006B  03 05 000000 R                ADD    eax, number1    ; add second number
                                         dtoa   sum, eax        ; convert to ASCII characters
                                         output label1          ; output label and sum

                                         INVOKE ExitProcess, 0, ; exit with return code 0



                                 PUBLIC_start                   ; make entry point public
                                 END                            ; end of source code

Microsoft (R) Macro Assembler Version 6.11                08/04/97 21:21:16
example.asm                                                Symbols 2 - 1

Macros:

             N a m e                Type
atod  . . . . . . . . . . . . . .   Proc
atoi  . . . . . . . . . . . . . .   Proc
dtoa  . . . . . . . . . . . . . .   Proc
input . . . . . . . . . . . . . .   Proc
itoa  . . . . . . . . . . . . . .   Proc
output  . . . . . . . . . . . . .   Proc

Segments and Groups:

             N a m e                 Size     Length      Align      Combine     Class
FLAT . . . . . . . . . . . . . .     GROUP
STACK  . . . . . . . . . . . . .     32 Bit   00001000    Dword      Stack       'STACK'
_DATA  . . . . . . . . . . . . .     32 Bit   00001078    Dword      Public      'DATA'
_TEXT  . . . . . . . . . . . . .     32 Bit   00000097    Dword      Public      'STACK'

Procedures, parameters and locals:

             N a m e                 Type     Value      Attr

ExitProcess . . . . . . . . . .      P Near   00000000   Flat Length= 00000000 External STDCALL

Symbols;

             N a m e                 Type     Value      Attr
@CodeSize  . . . . . . . . . . .     Number   00000000h
@DataSize  . . . . . . . . . . .     Number   00000000h
@Interface . . . . . . . . . . .     Number   00000000h
@Model     . . . . . . . . . . .     Number   00000007h
@code      . . . . . . . . . . .     Text     _TEXT
@data      . . . . . . . . . . .     Text     FLAT
@fardata?  . . . . . . . . . . .     Text     FLAT
@fardata   . . . . . . . . . . .     Text     FLAT
@stack     . . . . . . . . . . .     Text     FLAT
Lf . . . . . . . . . . . . . . .     Number   0000000Ah
_start . . . . . . . . . . . . .     L Near   00000000 _TEXT Public
atodproc . . . . . . . . . . . .     L Near   00000000 FLAT  External
atoiproc . . . . . . . . . . . .     L Near   00000000 FLAT  External
cr . . . . . . . . . . . . . . .     Number   0000000Dh
dtoaproc . . . . . . . . . . . .     L Near   00000000 FLAT  External
inproc . . . . . . . . . . . . .     L Near   00000000 FLAT  External
itoaproc . . . . . . . . . . . .     L Near   00000000 FLAT  External
labell . . . . . . . . . . . . .     Byte     0000005D _DATA
number1  . . . . . . . . . . . .     Dword    00000000 _DATA
number2  . . . . . . . . . . . .     Dword    00000004 _DATA
outproc  . . . . . . . . . . . .     L Near   00000000 FLAT  External
prompt1  . . . . . . . . . . . .     Byte     00000008 _DATA
prompt2  . . . . . . . . . . . .     Byte     0000000E _DATA
string . . . . . . . . . . . . .     Byte     00000035 _DATA
sum  . . . . . . . . . . . . . .     Byte     0000006A _DATA
         0 Warnings
         0 Errors

Figure 3.7: EXAMPLE.LST listing file



The listing begins by echoing comments and directives at the beginning of the source code file. Following the INCLUDE directive,
several lines from IO.H are shown. These lines are marked with the letter C to show they come from an included file. In particular, you
see the .NOLIST directive that suppressed listing of most of IO.H, and the .LIST directive that resumed listing of the rest of the
source file. For each EQU directive the assembler shows the value to which the symbol is equated as eight hex digits. This listing
shows 0000000D for cr and 0000000A for Lf.

The leftmost column for the rest of the listing shows the offset (distance) of each directive or instruction from the beginning of the
segment that contains it. This offset is in bytes. The line

     00000000 00000000        number1 DWORD  ?

shows an offset of 00000000 since this statement is the first in the data segment. The assembler then shows the object code, a
doubleword with value 00000000. Since this DWORD directive reserves four bytes, the assembler uses 00000004 for the offset of the

next statement.

     00000004 00000000        number2 DWORD  ?

Again four bytes are reserved with contents 00000000.

Now eight bytes have been reserved, so the offset of the next item is 00000008. The next two entries show the initial values assigned
by the BYTE directives at prompt1 and prompt2.

     00000008 45 6E 74 65 72      prompt1 BYTE    "Enter first"
               20 66 69 72 73
               74 20 6E 75 6D
               62 65 72 3A 20
               20 00
     0000001E 45 6E 74 65 72      prompt2 BYTE    "Enter second"
               20 73 65 63 6F
               6E 64 20 6E 75
               6D 62 65 72 3A
               20 20 00

The offset for prompt2 can be calculated by taking the offset 00000008 of prompt1 plus the number of bytes reserved for
prompt1, 22 (1616); and finding the sum 0000001E. Similarly, the offset of the statement following prompt2 will be at 0000001E +

17 = 00000035 since there are 23 (1716) bytes generated in the second prompt.

The notation

     00000035  00000028 [   string BYTE 40 DUP (?)
                00
               ]

shows that this BYTE directive generates 2816 (4010) bytes of storage, each initialized to 00. The remaining statements in the data
segment illustrate no new concepts.

The assembly listing for the code segment shows, in hex, the offset and the object code of each instruction. Some assemblers may
also show the offset for a macro, that is, the address of the first instruction to which it expands. The first byte of the machine code for
each instruction is called its opcode (operation code). By looking at an opcode as the program executes, the 80×86 knows what kind
of operation is to be done and whether or not there are more bytes of the instruction. The object code for a single instruction can be
from one to 16 bytes long.

The line

     0000002E A3 00000000 R     mov   number1, eax

shows that this instruction starts at an offset of 0000002E and has five bytes of object code, beginning with the opcode A3. The
opcode A3 tells the 80×86 to copy the contents of the EAX register to the address given in the next four bytes of the instruction. The
notation R indicates that the address is relocatable, that is, the linker and loader will determine the run-time address, substituting it for

00000000 in this instruction in the code that is actually executed at run time. Figure 3.5 showed that address as 00404000 for one run



of the program-it may be different every time the program is executed.

The add instruction

     0000006B   03 05 00000004 R    add    eax, number2

starts at an offset of 0000006B and has an opcode of 03, one of several opcodes used for different add instructions. The 03 opcode
itself is used for add instructions with several different formats, and the CPU must also look at the next byte to determine what the
operands are. The 05 byte tells the 80×86 that the EAX register is the destination for the sum (and one source) and that the other
source is in memory at the address given in the next four bytes. Chapter 9 provides more details about formats of 80×86 instructions
and how they are assembled.

The final part of the assembly listing shows all the symbols that are used in the program. The first few lines show the macro names
that are defined by including IO.H even though not all are used in this program. After listing segment and procedure names, the
assembler shows the remaining symbols. This list includes familiar symbols such as Lf, number2, and _start. It also shows

several symbols starting with an at sign (@); these give information about the assembly process. Some of the remaining symbols are
names of procedures that are called by the macros in IO.H; for instance, atoiproc is called by the atod macro.

Exercises 3.4

Answer the following questions by looking at the assembly listing in Fig. 3.7.

What are the ASCII codes for characters in the string "The sum is"?1.

What is the offset of the label sum in the data section?2.

If the following statements were added at the end of the data section (just before .CODE), what offsets and values would
appear for them in the assembly listing?

3.

extra     DWORD 999
label2    BYTE "The End", cr, Lf, 0

(Hint: An ASCII/hexadecimal conversion chart is useful for this problem.)

How many bytes of object code are generated by the first three statements in the example program (the output, input, and
atod macros)?

4.



3.5 Constant Operands

This section discusses formats of constant operands used in BYTE, DWORD, and WORD directives. The

information also applies to instructions since constants are written the same way in directives and in
instructions.

Numeric operands can be expressed in decimal, hexadecimal, binary, or octal notations. The
assembler assumes that a number is decimal unless the number has a suffix indicating another base or
a .RADIX directive (not used in this book) changes the default number base. The suffixes that may be

used are

Suffix Base Number System

H 16 hexadecimal

B 2 binary

O or Q 8 octal

none 10 decimal

Any of these suffixes can be coded in uppercase or lowercase. Octal is not used often, but when it is
used, Q is easier to read than O, although either letter will designate that the number is octal.

The directive

     mask      BYTE   01111101b

reserves one byte of memory and initializes it to 7D. This is equivalent to any of the following directives

     mask      BYTE   7dh
     mask      BYTE   125
     mask      BYTE   175q

since 11111012 = 7D16 = 12510 = 1758. The choice of number systems often depends on the use
planned for the constant. A binary value is appropriate when you need to think of the value as a
sequence of eight separate bits, for instance in a logical operation (covered in Chapter 8).

A BYTE directive reserves storage for one or more bytes of data. If a data value is numeric, it can be

thought of as signed or unsigned. The decimal range of unsigned values that can be stored in a single
byte is 0 to 255. The decimal range of signed values that can be stored in a single byte is 128 to 127.
Although the assembler will allow larger or smaller values, normally you restrict numeric operands for
BYTE directives to 128 to 255. The comments in the following examples indicate the initial values of the

bytes that are reserved.

     byte1      BYTE   255     ; value is FF
     byte2      BYTE   127     ; value is 7F
     byte3      BYTE   91      ; value is 5B
     byte4      BYTE   0       ; value is 00
     byte5      BYTE   -1      ; value is FF
     byte6      BYTE   -91     ; value is A5
     byte7      BYTE   -128    ; value is 80

The situation for DWORD and WORD directives is similar. A DWORD directive reserves a doubleword of

storage; since eight bytes can store a signed number in the range - 2,147,483,648 to 2,147,483,647 or
an unsigned number from 0 to 4,294,967,295, it makes sense to restrict operand values to the range
- 2,147,483,648 to 4,294,967,295. Similarly, operands for a WORD directive should be restricted to the

range 32,768 to 65,535. The examples below give the initial values reserved for a few doublewords and
words.

     double1    DWORD 4294967295   ; value is FFFFFFFF
     double2    DWORD 4294966296   ; value is FFFFFC18



     double3    DWORD 0            ; value is 00000000
     double4    DWORD -1           ; value is FFFFFFFF
     double5    DWORD -1000        ; value is FFFFFC18
     double6    DWORD -2147483648  ; value is 80000000
     word1      WORD 65535   ; value is FFFF
     word2      WORD 32767   ; value is 7FFF
     word3      WORD 1000    ; value is 03E8
     word4      WORD 0       ; value is 0000
     word5      WORD -1      ; value is FFFF
     word6      WORD -1000   ; value is FC18
     word7      WORD -32768  ; value is 8000

One of the points of the previous examples is that different operands can result in the same stored
value. For instance, note that the WORD directives with operands 65535 and 1 both generate words

containing FFFF. This value can be thought of as either the unsigned number 65,535 or the signed
number 1, depending on the context in which it is used.

As previously stated, the bytes of a word or doubleword are actually stored backwards so that, for
example, the initial value of word6 previous is actually 18FC. This book will concentrate on the logical

values rather than the way that they are stored.

The BYTE directive allows character operands with a single character or string operands with many
characters. Either apostrophes (') or quotation marks (") can be used to designate characters or

delimit strings. They must be in pairs; you can not put an apostrophe on the left and a quotation mark
on the right. A string delimited with apostrophes can contain quotation marks, and one delimited with
quotation marks can contain apostrophes, making it possible to have strings containing these special
characters. Unless there is reason to do otherwise, this book will follow the convention of putting single
characters between apostrophes and strings of characters between quotation marks.

Each of the following BYTE directives is allowable.

     char1      BYTE   'm'     ; value is 6D
     char2      BYTE   6dh     ; value is 6D
     string1    BYTE   "Joe"   ; value is 4A 6F 65
     string2    BYTE   "Joe's" ; value is 4A 6F 65 27 73

If you are trying to store the letter m rather than the number 6D16, then there is no reason to look up the
ASCII code and enter it as in char2-the assembler has a built-in ASCII chart! Notice that the

delimiters, the apostrophes or quotation marks on the ends of the character or string, are not
themselves stored.

The assembler allows restricted usage of character operands in DWORD or WORD directives. However,

there is little reason to do this.

You have already seen examples of BYTE directives with multiple operands separated by commas.
DWORD and WORD directives also allows multiple operands. The directive

     words      WORD   10, 20, 30, 40

reserves four words of storage with initial values 000A, 0014, 001E, and 0028. The DUP operator can

be used to generate multiple bytes or words with known values as well as uninitialized values. Its use is
limited to BYTE, DWORD, WORD, and other directives that reserve storage. The directive

     DblArray   DWORD  100 DUP(999)

reserves 100 doublewords of storage, each initialized to 000003E7. This is an effective way to initialize
elements of an array. If one needs a string of 50 asterisks, then

     stars      BYTE 50 DUP('*')



will do the job. If one wants 25 asterisks, separated by spaces,

     starsAndSpaces BYTE 24 DUP("* "), '*'

reserves these 49 bytes and assigns the desired initial values.

An operand of a BYTE, DWORD, WORD, or other statement can be an expression involving arithmetic or

other operators. These expressions are evaluated by the assembler at assembly time, not at run time,
with the resulting value used for assembly. It is usually not helpful to use an expression instead of the
constant of equivalent value, but sometimes it can contribute to clearer code. The following directives
are equivalent, each reserving a word with an initial hex value of 0090.

     gross      WORD   144
     gross      WORD   12*12
     gross      WORD   10*15 - 7 + 1

Each symbol defined by a BYTE, DWORD,or WORD directive is associated with a length. The assembler

notes this length and checks to be sure that symbols are used appropriately in instructions. For
example, the assembler will generate an error message if

     char      BYTE    'x'

is used in the data segment and

     mov       ax,     char

appears in the code segment-the AX register is a word long, but char is associated with a single byte

of storage.

The Microsoft assembler recognizes several additional directives for reserving storage. These include
QWORD for reserving a quadword, TBYTE for a 10-byte integer, REAL4, for reserving a 4-byte floating
point number, REAL8 for 8-byte floating point, and REAL10 for 10-byte floating point. It also has

directives to distinguish signed bytes, words, and doublewords from unsigned. We will rarely use these
directives.

Exercises 3.5

Find the initial values that the assembler will generate for each directive below.

1. byte1 BYTE 10110111b

2. byte2 BYTE 33q

3. byte3 BYTE 0B7h

4. byte4 BYTE 253

5. byte5 BYTE 108

6. byte6 BYTE -73

7. byte7 BYTE ‘D'

8. byte8 BYTE ‘d'

9. byte9 BYTE "John's program"

10. byte10 BYTE 5 DUP("<>")

11. byte11 BYTE 61 + 1

12. byte12 BYTE ‘c' - 1

13. dword1 DWORD 1000000

14. dword2 DWORD 1000000b

15. dword3 DWORD 1000000h



16. dword4 DWORD 1000000q

17. dword5 DWORD -1000000

18. dword6 DWORD -2

19. dword7 DWORD -10

20. dword8 DWORD 23B8C9A5h

21. dword9 DWORD 0, 1, 2, 3

22. dword10 DWORD 5 DUP(0)

23. word1 WORD 1010001001011001b

24. word2 WORD 2274q

25. word3 WORD 2274h

26. word4 WORD 0ffffh

27. word5 WORD 5000

28. word6 WORD -5000

29. word7 WORD -5, -4, -3, -2, -1

30. word8 WORD 8 DUP(1)

31. word9 WORD 6 DUP(-999)

32. word10 WORD 100/2



3.6 Instruction Operands

There are three basic types of instruction operands; some are constants, some designate CPU
registers, and some reference memory locations. There are several ways of referencing memory; two
simpler ways will be discussed in this section, and more complex methods will be introduced as needed
later in the book.

Many instructions have two operands. In general, the first operand gives the destination of the
operation, although it may also designate one of the sources. The second operand gives the source (or
a source) for the operation, never the destination. For example, when

     mov   al, '/'

is executed, the byte 2F (the ASCII code for the slash /) will be loaded into the AL register, replacing
the previous byte. The second operand ‘/' specifies the constant source. When

     add   eax, number1

is executed, EAX gets the sum of the doubleword designated by number1 and the old contents of
EAX. The first operand EAX specifies the source for one doubleword as well as the destination for the
sum; the second operand number1 specifies the source for the other of the two doublewords that are

added together.

Figure 3.8 lists the addressing modes used by the Intel 80×86 microprocessor, giving the location of the
data for each mode. Memory addresses can be calculated several ways; Fig. 3.9 lists the two most
common.

Mode Location of data

immediate in the instruction itself

register in a register

memory at some address in memory

Figure 3.8: 80×86 addressing modes

Memory mode Location of data

direct at a memory location whose address (offset) is built into the instruction

register indirect at a memory location whose address is in a register

Figure 3.9: Two 80×86 memory addressing modes

For an immediate mode operand, the data to be used is built into the instruction before it is executed;
once there it is constant.[2] Normally the data is placed there by the assembler, although it can be
inserted by the linker or loader, depending on the stage at which the value can be determined. The
programmer writes an instruction including an actual value, or a symbol standing for a constant value.
For a register mode operand, the data to be used is in a register. To indicate a register mode operand,
the programmer simply codes the name of the register. A register mode operand can also specify a
register as a destination, but an immediate mode operand cannot be a destination.

In each of the following examples, the first operand is register mode and the second operand is
immediate mode. The object code (taken from the assembler listing file) is shown as a comment. For
the instruction

     mov   al, '/'   ; B0 2F

the ASCII code 2F for the slash is the second byte of the instruction, and is placed there by the
assembler. For the instruction



     add   eax, 135   ; 05 00000087

the doubleword length 2's complement version of 135 is assembled into the last four bytes of the
instruction.

Any memory mode operand specifies using data in memory or specifies a destination in memory. A
direct mode operand has the 32-bit address built into the instruction. Usually the programmer will code
a symbol that is associated with a BYTE, DWORD,or WORD directive in the data segment or with an

instruction in the code segment. The location corresponding to such a symbol will be relocatable so that
the assembler listing shows an assembly-time address that may be adjusted later. In the statement

     add   eax, number2   ; 05 00000004

from the example program in Fig. 3.1, the first operand is register mode and the second operand is
direct mode. The memory operand has been encoded as the 32-bit address 00000004, the offset of
number2 in the data segment. The first operand of the instruction

     add   eax, [edx]    ; 03 02

is register mode, and the second operand is register indirect mode. We will later discuss how the
assembler gets the object code 03 02 for this instruction, but for now notice that it is not long enough to
contain a 32-bit memory address. Instead, it contains bits that say to use the address in the EDX
register to locate a doubleword in memory to add to the doubleword already in EAX. In other words, the
second number is not in EDX, but its address is. The square bracket notation ([]) indicates indirect

addressing with MASM 6.11. Figure 3.10 illustrates how register indirect addressing works in this
example.

Figure 3.10: Register indirect addressing

Any of the general registers EAX, EBX, ECX, and EDX or the index registers ESI and EDI can be used
for register indirect addressing. The base pointer EBP can also be used, but for an address in the stack
rather than for an address in the data segment. Although the stack pointer ESP can be used for
register indirect addressing in certain special circumstances, we will have no need to do so.

With register indirect mode, the register serves like a pointer variable in a high-level language. The
register contains the location of the data to be used in the instruction, not the data itself. When the size
of the memory operand is ambiguous, the PTR operator must be used to give the size to the assembler.

For example, the assembler will give an error message for

     mov   [ebx], 0

since it cannot tell whether the destination is a byte, word, or doubleword. If it is a byte, you can use

     mov   BYTE PTR [ebx], 0

For a word or doubleword destination, use WORD PTR or DWORD PTR, respectively. In an instruction

like

     add   eax, [edx]

it is not necessary to use DWORD PTR [edx] since the assembler assumes that the source will be a



doubleword, the size of the destination EAX.

A few instructions have no operands. Many have a single operand. Sometimes an instruction with no
operands requires no data to operate on or an instruction with one operand needs only one value.
Other times the location of one or more operands is implied by the instruction and is not coded. For
example, one 80×86 instruction for multiplication is mul; it might be coded

     mul   bh

Only one operand is given for this instruction; the other value to be multiplied is always in the AL
register. (This instruction will be explained more fully in the next chapter.)

Exercises 3.6

Identify the mode of each operand in the following instructions. Assume that the instructions are in a
program also containing the code

     cr     EQU      0dh
     .DATA
     value  DWORD    ?
     char   BYTE     ?

mov   value, 100

mov   ecx, value

mov   ah, cr

mov   eax, [esi]

mov   [ebx], ecx

mov   char, '*'

add   value, 1

add   WORD PTR [ecx], 10

[2]One can write self-modifying code; that is, code that changes its own instructions as it executes. This
is considered a very poor programming practice.



3.7 Input/Output Using Macros Defined in IO.H

In order to write useful programs, you need to be able to input and output data. Operating systems
provide routines to aid in these tasks. A typical input routine might wait for a character to be pressed on
the keyboard, and then return the ASCII code for that character in a register. An output routine might
display at the terminal the characters in a string up to some terminating character like a dollar sign.

High-level languages usually provide for input or output of numeric data in addition to character or
string data. A numeric input routine in a high-level language accepts a string of character codes
representing a number, converts the characters to a 2's complement or floating point form, and stores
the value in a memory location associated with some variable name. Conversely, output routines of
high-level languages start with a 2's complement or floating point number in some memory location,
convert it to a string of characters that represent the number, and then output the string. Operating
systems usually do not provide these services, so the assembly language programmer must code
them.

The file IO.H provides a set of macro definitions that make it possible to do input, output, and numeric
conversion fairly easily. Each macro looks much like an 80×86 instruction, but actually expands to
several instructions, including a call to an external procedure to do most of the work. The source code
for these external procedures is in the file IO.ASM; the assembled version of this file is IO.OBJ. We will
examine the code in IO.ASM in later chapters of this book.

Figure 3.11 lists the macros defined in IO.H and briefly describes them. Additional explanation then
follows. The macros will be used in programs in subsequent chapters.

Name Parameter(s) Action Flags affected

dtoa destination,
source

Converts the doubleword at source (register
or memory) to an eleven-byte-long ASCII
string at destination.

None

atod source Scans the string starting at source for + or -
followed by digits, interpreting these
characters as an integer. The corresponding
2's complement number is put in EAX. The
offset of the terminating nondigit character is
put in ESI. For input error, 0 is put in EAX.
Input error occurs if the number has no digits
or is out of the range 2,147,483,647 to
2,147,483,647.

OF = 1 for input
error; OF = 0
otherwise. Other
flag values
correspond to the
result in EAX.

itoa destination,
source

Converts the word at source (register or
memory) to a six-byte-long ASCII string at
destination.

None

atoi source Similar to atod, except that the resulting

number is placed in AX. The range accepted
is - 32,768 to 32,767.

similar to atod

output source Displays the string starting at source. The
string must be null-terminated.

None

input destination,
length

Inputs a string up to length characters long
and stores it at destination.

None

Figure 3.11: Macros in IO.H

The output macro is used to output a string of characters to the monitor. Its source operand
references a location in the data segment, usually the name on a BYTE directive. Characters starting at

this address are displayed until a null character is reached; the null character terminates the output. It
is important that source string contains ASCII codes for characters that can be displayed. Most of these
will be printable characters, although it makes sense to include carriage return, line feed, and a few
other special characters. If you attempt to use the output macro to display non-ASCII data (such as a
doubleword integer in 2's complement form), there will be strange results.



The output macro does not change any register contents, including the flag register.

The input macro is used to input a string of characters from the keyboard. It has two parameters,

destination and length. The destination operand references a string of bytes in the data segment and
the length operand references the number of bytes reserved in that string. The destination string should
be at least two bytes longer than the actual number of characters to be entered; this allows for the
operating system to add carriage return and linefeed characters when you press Enter. The input
macro replaces the carriage return character by a null byte, so that the result is a null-terminated string
stored at destination.

The input macro changes only memory at the specified destination. It does not change any register

contents, including the flag register.

The name dtoa (double to ASCII) describes the function of this macro. It takes a doubleword length
source containing a 2's complement integer, and produces a string of exactly 11 ASCII characters

representing the same integer in the decimal number system. The source operand is normally a
register or memory operand. The destination will always be a 11-byte area of storage in the data
segment reserved with a BYTE directive. The string of characters produced will have leading blanks if
the number is shorter than 11 characters. If the number is negative, a minus sign will immediately
precede the digits. Since the decimal range for a word-length 2's complement number is -2147483648
to 2147483647, there is no danger of generating too many characters to fit in a 11-byte-long field. A
positive number will always have at least one leading blank.

The dtoa macro alters only the 11-byte area of memory that is the destination for the ASCII codes. No

registers are changed, including the flag register.

The atod (ASCII to double) macro is in many ways the inverse of the dtoa macro. It has only a single

operand, the address of a string of ASCII character codes in storage, and it scans this area of memory
for characters that represent a decimal number. If it finds characters for a decimal number in the range
2,147,483,648 to 2,147,483,647, then the doubleword-length 2's complement form of the number is
placed in the EAX register.

The source string may contain any number of leading blanks. These are skipped by atod. There may

then be the ASCII code for - (minus) or the ASCII code for + (plus). A number is assumed positive if
there is no leading sign. Codes for digits 0 through 9 must immediately follow the optional sign. Once a
digit code is encountered, atod continues scanning until any character other than a digit is

encountered. Such a character terminates the scan.

Problems may arise when the atod macro is used. The macro may find no digit code; this would be the

case if a space character were between a minus sign and the first digit of a number, or if the source
string began with the code for a letter. The decimal number could be too large to store in doubleword-
length 2's complement form. If any of these things occurs, a value of 00000000 is placed in EAX and
the overflow flag OF is set to 1.

If atod is able to successfully convert a string of ASCII characters, then the overflow flag OF is set to

0. In all cases, the SF, ZF, and PF flags are set according to the value returned in EAX as follows:

SF is 1 if the number is negative, and 0 otherwise

ZF is 1 if the number is 0, and 0 if the number is nonzero

PF reflects the parity of the number returned in EAX

In addition, CF is 0 and DF is unchanged. No registers other than EAX and the flag register are
changed.

The atod macro will typically be used immediately after the input macro. The input macro produces a
string of ASCII codes, including a trailing null character. When atod is applied to this string, the null
character serves as a terminating character for the scan. If atod is applied to a string that comes from

some source other than input, the programmer must ensure that it has some trailing nondigit character
to prevent atod from scanning too far.

The atoi (ASCII to integer) and itoa (integer to ASCII) macros are the word-length versions of atod



and dtoa. The atoi macro scans a string of characters and produces the corresponding word-length
2's complement value in AX. The itoa macro takes the 2's complement value stored in a word-length

source and produces a string of exactly six characters representing this value in decimal. These
macros are useful if you are dealing with values in the range - 32,768 to 32,767.

Exercises 3.7

Why wasn't the dtoa macro designed to produce a smaller number of ASCII codes? What is

important about the number 11?

1.

Why wasn't the itoa macro designed to produce a smaller number of ASCII codes? What is

important about the number six?

2.

Given the data segment definition3.

response1 BYTE 10 DUP(?)

and the code segment macro

input      response1

What ASCII codes will be stored in the data segment ifa.

-578<Enter>

is typed at run time?

If the macrob.

atod      response1

follows the above input macro, what will be in the EAX register and what will be the

values of the OF, SF, and ZF flags?

Given the data segment definition4.

response2 BYTE 10 DUP(?)

and the code segment macro

input      response2

what ASCII codes will be stored in the data segment ifa.

123456<Enter>

is typed at run time?

If the macrob.

atoi       response2

follows the above input macro, what will be in the AX register and what will be the values

of the OF, SF, and ZF flags?

Suppose a program contains the data segment definitions5.

value1   DWORD   ?
result1  BYTE    11 DUP(?)
         BYTE    ' sum', 0dh, 0ah, 0



and the code segment macro

dtoa     result1, value1

Assuming that at run time the word referenced by value1 contains FFFFFF1A, what
codes will be placed in storage at result1 by the dtoa macro?

a.

If the dtoa macro is followed byb.

output   result1

what will be displayed on the monitor?

Suppose a program contains the data segment definitions6.

result2  BYTE    6 DUP(?)
         BYTE    ' total', 0dh, 0ah, 0

and the code segment macro

itoa     result2, BX

Assuming that at run time the BX register contains 1AFF, what codes will be placed in
storage at result2 by the itoa macro?

a.

If the itoa macro is followed byb.

output   result5

what will be displayed on the monitor?



Chapter Summary

Chapter 3 introduced 80×86 assembly language as translated by the Microsoft MASM assembler.

An assembly language comment always starts with a semicolon. Other statements have the format

name  mnemonic  operand(s)  ;comment

where some of these fields may be optional.

The three types of assembly language statements are:

instructions-each corresponds to a CPU instruction

directives-tell the assembler what to do

macros-expand into additional statements

An assembly language program consists mainly of a data segment in which variables are defined and a
code segment that contains statements to be executed at run time. To get an executable program, one
must translate the program to object code using an assembler and then link the program using a linker.
An executable program can be traced with a debugger like Windbg.

BYTE, DWORD, or WORD directives reserve bytes, doublewords, or words of storage and optionally assign

initial values.

Instruction operands have three modes:

immediate-data built into the instruction

register-data in a register

memory-data in storage

Memory mode operands come in several formats, two of which are

direct-at an address in the instruction

register indirect-data at an address in a register

Several macros for input and output are defined in the file IO.H. They call procedures whose
assembled versions are in the file IO.OBJ. The macros are:

output-to display a string on the monitor

input-to input a string from the keyboard

atod-to convert a string to a doubleword-length 2's complement number

dtoa-to convert a doubleword-length 2's complement number to a string

atoi-to convert a string to a word-length 2's complement number

itoa-to convert a word-length 2's complement number to a string



Chapter 4: Basic Instructions

This chapter covers instructions used to copy data from one location to another and instructions used
for integer arithmetic. It specifies what types of operands are allowed for the various instructions. The
concepts of time and space efficiency are introduced. Finally, some methods are given for
accomplishing equivalent operations even when the desired operand types are not allowed. After
studying this chapter you will know how to copy data between memory and CPU registers, and between
two registers. You will also know how to use 80×86 addition, subtraction, multiplication, and division
instructions, and how execution of these instructions affects flags.

4.1 Copying Data

Most computer programs copy data from one location to another. With 80×86 machine language, this
copying job is done by mov (move) instructions. Each mov instruction has the form

     mov  destination, source

and copies a byte, word, or doubleword value from the source operand location to the destination
operand location. The value stored at the source location is not changed. The destination location must
be the same size as the source. A mov instruction is similar to a simple assignment statement in a

high-level language. For example, the Pascal or Ada assignment statement

     Count := Number

might correspond directly to the assembly language instruction

     mov Count, ecx      ; Count := Number

assuming that the ECX register contains the value of Number and that Count references a doubleword
in memory. The analogy between high-level language assignment statements and mov instructions

cannot be carried too far. For example, the assignment statement

     Count := 3*Number + 1

cannot be coded with a single mov instruction. Multiple instructions are required to evaluate the right-

hand expression before the resulting value is copied to the destination location.

One limitation of the 80×86 architecture is that not all "logical" combinations of source and destination
operands are allowed. In particular, you cannot have both source and destination in memory. The
instruction

     mov Count, Number      ; illegal for two memory operands

is not allowed if both Count and Number reference memory locations.

All 80×86 mov instructions are coded with the same mnemonic. The assembler selects the correct

opcode and other bytes of the machine code by looking at the operands as well as the mnemonic.

Figure 4.1 lists mov instructions that have an immediate source operand and a register destination

operand. The number of clock cycles it takes to execute each instruction is given for 80386, 80486, and
Pentium processors. Although little production programming is actually done in assembly language,
some assembly language code is written in the interest of obtaining very efficient procedures. Time
efficiency is often measured by the length of time it takes to execute a program, and this depends on
the number of clock cycles it takes to execute its instructions. Space efficiency refers to the size of the
code-a small executable file may be important if the program must be stored in ROM, for example.
Figure 4.1 also shows the number of bytes for each instruction.



Destination   Clock Cycles    

Operand Source Operand 386 486 Pentium Number of Bytes Opcode

register 8 immediate byte 2 1 1 2  

AL

CL

DL

BL

AH

CH

DH

BH

         
B0

B1

B2

B3

B4

B5

B6

B7

register 16 immediate word 2 1 1 3 (plus prefix byte)  

AX

CX

DX

BX

SP

BP

SI

DI

         
B8

B9

BA

BB

BC

BD

BE

BF

register 32 immediate
doubleword

2 1 1 5  

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

         
B8

B9

BA

BB

BC

BD

BE

BF

Figure 4.1: Immediate-to-register mov instructions

The length of time an instruction takes to execute is measured in clock cycles. To determine the actual



time, you must know the clock speed of the processor. The Intel 8088 in the original IBM PC had a
clock speed of 4.77 MHz; that is, 4,770,000 cycles per second. Many 80×86 personal computers now
operate at speeds higher than 200 MHz; that is, 200,000,000 cycles per second. These rates translate
into about 210 ns (ns = nanosecond, 10- 9 seconds) per clock cycle for the original IBM PC or 5 ns per
clock cycle for a 200 MHz machine. Microcomputers have gotten faster not only because of faster clock
speeds, but because the same instructions often execute in fewer clock cycles for later members of the
same processor family.

The number of bytes for each instruction is the same for the Intel 80386, 80486, and Pentium
processors, which is because the object code is identical. It would also be the same for 8086, 8088,
80186, and 80286 processors except that no 32-bit registers were available, so the last third of Fig. 4.1
would not apply.

It may be surprising that the op codes for word and doubleword immediate-to-register mov instructions

are identical. The 80×86 processor maintains a segment descriptor for each active segment. One bit of
this descriptor determines whether operands are 16-bit or 32-bit length by default. With the assembler
directives and link options used in this book, this bit is set to 1 to indicate 32-bit operands. Therefore,
the B8 opcode means, for instance, to copy the immediate doubleword following the opcode to EAX,
not an immediate word to AX. If you code the 16-bit instruction

     mov ax, 0

then the assembler inserts the prefix byte 66 in front of the object code B8 0000, so that the code
generated is actually 66 B8 0000. In general, the prefix byte 66 tells the assembler to switch from the
default operand size (32-bit or 16-bit) to the alternative size (16-bit or 32-bit) for the single instruction
that follows the prefix byte.

As was discussed in Chapter 2, instructions sometimes affect various flag bits in the EFLAGS register.
In general, an instruction may have one of three effects:

no flags are altered

specific flags are given values depending on the results of the instruction

some flags may be altered, but their settings cannot be predicted

All mov instructions fall in the first category: No mov instruction changes any flag.

Figure 4.2 lists the mov instructions that have an immediate source and a memory destination. Again,

the 80486 and Pentium processors execute these instructions in a single clock cycle, while the 80386
takes two clock cycles. This is a relatively minor improvement compared to the original 8088, which
took at least 14 clock cycles for each of these instructions.



Destination   Clock Cycles    

Operand Source Operand 386 486 Pentium
Number of
Bytes Opcode

memory byte immediate byte 2 1 1   C6

direct

register
indirect

other

       
7

3

3-8

 

memory word immediate word 2 1 1   C7

direct

8

register
indirect

other

       
8

4

4-9

 

memory
doubleword

immediate
doubleword

2 1 1   C7

direct

register
indirect

other

       
10

6

6-11

 

Figure 4.2: Immediate-to-memory mov instructions

The number of bytes taken by a memory operand depends on the type of operand. A direct operand
must be encoded as a 32-bit address, four bytes. A register indirect operand is encoded as three bits in
the second object code byte. We will later examine encodings of other types of memory operands. The
66 prefix byte is again required for 16-bit operands; it is not shown in the table since it is technically not
part of the instruction.

The C6 and C7 opcodes listed in Fig. 4.2 for immediate-to-memory moves can also be used for
immediate-to-register moves. However, these forms require an extra byte of object code, and an
assembler normally chooses the shorter form given in Fig. 4.1.

Figure 4.3 lists most of the remaining 80×86 mov instructions. This table introduces some new

terminology. Register 32 refers to one of the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESI, EDI, or
ESP. Similarly register 16 refers to one of the 16 bit registers AX, BX, CX, DX, SP, BP, SI or DI, and
register 8 refers to an eight bit register, AL, AH, BL, BH, CL, CH, DL, or DH.



    Clock Cycles 486    

Destination
Operand Source Operand 386 486 Pentium

Number of
Bytes Opcode

register 8 register 8 2 1 1 2 8A

register 16 register 16 2 1 1 2 8B

register 32 register 32 2 1 1 2 8B

register 8 memory byte 4 1 1 2-7 8A

register 16 memory word 4 1 1 2-7 8B

register 32 memory
doubleword

4 1 1 2-7 8B

AL direct memory
byte

4 1 1 5 A0

AX direct word 4 1 1 5 A1

EAX direct doubleword 4 1 1 5 A1

memory byte register 8 2 1 1 2-7 88

memory word register 16 2 1 1 2-7 89

memory
doubleword

register 32 2 1 1 2-7 89

direct memory byte AL 2 1 1 5 A2

direct word AX 2 1 1 5 A3

direct doubleword EAX 2 1 1 5 A3

segment register register 16 2 3 1 2 8E

register 16 segment register 2 3 1 2 8C

segment register memory word 2 3+ 2+ 2-7 8E

memory word segment register 2 3 1 2-7 8C

Figure 4.3: Additional mov instructions

Note that sometimes the same opcode is used for what appear to be distinct instructions, for example
for a register 8 to register 8 move and for a memory byte to register 8 move. In these cases the second
byte of the instruction determines not only the destination register, it also encodes the source register
or indicates the mode of a memory source byte. The structure of this byte will be considered more in
Chapter 9.

Two distinct instructions copy a memory operand to the accumulator. For example, either of opcodes
A1 and 8B could be used to encode the instruction mov eax, Number. The difference is that the 8B

instruction opcode can also be used to copy doublewords to other destination registers, while the A1
opcode is specific to the accumulator. An assembler normally uses the A1 version since it is one byte
shorter.

It is important to realize that, particularly with older processors, instructions that access memory are
slower than instructions that use data in registers. It should also be noted that instructions that access
memory may require more than the number of clock cycles listed. One reason this can occur is memory
that does not respond rapidly enough; in this case wait states, wasted clock cycles, are inserted until
the memory responds. Even with fast memory, extra cycles can be required to access a word or
doubleword that is not aligned in memory-that is, stored on an address that is a multiple of two or four,
respectively. A programmer should plan to keep frequently-used data in registers when possible.

This book does not discuss mov instructions that copy data to and from special registers used primarily

in systems programming.

When you first look at all the mov instructions summarized in Figs. 4.1-4.3, you may think that you can

use them to copy any source value to any destination location. However, many seemingly logical



combinations are not available. These include

a move with both source and destination in memory

immediate source to segment register destination

any move to or from the flag register

any move to the instruction pointer register

a move from one segment register to another segment register

any move where the operands are not the same size

a move of several objects

You may need to do some of these operations. We describe below how to accomplish some of them.

Although there is no mov instruction to copy from a memory source to a memory destination, two

moves using an intermediate register can accomplish the same thing. For doubleword length data
referenced by Count and Number, the illegal instruction

     mov Count, Number      ; illegal for two memory operands

can be replaced by

     mov eax, Number      ; Count := Number
     mov Count, eax

each using the accumulator EAX and one direct memory operand. Some register other than EAX could
be used, but each of these instructions using the accumulator requires five bytes, while each of the
corresponding instructions using some other register takes six bytes-EAX is chosen in the interest of
space efficiency.

To load an immediate value into a segment register, one can use an immediate to register 16 move,
followed by a register 16 to segment register move. This sequence is needed to initialize the data
segment register DS when coding with segmented memory models.

Although the flag register and the instruction pointer cannot be set by mov instructions, other

instructions do change their values. The instruction pointer register is routinely updated as new
instructions are fetched and it is automatically changed by jump, call, and return instructions. Individual
flags are set by a variety of instructions, and it is possible and occasionally desirable to set all bits in
the flag register to specified values; some techniques will be covered later.

To change the size of data from a word to a byte, it is legal, for example, to transfer a word to a register
16, and then move out just the high-order or low-order byte to a destination. Going the other way, one
can piece together two bytes in the high and low bytes of a 16-bit register and then copy the resulting
word to some destination. These techniques are occasionally useful, and others will be discussed in
Chapter 8. It is sometimes necessary to extend a byte-length number to word or doubleword length, or
a word length number to four bytes; instructions for doing this are covered in Section 4.4.

Suppose that you have source and destination locations declared as

     source      DWORD 4 DUP(?)
     dest        DWORD 4 DUP(?)

and that you want to copy all four doublewords from the source to the destination. One way to do this is
with four instructions

     mov dest, source          ; copy first doubleword
     mov dest+4, source+4      ; copy second doubleword
     mov dest+8, source+8      ; copy third doubleword
     mov dest+12, source+12    ; copy fourth doubleword



An address like source+4 refers to the location four bytes (one doubleword) after the address of
source. Since the four doublewords reserved at source are contiguous in memory, source+4 refers

to the second doubleword. This code clearly would not be space efficient if you needed to copy 40 or
400 doublewords. In Chapter 5 you will learn how to set up a loop to copy multiple objects and in
Chapter 7 you will learn how to use string operations to copy large blocks of data.

The 80×86 has a very useful xchg instruction that exchanges data in one location with data in another
location. It accomplishes in a single instruction the operation that often requires three high-level
language instructions. Suppose Value1 and Value2 are being exchanged. In a design or a high-level

language, this might be done using

     Temp := Value1;     { swap Value1 and Value2 }
     Value1 := Value2;
     Value2 := Temp;

Assuming that Value1 is stored in the EAX register and Value2 is stored in the EBX register, the

above swap can be coded as

     xchg eax, ebx      ; swap Value1 and Value2

Instead of using the xchg instruction, one could code

     mov   ecx, eax      ; swap Value1 and Value2
     mov   eax, ebx
     mov   ebx, ecx

However, each of these mov instructions takes one clock cycle and two bytes for a total of three clock
cycles and six bytes of code; the xchg instruction requires only two bytes and two clock cycles (on a

Pentium). In addition, it is much easier to write one instruction than three, and the resulting code is
easier to understand.

Figure 4.4 lists the various forms of the xchg instruction. Since 16-bit and 32-bit instructions are the

same, distinguished by a prefix byte, they are shown together in the table. Although the table does not
show it, the first operand can be a memory operand when the second operand is a register; the
assembler effectively reverses the order of the operands and uses the form shown in the table.

The xchg instructions illustrate again that the accumulator sometimes plays a special role in a

computer's architecture. There are special instructions for swapping another register with the
accumulator that are both faster than and require fewer bytes than the corresponding general-use
register-to-register exchanges. These instructions can be also be used with the accumulator as the
second operand.



    Clock Cycles    

Operand 1 Operand 2 386 486 Pentium Number of Bytes Opcode

register 8 register 8 3 3 3 2 86

register 8 memory byte 5 5 3 2-7 86

EAX/AX register 32/16 3 3 2 1  

  ECX/CX         91

  EDX/DX         92

  EBX/BX         93

  ESP/SP         94

  EBP/BP         95

  ESI/SI         96

  EDI/DI         97

register 32/16 register 32/16 3 3 3 2 87

register 32/16 memory 32/16 5 5 3 2-7 87

Figure 4.4: xchg instructions

Note that you cannot use an xchg instruction to swap two memory operands. In general, 80×86

instructions do not allow two memory operands.

Like mov instructions, xchg instructions do not alter any status flag; that is, after execution of an xchg

instruction, the contents of the EFLAGS register remains the same as it was before execution of the
instruction.

Exercises 4.1

For each part of this problem, assume the "before" values when the given mov instruction is

executed. Give the requested "after" values.

  Before Instruction After

(a) BX: FF 75
CX: 01 A2 mov bx, cx BX, CX

(b) AX: 01 A2 mov ax, 100 AX

(c) EDX: FF 75 4C 2E
Value: DWORD - 1 mov edx, Value EDX, Value

(d) AX: 01 4B mov ah, 0 AX

(e) AL: 64 mov al, -1 AL

(f) EBX: 00 00 3A 4C
Value: DWORD ? mov Value, ebx EBX, Value

(g) ECX: 00 00 00 00 mov ecx, 128 ECX

1.

Give the opcode for each instruction in Exercise 1.2.

For each part of this problem, assume the "before" values when the given xchg instruction is

executed. Give the requested "after" values.

3.



  Before Instruction After

(a) BX: FF 75
CX: 01 A2

xchg bx, cx BX, CX

(b) AX: 01 A2
Temp: WORD - 1 xchg Temp, ax AX, Temp

(c) DX: FF 75 xchg dl, dh DX

(d) AX: 01 4B
BX: 5C D9

xchg ah, bl AX, BX

(e) EAX: 12 BC 9A 78
EDX: 56 DE 34 F0

xchg eax, edx EAX, EDX

3.

Give the opcode for each instruction in Exercise 3.4.

Suppose that number references a doubleword in the data segment of a program, and you wish

to swap the contents of that word with the contents of the EDX register. Two possible methods
are

5.

xchg edx, number

and

mov     eax, edx
mov     edx, number
mov     number, eax

What is the total number of clock cycles and the total number of bytes required by each of
these methods assuming you are using a Pentium computer? Assuming you are using a
80386 computer?

a.

How many nanoseconds would it take to execute each set of instructions using a 166 MHz
Pentium computer? Using a 20 MHz 80386 computer?

b.

What difference would it make in the answers to (a) if the EBX register rather than the
accumulator EAX were used in the "three-move" method?

c.

Note that xchg cannot swap two words in memory. Write a sequence of mov and/or xchg
instructions to swap doublewords stored at Value1 and Value2. Assume that any register 32

you want to use is available, and make your code as time efficient and space efficient as
possible.

6.

How many clock cycles and how many bytes are required for the following instruction? Assume
a Pentium system.

7.

     mov dx, [ebx] ; copy table entry



4.2 Integer Addition and Subtraction Instructions

The Intel 80×86 microprocessor has add and sub instructions to perform addition and subtraction

using byte, word, or doubleword length operands. The operands can be interpreted as unsigned
numbers or 2’s complement signed numbers. The 80×86 architecture also has inc and dec
instructions to increment (add 1 to) and decrement (subtract 1 from) a single operand, and a neg

instruction that negates (takes the 2’s complement of) a single operand.

One difference between the instructions covered in this section and the mov and xchg instructions of
Section 4.1 is that add, sub, inc, dec, and neg instructions all update flags in the EFLAGS register.

The SF, ZF, OF, PF, and AF flags are set according to the value of the result of the operation. For
example, if the result is negative, then the sign flag SF will be set to one; if the result is zero, then the
zero flag ZF will be set to one. The carry flag CF is also given a value by each of these instructions
except inc and dec.

Each add instruction has the form

     add   destination, source

When executed, the integer at source is added to the integer at destination and the sum replaces the
old value at destination. The sub instructions all have the form

     sub   destination, source

When a sub instruction is executed, the integer at source is subtracted from the integer at destination

and the difference replaces the old value at destination. For subtraction, it is important to remember
that the difference calculated is

     destination - source

or "operand 1 minus operand 2." With both add and sub instructions the source (second) operand is

unchanged. Here are some examples showing how these instructions function at execution time.

Addition and subtraction instructions set the sign flag SF to be the same as the high-order bit of the
result. Thus, when these instructions are used to add or subtract 2’s complement integers, SF=1
indicates a negative result. The zero flag ZF is 1 if the result is zero, and 0 if the result is nonzero. The
carry flag CF records a carry out of the high order bit with addition or a borrow with subtraction. The
overflow flag OF records overflow, as discussed in Chapter 2.

One reason that 2’s complement form is used to represent signed numbers is that it does not require
special hardware for addition or subtraction; the same circuits can be used to add unsigned numbers
and 2’s complement numbers. The flag values have different interpretations, though, depending on the
operand type. For instance, if you add two large unsigned numbers and the high order bit of the result
is 1, then SF will be set to 1, but this does not indicate a negative result, only a relatively large sum. For
an add with unsigned operands, CF=1 would indicate that the result was too large to store in the

destination, but with signed operands, OF=1 would indicate a size error.

Figure 4.5 gives information for both addition and subtraction instructions. For each add there is a
corresponding sub instruction with exactly the same operand types, number of clock cycles, and
number of bytes of object code, so that it is redundant to make separate tables for add and sub

instructions.



    Clock Cycles   Opcode

Destination
Operand

Source
Operand 386 486 Pentium

Number of
Bytes add sub

register 8 immediate 8 2 1 1 3 80 80

register 16 immediate 8 2 1 1 3 83 83

register 32 immediate 8 2 1 1 3 83 83

register 16 immediate 16 2 1 1 4 81 81

register 32 immediate 32 2 1 1 6 81 81

AL immediate 8 2 1 1 2 04 2C

AX immediate 16 2 1 1 3 05 2D

EAX immediate 32 2 1 1 5 05 2D

memory byte immediate 8 7 3 3 3+ 80 80

memory word immediate 8 7 3 3 3+ 83 83

memory
doubleword

immediate 8 7 3 3 3+ 83 83

memory word immediate 16 7 3 3 4+ 81 81

memory
doubleword

immediate 32 7 3 3 6+ 81 81

register 8 register 8 2 1 1 2 02 2A

register 16 register 16 2 1 1 2 03 2B

register 32 register 32 2 1 1 2 03 2B

register 8 memory byte 6 2 2 2+ 02 2A

register 16 memory word 6 2 2 2+ 03 2B

register 32 memory
doubleword

6 2 2 2+ 03 2B

memory byte register 8 7 3 3 2+ 00 28

memory word register 16 7 3 3 2+ 01 29

memory
doubleword

register 32 7 3 3 2+ 01 29

Figure 4.5: add and sub instructions

Figure 4.6 makes it easy to see that addition or subtraction operands are the fastest when both
operands are in registers and the slowest when the destination operand is in memory. It is interesting to
note that it is faster to add an operand in memory to the contents of a register than to add the value in a
register to a memory operand; this is true since memory must be accessed twice in the latter case,
once to get the first addend and once to store the sum. With the 80×86, only one operand can be in
memory. Many computer architectures do not have instructions for arithmetic when the destination is a
memory operand. Some other processors allow two memory operands for arithmetic operations.



    Clock Cycles Opcode

Destination Operand 386 486 Pentium Number of Bytes inc dec

register 8 2 1 1 2 FE FE

register 16 2 1 1 1    

  AX         40 48

  CX         41 49

  DX         42 4A

  BX         43 4B

  SP         44 4C

  BP         45 4D

  SI         46 4E

  DI         47 4F

register 32 2 1 1 1    

  EAX         40 48

  ECX         41 49

  EDX         42 4A

  EBX         43 4B

  ESP         44 4C

  EBP         45 4D

  ESI         46 4E

  EDI         47 4F

memory byte 6 3 3 2+ FE FE

memory word 6 3 3 2+ FF FF

memory doubleword 6 3 3 2+ FF FF

Figure 4.6: inc and dec instructions

With add and sub, the accumulator again has special instructions, this time when EAX, AX, or AL is

the destination and the source is immediate. These instructions are not any faster than the other
immediate-to-register instructions but do take one less byte of object code.

The total number of object code bytes for instructions with "+" entries in Fig. 4.6 can be calculated once
you know the memory operand type. In particular, for direct mode, you add four bytes for the 32-bit
address. For register indirect mode, no additional byte is required.

Notice that an immediate source can be a single byte even when the destination is a word or
doubleword. Since immediate operands are often small, this makes the object code more compact.
Byte-size operands are sign-extended to word or doubleword size at run time before the addition or
subtraction operation. If the original operand is negative (viewed as 2’s complement number), then it is
extended with one or three FF bytes to get the corresponding word or doubleword-length value. A non-
negative operand is simply extended with one or three 00 bytes. In both cases this is equivalent to
copying the original sign bit to the high order 8 or 24 bit positions.

It may be surprising that some add and sub instructions have the same opcode. In such cases, one of

the fields in the second instruction byte distinguishes between addition and subtraction. In fact, these
same opcodes are used for additional instructions that are covered later in this book.

The inc (increment) and dec (decrement) instructions are special-purpose addition and subtraction

instructions, always using 1 as an implied source. They have the forms

     inc destination



and

     dec destination

Like the add and sub instructions, these instructions are paired with respect to allowable operand

types, clock cycles, and bytes of object code. They are summarized together in Fig. 4.6.

The inc and dec instructions treat the value of the destination operand as an unsigned integer. They

affect the OF, SF, and ZF flags just like addition or subtraction of one, but they do not change the carry
flag CF. Here are examples showing the execution of a few increment and decrement instructions:

The inc and dec instructions are especially useful for incrementing and decrementing counters. They

sometimes take fewer bytes of code and execute in fewer clock cycles than corresponding addition or
subtraction instructions. For example, the instructions

     add cx, 1      ; increment loop counter

and

     inc cx         ; increment loop counter

are functionally equivalent. The add instruction requires three bytes (three bytes instead of four since
the immediate operand will fit in one byte), while the inc instruction requires one byte. Either executes

in two clock cycles on an 80386 machine or in one clock cycle on an 80486 or Pentium, so execution
times are identical.

In Fig. 4.6, note the fast, single-byte inc and dec instructions for word or doubleword-size operands

stored in registers. A register is the best place to keep a counter, if one can be reserved for this
purpose.

A neg instruction negates, or finds the 2’s complement of, its single operand. When a positive value is
negated the result is negative; a negative value will become positive. Zero remains zero. Each neg

instruction has the form

     neg   destination

Figure 4.7 shows allowable operands for neg instructions.



    Clock Cycles  

Destination Operand 386 486 Pentium Number of Bytes Opcode

register 8 2 1 1 2 F6

register 16 2 1 1 2 F7

register 32 2 1 1 2 F7

memory byte 6 3 3 2+ F6

memory word 6 3 3 2+ F7

memory doubleword 6 3 3 2+ F7

Figure 4.7: neg instructions

Following are four examples illustrating how the neg instructions operate. In each case the "after" value

is the 2’s complement of the "before" value.

This section ends with an example of a complete, if unexciting, program that uses these new
instructions. The program inputs values for three numbers, x, y and z, evaluates the expression (- x + y
- 2z + 1) and displays the result. The design implemented is

prompt for and input value for x;

convert × from ASCII to 2’s complement form;

expression := x;

prompt for and input value for y;

convert y from ASCII to 2’s complement form;

add y to expression, giving × + y;

prompt for and input value for z;

convert z from ASCII to 2’s complement form;

calculate 2*z as (z + z);

subtract 2*z from expression, giving × + y - 2*z;

add 1 to expression, giving × + y - 2*z + 1;

negate expression, giving (- x + y - 2*z + 1);

convert the result from 2’s complement to ASCII;



display the result;

To write an assembly language program, you need to plan how registers and memory will be used. In
this program the values of x, y, and z are not needed after they are incorporated into the expression.
Therefore they are not stored in memory. We will assume that the numbers are not very large, so that
values can be stored in words. A logical place to keep the expression value would be the accumulator
AX since some operations are faster with it, but this choice is impossible since the atoi macro always

uses AX as its destination. This leaves the general registers BX, CX, and DX; this program will use DX.
It is very easy to run out of registers when designing assembly language programs. Memory must often
be used for values even though operations are slower. Sometimes values must be moved back and
forth between registers and memory.

Figure 4.8 shows the source program listing. This program follows the same general pattern of the
example in Fig. 3.1. In the prompts, note the use of cr,Lf,Lf to skip to a new line and to leave an
extra blank line; it is not necessary to put in a second cr since the cursor will already be at the

beginning of the new line after one carriage return character is displayed. The value of 2*z is found by
adding z to itself; multiplication will be covered in the next section, but it is more efficient to compute
2*z by addition. Finally, note that the comments in this program do not simply repeat the instruction
mnemonics; they help the human reader figure out what is really going on.

; program to input values for x, y and z
; and evaluate the expression - (x + y - 2z + 1)
; author: R. Detmer
; date: revised 8/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

include io.h           ; header file for input/output
cr    equ    0dh       ; carriage return character
Lf    equ    0ah       ; line feed

.STACK 4096             ; reserve 4096-byte stack

.DATA                   ; reserve storage for data
Prompt1   BYTE "This program will evaluate the expression",cr,Lf,Lf
          BYTE "     - (x + y - 2z + 1)",cr,Lf,Lf
          BYTE "for your choice of integer values.",cr,Lf,Lf
          BYTE "Enter value for x: ",0
Prompt2   BYTE "Enter value for y: ",0
Prompt3   BYTE "Enter value for z: ",0
Value     BYTE 16 DUP (?)
Answer    BYTE cr,Lf,"The result is "
Result    BYTE 6 DUP (?)
          BYTE cr,Lf,0

.CODE                      ; start of main program code
_start:
          output Prompt1         ; prompt for x
          input  Value,16        ; read ASCII characters
          atoi   Value           ; convert to integer
          mov    dx,ax           ; x

          output Prompt2         ; prompt for y
          input Value,16         ; read ASCII characters
          atoi Value             ; convert to integer
          add dx,ax              ; x + y

          output Prompt3         ; prompt for z
          input Value,16         ; read ASCII characters



          atoi  Value            ; convert to integer
          add   ax,ax            ; 2*z
          sub   dx,ax            ; x + y - 2*z

          inc   dx               ; x + y - 2*z + 1
          neg   dx               ; - (x + y - 2*z + 1)

          itoa  Result,dx        ; convert to ASCII characters

          output Answer          ; output label and result

          INVOKE ExitProcess, 0  ; exit with return code 0

PUBLIC _start                    ; make entry point public
END                              ; end of source code

Figure 4.8: Program to evaluate -  (x + y -  2z + 1)

Figure 4.9 illustrates a sample run of this program. As in the previous example, user input is underlined.

  This program will evaluate the expression

    - (x + y - 2z + 1)

  for your choice of integer values.

  Enter value for x: 10
  Enter value for y: 3
  Enter value for z: 5

  The result is -4

Figure 4.9: Sample run of program

Exercises 4.2

For each instruction, give the opcode, the number of bytes of object code, and the number of
clock cycles required for execution on a Pentium system. Assume that Value references a word
in memory and that Double references a doubleword.

(a) add ax,Value (b) sub Value,ax

(c) sub eax,10 (d) add Double,10

(e) add eax,[ebx] (f) sub [ebx],eax

(g) sub dl,ch (h) add bl,5

(i) inc bx (j) dec al

(k) dec Double (l) inc BYTE PTR [esi]

(m) neg eax (n) neg bh

(o) neg Double (p) neg WORD PTR [ebx]

1.

For each part of this problem, assume the "before" values when the given instruction is
executed. Give the requested "after" values.

2.



  Before Instruction After

(a) EBX: FF FF FF 75
ECX: 00 00 01 A2 add ebx,ecx

EBX, ECX, SF, ZF, CF,
OF

(b) EBX: FF FF FF 75
ECX: 00 00 01 A2 sub ebx,ecx

EBX, ECX, SF, ZF, CF,
OF

(c) BX: FF 75
CX: 01 A2 sub cx,bx BX, CX, SF, ZF, CF, OF

(d) DX: 01 4B add dx,40h DX, SF, ZF, CF, OF

(e) EAX: 00 00 00 64 sub eax,100 EAX, SF, ZF, CF, OF

(f) AX: 0A 20
word at Value, word at Value: FF
20 add ax,Value

AX, SF, ZF, CF, OF

(g) AX: 0A 20
word at Value, word at Value: FF
20 sub Value,ax AX, SF, ZF, CF, OF

(h) CX: 03 1A inc cx CX, SF, ZF

(i) EAX: 00 00 00 01 dec eax EAX, SF, ZF

(j) word at Count: 00 99 inc Count word at Count, SF, ZF

(k) word at Count: 00 99 dec count word at Count, SF, ZF

(l) EBX: FF FF FF FF neg ebx EBX, SF, ZF

(m) CL: 5F neg cl CL, SF, ZF

(n) word at Value: FB 3C neg Value word at Value, SF, ZF

2.

Programming Exercises 4.2

For complete programs, prompts for input must make it clear what is to be entered, and output must be
appropriately labeled.

Write a complete 80×86 assembly language program to prompt for values of x, y, and z and
display the value of the expression x - 2y + 4z. Allow for 16-bit integer values.

1.

Write a complete 80×86 assembly language program to prompt for values of x, y, and z and
display the value of the expression 2(- x + y- 1) + z. Allow for 32-bit integer values.

2.

Write a complete 80×86 assembly language program to prompt for the length and width of a
rectangle and to display its perimeter (2*length + 2*width).

3.



4.3 Multiplication Instructions

The 80×86 architecture has two multiplication instruction mnemonics. Any imul instruction treats its

operands as signed numbers; the sign of the product is determined by the usual rules for multiplying
signed numbers. A mul instruction treats its operands as unsigned binary numbers; the product is also
unsigned. If only non-negative numbers are to be multiplied, mul should usually be chosen instead of
imul since it is a little faster.

There are fewer variants of mul than of imul, so we consider it first. The mul instruction has a single

operand; its format is

     mul source

The source operand may be byte, word, or doubleword-length, and it may be in a register or in memory.
The location of the other number to be multiplied is always the accumulator-AL for a byte source, AX for
a word source, and EAX for a doubleword source. If source has byte length, then it is multiplied by the
byte in AL; the product is 16 bits long, with a destination of the AX register. If source has word length,
then it is multiplied by the word in AX; the product is 32 bits long, with its low order 16 bits going to the
AX register and its high order 16 bits going to the DX register. If source is a doubleword, then it is
multiplied by the doubleword in EAX; the product is 64 bits long, with its low order 32 bits in the EAX
register and its high order 32 bits in the EDX register. For byte multiplication, the original value in AX is
replaced. For word multiplication, the original values in AX and DX are both wiped out. Similarly, for
doubleword multiplication the values in EAX and EDX are replaced by the product. In each case the
source operand is unchanged unless it is half of the destination location.

At first glance, it may seem strange that the product is twice the length of its two factors. However, this
also occurs in ordinary decimal multiplication; if, for example, two four-digit numbers are multiplied, the
product will be seven or eight digits long. Computers that have multiplication operations often put the
product in double-length locations so that there is no danger that the destination location will be too
small.

Even when provision is made for double-length products, it is useful to be able to tell whether the
product is the same size as the source; that is, if the high-order half is zero. With mul instructions, the

carry flag CF and overflow flag OF are set to 1 if the high order half of the product is not zero, but are
cleared to 0 if the high order half of the product is zero. These are the only meaningful flag values
following multiplication operations; previously set values of AF, PF, SF, and ZF flags may be destroyed.
In Chapter 5, instructions checking flag values will be covered; it is possible to check that the high
order half of the product can be safely ignored.

Figure 4.10 summarizes the allowable operand types for mul instructions. No immediate operand is
allowed in a mul. Note the number of clock cycles required is appreciably larger than for addition or

subtraction instructions. The actual number of clock cycles for the 80386 and 80486 depends on the
numbers being multiplied.

  Clock Cycles    

Destination Operand 386 486 Pentium Number of Bytes Opcode

register 8 9-14 13-18 11 2 F6

register 16 9-22 13-26 11 2 F7

register 32 9-38 13-42 10 2 F7

memory byte 12-17 13-18 11 2+ F6

memory word 12-25 13-26 11 2+ F7

memory doubleword 12-41 13-42 10 2+ F7

Figure 4.10: mul instructions

Here are some examples to illustrate how the mul instructions work.



The first example shows multiplication of words in AX and BX. The contents of DX are not used in the
multiplication but are replaced by the high-order 16 bits of the 32-bit product 0000000A. The carry and
overflow flags are cleared to 0 since DX contains 0000. The second example shows multiplication of
EAX by itself, illustrating that the explicit source for the multiplication can be the same as the other
implicit factor. The final example shows multiplication of the byte in AL by a byte at Factor in memory
with value equivalent to the unsigned number 25510. The product is the unsigned 16-bit number 04 FB,
and since the high-order half is not zero, both CF and OF are set to 1.

The signed multiplication instructions use mnemonic imul. There are three formats, each with a

different number of operands. The first format is

     imul source

the same as for mul, with source containing one factor and the accumulator the other. Again, the

source operand cannot be immediate. The destination is AX, DX:AX, or EDX:EAX, depending on the
size of the source operand. The carry and overflow flags are set to 1 if the bits in the high-order half are
significant, and cleared to 0 otherwise. Notice the high-order half may contain all 1 bits for a negative
product. Single-operand imul instructions are summarized in Fig. 4.11. Notice that this table is
identical to Fig. 4.10. Even the opcodes are the same for mul and single-operand imul instructions,

with a field in the second byte of the instruction distinguishing the two.

  Clock Cycles    

Destination Operand 386 486 Pentium Number of Bytes Opcode

register 8 9-14 13-18 11 2 F6

register 16 9-22 13-26 11 2 F7

register 32 9-38 13-42 10 2 F7

memory byte 12-17 13-18 11 2+ F6

memory word 12-25 13-26 11 2+ F7

memory doubleword 12-41 13-42 10 2+ F7

Figure 4.11: imul instructions (single-operand format)

The second imul format is

     imul register, source

Here the source operand can be in a register, in memory, or immediate. The other factor is in the
register, which also serves as the destination. Operands must be words or doublewords, not bytes. The



product must "fit" in same size as the factors; if it does, CF and OF are cleared to 0, if not they are set
to 1.

Figure 4.12 summarizes two-operand imul instructions. Note that some of these instructions have two

byte long opcodes. Immediate operands can be either the size of the destination register or a single
byte. Single-byte operands are signextended before multiplication-that is, the sign bit is copied to
leading bit positions, giving a 16 or 32-bit value that represents the same signed integer as the original
8-bit operand.

    Clock Cycles    

Operand
1 Operand 2 386 486 Pentium

Number of
Bytes Opcode

register 16 register 16 9-22 13-
26

11 3 0F AF

register 32 register 32 9-38 13-
42

10 3 0F AF

register 16 memory word 12-
25

13-
26

11 3 + 0F AF

register 32 memory doubleword 12-
41

13-
42

10 3 + 0F AF

register 16 immediate byte 9-14 13-
18

11 3 6B

register 16 immediate word 9-22 13-
26

11 4 69

register 32 immediate byte 9-14 13-
18

11 3 6B

register 32 immediate
doubleword

9-38 13-
42

10 6 69

Figure 4.12: imul instructions (two-operand format)

The third imul format is

     imul   register, source, immediate

With this version, the first operand, a register, is only the destination for the product; the two factors are
the contents of the register or memory location given by source and the immediate value. Operands
register and source are the same size, both 16-bit or both 32-bit. If the product will fit in the destination
register, then CF and OF are cleared to 0; if not, they are set to 1. The three-operand imul instructions

are summarized in Fig. 4.13.



      Clock Cycles    

Register
Destination Source

Immediate
Operand 386 486 Pentium

Number
of Bytes Opcode

register 16 register
16

byte 9-14 13-
18

10 3 6B

register 16 register
16

word 9-22 13-
26

10 4 69

register 16 memory
16

byte 12-
17

13-
18

10 3+ 6B

register 16 memory
16

word 12-
25

13-
26

10 4+ 69

register 32 register
32

byte 9-14 13-
18

10 3 6B

register 32 register
32

doubleword 9-38 13-
42

10 6 69

register 32 memory
32

byte 12-
17

13-
18

10 3+ 6B

register 32 memory
32

doubleword 12-
41

13-
42

10 6+ 69

Figure 4.13: imul Instructions (three-operand format)

Some examples will help show how the imul instructions work.

The first two examples are the single-operand format and the products are twice the length of the
operands. The first example shows words in AX (the implied operand) and BX being multiplied, with the
result in DX:AX. The second example shows 5 in AL being multiplied by - 1 in the memory byte at
Factor, giving a word-size product equivalent to - 5 in AX. The third example shows the two-operand
format, with 10 in EBX multiplied by the immediate operand 10, and the result of 100 in EBX. In the
fourth example, two negative numbers are multiplied, giving a positive result. In the last example, the
product is 22F15016, too large to fit in BX. The flags CF and OF are set to 1 to indicate that the result
was too large, and the low-order digits are saved in BX.



Earlier, the discussion with the example program in Fig. 4.8 stated that it was faster to calculate 2z by
adding z to itself than by using a multiplication instruction. In that situation, z was in the AX register, so

     add   ax, ax ; compute 2z

did the job. This instruction is two bytes long, and on an 80486 or Pentium system takes one clock
cycle. To do the same task using multiplication, you can code

     imul   ax, 2 ; compute 2z

This instruction (from Fig. 4.12) is three bytes long since the immediate operand 2 is short enough to fit
in a single byte; it takes 13-18 clock cycles on an 80486 or 10 clock cycles on a Pentium, much longer
than the addition instruction.

This section concludes with an example of a program that will input the length and width of a rectangle
and calculate its area (length*width). (Admittedly, this is a job much better suited for a hand calculator
than for a computer program in assembly language or any other language.) Figure 4.14 shows the
source code for the program. Note that the program uses mul rather than imul for finding the product;

lengths and widths are positive numbers. Interesting errors occur in this program if a negative length or
width is entered, or if a large width and length (say 200 and 300) are entered. Why? Such errors are
unfortunately common in software.

  ; program to find the area of a rectangle
  ; author: R. Detmer
  ; date: revised 9/97

  .386
  .MODEL FLAT

  ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

  INCLUDE io.h

  cr         EQU    0dh    ; carriage return character
  LF         EQU    0ah    ; linefeed character

  .STACK 4096              ; reserve 4096-byte stack

  .DATA                    ; reserve storage for data

  prompt1    BYTE  "This program will find the area of a
                    rectangle",cr,Lf,Lf
             BYTE  "Width of rectangle? ",0
  prompt2    BYTE  "Length of rectangle? ",0
  value      BYTE  16 DUP (?)
  answer     BYTE  cr,Lf,"The area of the rectangle is "
  area       BYTE  11 DUP (?)
             BYTE  cr,Lf,0
  .CODE                           ;start of main program code
  _start:
  Prompt:    output prompt1        ;prompt for width
             input  value,16       ; read ASCII characters
             atod   value          ; convert to integer
             mov    ebx,eax        ; width
             output prompt2        ; prompt for length
             input  value,16       ; read ASCII characters
             atod value            ; convert to integer
             mul ebx               ; length * width

             dtoa area,eax         ; convert to ASCII characters
             output answer         ; output label and result



             INVOKE ExitProcess, 0 ; exit with return code 0
             PUBLIC _start         ; make entry point public
  END

Figure 4.14: Program to find the area of a rectangle

As you have seen in this section, the 80×86 architecture includes multiplication instructions in three
formats. You may have noted that the destination of the product cannot be a memory operand. This
may sound restrictive, but some processors have even greater limitations. In fact, most 8-bit
microprocessors, including the Intel 8080, had no multiplication instruction; any multiplication had to be
done using a software routine.

Exercises 4.3

For each part of this problem, assume the "before" values when the given instruction is
executed. Give the requested "after" values.

  Before Instruction After

(a) EAX: FF FF FF E4
EBX: 00 00 00 02 mul ebx EAX, EDX, CF, OF

(b) AX: FF E4
word at Value: FF 3A mul Value AX, DX, CF, OF

(c) AX: FF FF mul ax AX, DX, CF, OF

(d) AL: 0F
BH: 4C mul bh AX, CF, OF

(e) AL: F0
BH: C4 mul bh AX, CF, OF

(f) AX: 00 17
CX: 00 B2 imul cx AX, DX, CF, OF

(g) EAX: FF FF FF E4
EBX: 00 00 04 C2 imul ebx EAX, EDX, CF, OF

(h) AX: FF E4
word at Value: FF 3A imul Value AX, DX, CF, OF

(i) EAX: FF FF FF FF imul eax EAX, EDX, CF, OF

(j) AL: 0F
BH: 4C imul bh AX, CF, OF

(k) AL: F0
BH: C4 imul bh AX, CF, OF

1.

Give the opcode for each instruction in Exercise 1.2.

For each part of this problem, assume the "before" values when the given instruction is
executed. Give the requested "after" values.

3.



  Before Instruction After

(a) BX: 00 17
CX: 00 B2 imul bx,cx BX, CF, OF

(b) EAX: FF FF FF E4
EBX: 00 00 04 C2 imul eax,ebx EAX, CF, OF

(c) AX: 0F B2 imul ax, 15 AX, CF, OF

(d) ECX: 00 00 7C E4
doubleword at Mult:
00 00 65 ED imul ecx,Mult ECX, CF, OF

(e) DX: 7C E4
BX: 49 30 imul dx,bx DX, CF, OF

(f) DX: 0F E4
word at Value: 04 C2 imul dx,Value DX, CF, OF

(g) EBX: 00 00 04 C2 imul ebx,-10 EBX, CF, OF

(h) ECX: FF FF FF E4 imul ebx,ecx,5 EBX, CF, OF

(i) DX: 00 64 imul ax,dx,10 AX, CF, OF

3.

Give the opcode for each instruction in Exercise 3.4.

Suppose that the value for x is in the AX register and you need the value of 5x in AX. Compare
the number of clock cycles for execution on a Pentium system and the number of bytes of object
code for each of the following schemes.

5.

mov   bx,ax      ; copy value of x
add   ax,ax      ; x + x gives 2x
add   ax,ax      ; 2x + 2x gives 4x
add   ax,bx      ; 4x + x gives 5x

and

imul  ax,5 ; 5x

Suppose you need to evaluate the polynomial6.

p(x) = 5x3 7x2 + 3x - 10

for some value of x. If this is done in the obvious way, as

5*x*x*x - 7*x*x + 3*x - 10

there are six multiplications and three additions/subtractions. An equivalent form, based on
Horner's scheme for evaluation of polynomials, is

((5*x - 7)*x + 3)*x - 10

This has only three multiplications.

Suppose that the value of x is in the EAX register.

Write 80×86 assembly language statements that will evaluate p(x) the "obvious" way,
putting the result in EAX.

a.

Write 80×86 assembly language statements that will evaluate p(x) using Horner's scheme,
again putting the result in EAX.

b.

Assuming a Pentium system, compare the number of clock cycles for execution and thec.

7.



b.

number of bytes of object code required for the code fragments in (a) and in (b) above.
c.

The 80×86 architecture has distinct instructions for multiplication of signed and unsigned
numbers. It does not have separate instructions for addition of signed and unsigned numbers.
Why are different instructions needed for multiplication but not for addition?

7.

Programming Exercises 4.3

Write a complete 80×86 assembly language program to prompt for the length, width, and height
of a box and to display its volume (length * width * height).

1.

Write a complete 80×86 assembly language program to prompt for the length, width, and height
of a box and to display its surface area

2*(length*width + length*height + width*height).

2.

Suppose that someone has a certain number of coins (pennies, nickels, dimes, quarters, fifty-
cent pieces, and dollar coins) and wants to know the total value of the coins, as well as how
many coins there are. Write a program to help. Specifically, follow the design below.

prompt for and input the number of pennies;

total := number of pennies;

numberOfCoins := number of pennies;

prompt for and input the number of nickels;

total := total + 5 * number of nickels;

add number of nickels to numberOfCoins;

prompt for and input the number of dimes;

total := total + 10 * number of dimes;

add number of dimes to numberOfCoins;

prompt for and input the number of quarters;

total := total + 25 * number of quarters;

add number of quarters to numberOfCoins;

prompt for and input the number of fifty-cent pieces;

total := total + 50 * number of fifty-cent pieces;

add number of fifty-cent pieces to numberOfCoins;

prompt for and input the number of dollars;

total := total + 100 * number of dollars;

add number of dollars to numberOfCoins;

display "There are", numberOfCoins, "coins worth";

display total div 100, "dollars and", total mod 100, "cents";

Note that you are displaying dollars and cents for the total. Assume that all values will fit in
doublewords.

3.



4.4 Division Instructions

The Intel 80×86 instructions for division parallel those of the single-operand multiplication instructions;
idiv is for division of signed 2's complement integers and div is for division of unsigned integers.

Recall that the single-operand multiplication instructions start with a multiplier and multiplicand and
produce a double-length product. Division instructions start with a double-length dividend and a single-
length divisor, and produce a single-length quotient and a single-length remainder. The 80×86 has
instructions that can be used to produce a double-length dividend prior to division.

The division instructions have formats

     idiv source

and

     div source

The source operand identifies the divisor. The divisor can be in a register or memory, but not
immediate. Both div and idiv use an implicit dividend (the operand you are dividing into). If source is

byte length, then the double-length dividend is word size and is assumed to be in the AX register. If
source is word length, then the dividend is a doubleword and is assumed to have its low order 16 bits in
the AX register and its high order 16 bits in the DX register. If source is doubleword length, then the
dividend is a quadword (64 bits) and is assumed to have its low order 32 bits in the EAX register and its
high order 32 bits in the EDX register.

The table in Fig. 4.15 summarizes the locations of the dividend, divisor, quotient, and remainder for
80×86 division instructions.

source (divisor) size other operand (dividend) quotient remainder

byte AX AL AH

word DX:AX AX DX

doubleword EDX:EAX EAX EDX

Figure 4.15: Operands and results for 80×86 division instructions

The source operand (the divisor) is not changed by a division instruction. After a word in AX is divided
by a byte length divisor, the quotient will be in the AL register half and the remainder will be in the AH
register half. After a doubleword in DX and AX is divided by a word length divisor, the quotient will be in
the AX register and the remainder will be in the DX register. After a quadword in EDX and EAX is
divided by a doubleword length divisor, the quotient will be in the EAX register and the remainder will be
in the EDX register.

For all division operations, the dividend, divisor, quotient, and remainder must satisfy the equation

     dividend = quotient*divisor + remainder

For unsigned div operations, the dividend, divisor, quotient, and remainder are all treated as non-
negative numbers. For signed idiv operations, the sign of the quotient is determined by the signs of

the dividend and divisor using the ordinary rules of signs; the sign of the remainder is always the same
as the sign of the dividend.

The division instructions do not set flags to any significant values. They may destroy previously set
values of AF, CF, OF, PF, SF, and ZF flags.

Some examples show how the division instructions work.



In each of these examples, the decimal number 100 is divided by 13. Since

     100 = 7 * 13 + 9

the quotient is 7 and the remainder is 9. For the doubleword length divisor, the quotient is in EAX and
the remainder is in EDX. For the word length divisor, the quotient is in AX and the remainder is in DX.
For the byte length divisor, the quotient is in AL and the remainder is in AH.

For operations where the dividend or divisor is negative, equations analogous to the one above are

 100 = (-7) * (-13) + 9
-100 = (-7) * 13 + (-9)
-100 = 7* (-13) + (-9)

Note that in each case the sign of the remainder is the same as the sign of the dividend. The following
examples reflect these equations for word size divisors of 13 or - 13.

In the second and third examples, the dividend - 100 is represented as the 32 bit number FF FF FF 9C
in the DX and AX registers.

Finally, here are two examples to help illustrate the difference between signed and unsigned division.



With the signed division, - 511 is divided by - 32, giving a quotient of 15 and a remainder of - 31. With
the unsigned division, 65025 is divided by 255, giving a quotient of 255 and a remainder of 0.

With multiplication, the double length destination in each single-operand format guarantees that the
product will fit in the destination location-nothing can go wrong during a single-operand multiplication
operation. There can be errors during division. One obvious cause is an attempt to divide by zero. A
less obvious reason is a quotient that is too large to fit in the single-length destination; if, say, 00 02 46
8A is divided by 2, the quotient 1 23 45 is too large to fit in the AX register. If an error occurs during the
division operation, the 80×86 generates an exception. The routine, or interrupt handler, that services
this exception may vary from system to system. Windows 95 on the author's Pentium system pops up a
window with the message "This program has performed an illegal operation and will be shut down."
When the Details button is pressed, it displays "TEST caused a divide error…" The 80×86 leaves the
destination registers undefined following a division error.

Figure 4.16 lists the allowable operand types for idiv instructions and Fig. 4.17 lists the allowable
operand types for div instructions. The only differences in the two tables are in the number of clock
cycles columns; div operations are slightly faster than idiv operations.

    Clock Cycles  

Operand 386 486 Pentium Number of Bytes Opcode

register 8 19 19 22 2 F6

register 16 27 27 30 2 F7

register 32 43 43 48 2 F7

memory byte 22 20 22 2 + F6

memory word 30 28 30 2 + F7

memory doubleword 46 44 48 2 + F7

Figure 4.16: idiv instructions

  Clock Cycles    

Operand 386 486 Pentium Number of Bytes Opcode

register 8 14 16 17 2 F6

register 16 22 24 25 2 F7

register 32 38 40 41 2 F7

memory byte 17 16 17 2 + F6

memory word 25 24 25 2 + F7

memory doubleword 41 40 41 2 + F7

Figure 4.17: div instructions

When arithmetic is being done with operands of a given length, the dividend must be converted to
double length before a division operation is executed. For unsigned division, a doubleword-size
dividend must be converted to quadword size with leading zero bits in the EDX register. This can be
accomplished many ways, two of which are

     mov edx, 0



and

     sub edx, edx

Similar instructions can be used to put a zero in DX prior to unsigned division by a word operand or to
put a zero in AH prior to unsigned division by a byte operand.

The situation is more complicated for signed division. A positive dividend must be extended with
leading 0 bits, but a negative dividend must be extended with leading 1 bits. The 80×86 has three
instructions for this task. The cbw, cwd, and cdq instructions are different from the instructions
covered before in that these instructions have no operands. The cbw instruction always has AL as its
source and AX as its destination, cwd always has AX as its source and DX and AX as its destination,
and cdq always has EAX as its source and EDX and EAX as its destination. The source register is not

changed, but is extended as a signed number into AH, DX, or EDX. These instructions are summarized
together in Fig. 4.18, which also includes the cwde instruction that extends the word in AX to its signed
equivalent in EAX, paralleling the job that cbw does.

  Clock Cycles    

Instruction 386 486 Pentium Number of Bytes Opcode

cbw 3 3 3 1 98

cwd 2 3 2 1 99

cdq 2 3 2 1 99

cwde 3 3 3 1 98

Figure 4.18: cbw and cwd instructions

The cbw (convert byte to word) instruction extends the 2's complement number in the AL register half
to word length in AX. The cwd (convert word to double) instruction extends the word in AX to a
doubleword in DX and AX. The cdq (convert double to quadword) instruction extends the word in EAX
to a quadword in EDX and EAX. The cwde (convert word to double extended) instruction extends the

word in AX to a doubleword in EAX; this is not an instruction that would normally be used to prepare for
division. Each instruction copies the sign bit of the original number to each bit of the high order half of
the result. None of these instructions affect flags. Some examples are

Two "move" instructions are somewhat similar to the above "convert" instructions. These instructions
copy an 8-bit or 16-bit source operand to a 16-bit or 32-bit destination, extending the source value. The
movzx instruction always extends the source value with zero bits. It has the format



     movzx register, source

The movsx instruction extends the source value with copies of the sign bit. It has a similar format

movsx register, source

Data about these instructions is in Fig. 4.19. With either instruction the source operand can be in a
register or in memory. Neither instruction changes any flag value.

    Clock Cycles   Opcode

Destination Source 386 486 Pentium
Number of
Bytes movsx movzx

register 16 register 8 3 3 3 3 0F BE 0F B6

register 32 register 8 3 3 3 3 0F BE 0F B6

register 32 register 16 3 3 3 3 0F BF 0F B7

register 16 memory byte 6 3 3 3+ 0F BE 0F B6

register 32 memory byte 6 3 3 3+ 0F BE 0F B6

register 32 memory
word

6 3 3 3+ 0F BF 0F B7

Figure 4.19: movsx and movzx instructions

Here are a few examples showing how these instructions work.

This section concludes with another simple program, this one to convert Celsius (centigrade)
temperatures to Fahrenheit. Figure 4.20 gives the source code. The formula implemented is

   ; program to convert Celsius temperature to Fahrenheit
   ; uses formula F = (9/5)*C + 32
   ; author: R. Detmer
   ; date: revised 9/97

   .386
   .MODEL FLAT

   ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

   INCLUDE io.h

   cr          EQU      0dh     ; carriage return character
   Lf          EQU      0ah     ; linefeed character
   .STACK 4096                  ; reserve 4096-byte stack
   .DATA                        ; reserve storage for data
   Prompt1     BYTE     CR,LF,"This program will convert a Celsius "



               BYTE     "temperature to the Fahrenheit scale",cr,Lf,Lf
               BYTE     "Enter Celsius temperature: ",0
   Value       BYTE     10 DUP (?)
   Answer      BYTE     CR,LF,"The temperature is"
   Temperature BYTE     6 DUP (?)
               BYTE     "  Fahrenheit",cr,Lf,0
   .CODE                               ; start of main program code
   _start:
   Prompt:     output  Prompt1         ; prompt for Celsius temperature
               input   Value,10        ; read ASCII characters
               atoi    Value           ; convert to integer
               imul    ax,9            ; C*9
               add     ax,2            ; rounding factor for division
               mov     bx,5            ; divisor
               cwd                     ; prepare for division
               idiv    bx              ; C*9/5
               add     ax,32           ; C*9/5 + 32
               itoa    Temperature,ax  ; convert to ASCII characters
               output  Answer          ; output label and result
               INVOKE  ExitProcess, 0  ; exit with return code 0
   PUBLIC _start                       ; make entry point public
              END

Figure 4.20: Convert Celsius temperature to Fahrenheit

     F = (9/5)* C + 32

where F is the Fahrenheit temperature and C is the Celsius temperature. Since the arithmetic
instructions covered so far perform only integer arithmetic, the program gives the integer to which the
fractional answer would round. It is important to multiply 9 and C before dividing by 5; the integer
quotient 9/5 would be simply 1. Dividing C by 5 before multiplying by 9 produces larger errors than if the
multiplication is done first. Why? To get a rounded answer, half the divisor is added to the dividend
before dividing. Since the divisor in this formula is 5, the number 2 is added for rounding. Notice that
the cwd instruction is used to extend the partial result before division.

Exercises 4.4

For each part of this problem, assume the "before" values when the given instruction is
executed. Give the requested "after" values. Some of these instructions will cause division
errors; identify such instructions.

1.



  Before Instruction After

(a) EDX: 00 00 00 00
EAX: 00 00 00 9A
EBX: 00 00 00 0F idiv ebx EDX, EAX

(b) AX: FF 75
byte at Count: FC idiv Count AX

(c) AX: FF 75
byte at Count: FC div Count AX

(d) DX: FF FF
AX: FF 9A
CX: 00 00 idiv cx DX, AX

(e) DX: FF FF FF FF
AX: FF FF FF 9A
CX: FF FF FF C7 idiv ecx EDX, EAX

(f) DX: 00 00
AX: 05 9A
CX: FF C7 idiv cx DX, AX

(g) DX: 00 00
AX: 05 9A
CX: 00 00

idiv cx DX, AX

(h) EDX: 00 00 00 00
EAX: 00 00 01 5D
EBX: 00 00 00 08

idiv ebx EDX, EAX

1.

Give the opcode for each instruction in Exercise 1.2.

This section mentioned two methods of zeroing EDX prior to unsigned division, using3.

mov   edx,0

or

sub   edx,edx

Which instruction would give more compact code? Which instruction would execute in fewer
clock cycles on a Pentium?

The Celsius to Fahrenheit temperature conversion program (Fig. 4.20) works for Celsius
temperatures that have fairly large magnitude and are either positive or negative. Suppose that
you limit the Celsius temperature to the range 0-100 degrees, yielding Fahrenheit temperatures
from 32-212. How can the program be modified to take advantage of these limited numeric
ranges?

4.

Programming Exercises 4.4

The formula for converting a Fahrenheit to a Celsius temperature is1.

C = (5/9) * (F -32)

Write a complete 80×86 assembly language program to prompt for a Fahrenheit temperature and
display the corresponding Celsius temperature.

Write a complete 80×86 assembly language program to prompt for four grades and then display
the sum and the average (sum/4) of the grades.

2.

Write a complete 80×86 assembly language program to prompt for four grades. Suppose that
the last grade is a final exam grade that counts twice as much as the other three. Display the

3.

4.



sum (adding the last grade twice) and the average (sum/5).

3.

Write a complete 80×86 assembly language program to prompt for four pairs of grades and
weighting factors. Each weighting factor indicates how many times the corresponding grade is to
be counted in the sum. The weighted sum is

4.

WeightedSum = Grade1 * Weight1
            + Grade2 * Weight2
            + Grade3 * Weight3
            + Grade4 * Weight4

and the sum of the weights is

SumOfWeights = Weight1 + Weight2 + Weight3 + Weight4

Display the weighted sum, the sum of the weights, and the weighted average
(WeightedSum/SumOfWeights).

A sample run might look like

grade 1? 88
weight 1? 1

grade 2? 77
weight 2? 2

grade 3? 94
weight 3? 1

grade 4? 85
weight 4? 3

weighted sum: 591
sum of weights: 7
weighted average: 84

Write a complete 80×86 assembly language program to prompt for four grades, and then display
the sum and the average (sum/4) of the grades in ddd.dd format (exactly three digits before and
two digits after a decimal point).

5.

Write a short program that causes a division by zero to discover how the interrupt handler in
your 80×86 system responds.

6.



4.5 Addition and Subtraction of Larger Numbers

The add and sub instructions covered in Section 4.2 work with byte-length, word-length, or

doubleword-length operands. Although the range of values that can be stored in a doubleword is large,
- 2,147,483,648 (8000000016) to 2,147,483,647 (7FFFFFFF16), it is sometimes necessary to do
arithmetic with even larger numbers. Very large numbers can be added or subtracted a group of bits at
a time.

We will illustrate the technique for adding large numbers by adding two 64-bit long numbers. The idea
is to start with the low-order 32 bits from each number and add them using an ordinary add instruction.

This operation sets the carry flag CF to 1 if there is a carry out of the high order bit and to 0 otherwise.
Now the next 32 bits are added using a special addition instruction adc (add with carry). The two high-

order 32-bit numbers are added as usual, but if CF is set to 1 from the prior addition, then 1 is added to
their sum before it is sent to the destination location. The adc instruction also sets CF, so this process

could be continued for as additional groups of bits.

Assume that the two numbers to be added are in four doublewords in the data segment.

     Nbr1Hi DWORD ?   ; High order 32 bits of Nbr1
     Nbr1Lo DWORD ?   ; Low order 32 bits of Nbr1
     Nbr2Hi DWORD ?   ; High order 32 bits of Nbr2
     Nbr2Lo DWORD ?   ; Low order 32 bits of Nbr2

The following code fragment adds Nbr2 to Nbr1, storing the sum at the doublewords reserved for Nbr1.

     mov eax, Nbr1Lo  ; Low order 32 bits of Nbr1
     add eax, Nbr2Lo  ; add Low order 32 bits of Nbr2
     mov Nbr1Lo, eax  ; sum to destination
     mov eax, Nbr1Hi  ; High order 32 bits of Nbr1
     adc eax, Nbr2Hi  ; add High order 32 bits of Nbr2 & carry
     mov Nbr1Hi, eax  ; sum to destination

One thing making this code work is that the mov instructions that come between the add and adc

instructions do not alter the carry flag. If an intervening instruction did change CF, then the sum could
be incorrect.

The adc instructions are identical to corresponding add instructions except that the extra 1 is added if
CF is set to 1. For subtraction, sbb (subtract with borrow) instructions function like sub instructions

except that if CF is set to 1, an extra 1 is subtracted from the difference. Large numbers can be
subtracted in groups of bits, working right to left. Figure 4.21 lists the allowable operand types for adc
and sbb instructions. This table is identical to Fig. 4.5 except for a few opcodes.



    Clock Cycles   Opcode

Destination
Operand

Source
Operand 386 486 Pentium

Number of
Bytes adc sbb

register 8 immediate 8 2 1 1 3 80 80

register 16 immediate 8 2 1 1 3 83 83

register 32 immediate 8 2 1 1 3 83 83

register 16 immediate 16 2 1 1 4 81 81

register 32 immediate 32 2 1 1 6 81 81

AL immediate 8 2 1 1 2 14 1C

AX immediate 16 2 1 1 3 15 1D

EAX immediate 32 2 1 1 5 15 1D

memory byte immediate 8 7 3 3 3+ 80 80

memory word immediate 8 7 3 3 3+ 83 83

memory
doubleword

immediate 8 7 3 3 3+ 83 83

memory word immediate 16 7 3 3 4+ 81 81

memory
doubleword

immediate 32 7 3 3 6+ 81 81

register 8 register 8 2 1 1 2 12 1A

register 16 register 16 2 1 1 2 13 1B

register 32 register 32 2 1 1 2 13 1B

register 8 memory byte 6 2 2 2+ 12 1A

register 16 memory word 6 2 2 2+ 13 1B

register 32 memory
doubleword

6 2 2 2+ 13 1B

memory byte register 8 7 3 3 2+ 10 18

memory word register 16 7 3 3 2+ 11 19

memory
doubleword

register 32 7 3 3 2+ 11 19

Figure 4.21: adc and sbb instructions

To apply similar techniques to longer numbers, often a loop of identical instructions is used. If CF is
known to be 0 before the loop begins, even the first addition can be done using adc. The 80×86

architecture has three instructions that let the programmer manipulate the carry flag. They are
summarized in Fig. 4.22. There are no separate columns for the number of clock cycles on different
processors since these instructions take two clock cycles on each of 30386, 80486, and Pentium
processors.

Instruction Operation
Clock
Cycles

Number of
Bytes Opcode

clc clear carry flag (CF := 0) 2 1 F8

stc set carry flag 2 1 F9

cmc complement carry flag
(if CF = 0 then CF := 1 else CF :=
0)

2 1 F5

Figure 4.22: Control of carry flag CF



Multiplication and division operations with longer numbers are even more involved than addition and
subtraction. Often techniques for adding and subtracting longer numbers are used to implement
algorithms that are similar to grade school multiplication and division procedures for decimal numbers.

If one really needs to use longer numbers, it takes more than a set of arithmetic procedures. One may
also need procedures like itoa and atoi in order to convert long numbers to and from ASCII

character format.

Exercises 4.5

Suppose that two 96 bit long numbers are to be added.

Show how storage for three such numbers can be reserved in the data segment of a
program.

a.

Give a fragment of 80×86 code that will add the second number to the first, storing the
sum at the locations reserved for the first number.

b.

Give a fragment of 80×86 code that will add the second number to the first, storing the
sum at the locations reserved for the third number.

c.

1.

Suppose that two 64 bit numbers are stored as shown in the example in this section. Give a
fragment of 80×86 code that will subtract Nbr2 from Nbr1, storing the difference at the locations
reserved for Nbr1.

2.

For each part of this problem, assume the "before" values when the given instruction is
executed. Give the requested "after" values.

  Before Instruction After

(a) EAX: 00 00 03 7D
ECX: 00 00 01 A2
CF: 0

adc eax,ecx EAX, CF

(b) EAX: 00 00 03 7D
ECX: 00 00 01 A2
CF: 1

adc eax,ecx EAX, CF

(c) EAX: FF 49 00 00
ECX: 03 68 00 00
CF: 0

adc eax,ecx EAX, CF

(d) EAX: FF 4900 00
ECX: 03 6800 00
CF: 1

adc eax,ecx EAX, CF

(e) EAX: 00 00 03 7D
ECX: 00 00 01 A2
CF: 0

sbb eax,ecx EAX, CF

(f) EAX: 00 00 01 A2
ECX: 00 00 03 7D
CF: 1

sbb eax,ecx EAX, CF

3.



4.6 Something Extra: Levels of Abstraction and Microcode

In computer science, we look at computers and computation at many levels. When using an application
program like a word processing package or a game, we just want its various features to work and we
typically do not care how it is written. When we are writing programs in a high-level language, we tend
to view the computer as say, an Ada machine or a C++ machine, and often do not think about how
various language constructs are implemented. The application level and the high-level language level
are two levels of abstraction. As used here, the word "abstraction" can be thought of as "ignoring the
details."

This book deals primarily with the machine-language level of abstraction. One of the book's primary
objectives is to relate this level to the high-level language level of abstraction. To a hardware designer,
it is even more important to relate the machine-language level to lower levels of abstraction.

What lower levels are there? Obviously the hardware of the computer somehow has to execute an
instruction like add or imul. The hardware level of a machine is often viewed as a collection of logic

circuits, although you can take an even lower view of these as constructed with transistors, etc. For
relatively simple architectures, electronic circuits can be designed to implement each possible
instruction directly.

For more complex instruction sets, there is usually another level of abstraction between the machine
language that the user sees and the digital circuitry of the machine. This microcode level consists of a
collection of routines that actually implement the instructions. The microinstructions are normally stored
in permanent memory in the CPU itself. A CPU that uses microcode has a collection of internal
scratchpad registers that are not directly accessible to the user and simple circuitry such as an adder.
A machine language instruction is implemented by a series of microinstructions that do have access to
these scratchpad registers. Microcode resembles machine language. However, there are many
differences. Microinstructions typically have bits that directly control circuits. Often there is no program
counter-each instruction contains the address of the next instruction. In general, microprogramming is
more complex than assembly language programming.



Chapter Summary

The Intel 80×86 mov instruction is used to copy data from one location to another. All but a few
combinations of source and destination locations are allowed. The xchg instruction swaps the data

stored at two locations.

The 80×86 architecture has a full set of instructions for arithmetic with byte-length, word-length, and
doubleword-length integers. The add and sub instructions perform addition and subtraction; inc and
dec add and subtract 1, respectively. The neg instruction negates its operand.

There are two multiplication and two division mnemonics. The imul and idiv instructions assume that
their operands are signed 2's complement numbers; mul and div assume that their operands are

unsigned. Many multiplication instructions start with single-length operands and produce double-length
products; other formats form a product the same length as the factors. Division instructions always start
with a double-length dividend and single-length divisor; the outcome is a single-length quotient and a
single-length remainder. The cbw, cwd, and cdq instructions aid in producing a double-length dividend

before signed division. Flag settings indicate possible errors during multiplication; an error during
division produces a hardware exception that invokes a procedure to handle the error.

Instructions that have operands in registers are generally faster than those that reference memory
locations. Multiplication and division instructions are slower than addition and subtraction instructions.

The adc and sbb instructions make it possible to add numbers longer than doublewords a group of bits

at a time, incorporating a carry or borrow from one group into the addition or subtraction of the next
group to the left. The carry or borrow is recorded in the carry flag CF. The 80×86 clc, stc, and cmc

instructions enable the programmer to clear, set, and complement the carry flag when necessary.

The machine language level is just one level of abstraction at which a computer can be viewed. Above
this level are the high-level language level and the application level. Below the machine language level
are the microcode level and the hardware level.



Chapter 5: Branching and Looping

Branching and Looping

Computers derive much of their power from their ability to execute code selectively and from the speed
at which they execute repetitive algorithms. Programs in high-level languages like Ada, C++, or Pascal
use if-then, if-then-else, and case structures to execute code and loop structures selectively, such as
while (pre-test) loops, until (post-test) loops, and for (counter-controlled) loops to repetitively execute
code. Some high-level languages have a goto statement for unconditional branching. Somewhat more
primitive languages (like older versions of BASIC) depend on fairly simple if statements and an
abundance of goto statements for both selective execution and looping.

The 80×86 assembly language programmer’s job is similar to the old BASIC programmer’s job. The
80×86 microprocessor can execute some instructions that are roughly comparable to for statements,
but most branching and looping is done with 80×86 statements that are similar to, but even more
primitive than, simple if and goto statements. The objective of this chapter is to describe the machine
implementation of language structures such as if-then, if-then-else, while, until, and for.



5.1 Unconditional Jumps

The 80×86 jmp (jump) instruction corresponds to goto in a high-level language. As coded in assembly
language, jmp usually has the form

     jmp   StatementLabel

where StatementLabel corresponds to the name field of some other assembly language statement. Recall
that the name field is followed by a colon (:) when used to label an executable statement. The colon is not
used in the jmp statement itself. As an example, if there were alternative conditions under which a program

should be terminated, the code might contain

     jmp   quit                  ; exit from program
             .
             .
     quit: INVOKE ExitProcess, 0 ; exit with return code 0
             .
             .

Figure 5.1 shows a complete example: a program that will input numbers repeatedly and, after each number
is entered, display the count of the numbers so far, the cumulative sum, and the average. The program
implements the following pseudocode design.

program to input numbers and display running average and sum
; author: R. Detmer
; date: revised 9/97

.386

.MODEL FLAT

INCLUDE io.h

cr          EQU     0dh        ; carriage return character
Lf          EQU     0ah        ; linefeed character

.STACK 4096                    ; reserve 4096-byte stack

.DATA                          ; reserve storage for data
sum         DWORD   ?
explain     BYTE    cr,Lf,"As you input numbers one at a time, this",cr,Lf
            BYTE    "program will report the count of numbers so far,",cr,Lf
            BYTE    "the sum so far, and the average.",cr,Lf,Lf,0
prompt      BYTE    "number? ",0
number      BYTE    16 DUP (?)
countLabel  BYTE    "count",0
sumLabel    BYTE    " sum",0
avgLabel    BYTE    " average",0
value       BYTE    11 DUP (?), 0
nextPrompt  BYTE    cr,Lf,Lf,"next ",0
.CODE                          ; start of main program code
_start:
            output explain     ; initial instructions
            mov    sum,0       ; sum := 0
            mov    ebx,0       ; count := 0

forever:    output prompt      ; prompt for number
            input  number,16   ; read ASCII characters
            atod   number      ; convert to integer

            add    sum,eax     ; add number to sum



            inc    ebx         ; add 1 to count
            dtoa   value,ebx   ; convert count to ASCII
            output countLabel  ; display label for count
            output value       ; display count

            dtoa value,sum     ; convert sum to ASCII
            output sumLabel    ; display label for sum
            output value       ; display sum

            mov eax,sum        ; get sum
            cdq                ; extend sum to 64 bits
            idiv ebx           ; sum / count
            dtoa value,eax     ; convert average to ASCII
            output avgLabel    ; display label for average
            output value       ; output average

            output nextPrompt  ; skip down, start next prompt
            jmp forever        ; repeat

PUBLIC _start                  ; make entry point public
            END

Figure 5.1: Program with forever loop

display instructions;
sum := 0;
count := 0;
forever loop
prompt for number;
input ASCII characters for number;
convert number to 2's complement form;
add number to sum;
add 1 to count;
convert count to ASCII;
display label and count;
convert sum to ASCII;
display label and sum;
average := sum / count;
display label and average;
end loop;

This program must store values for count and sum, and all registers except EBX and ECX are used by the
input/output macros and/or the division instruction. The value of count is kept in EBX, and sum is stored in a
doubleword reserved in the data segment. Note that sum could have been initialized to zero by the DWORD
directive instead of by the mov statement; as implemented, the code is more consistent with the design, but

is slightly wasteful of time and space since sum only needs to be initialized once.

This program has several faults. One slight shortcoming is that it does not round the average. The major
fault, however, is that it contains a forever loop with no way to get out. In fact, the usual termination code
for a program is not even included since it could not be reached anyway. Fortunately there is a way to stop
this program without turning off or resetting the computer; simply press control-C when the prompt for a
number appears. This works because the input macro uses a Kernel32 service for input, and this function

gives special treatment to control-C. Figure 5.2 shows a sample run of this program.

   As you input numbers one at a time, this
   program will report the count of numbers so far,
   the sum so far, and the average.

   number?  75



   count          1     sum     75     average     75

   next number?   93
   count          2     sum     168    average     84
   next number?   78
   count          3     sum     246    average     82

   next number?   (control-C pressed)

Figure 5.2: Sample run of program

The one jmp in the program in Fig. 5.1 transfers control to a point that precedes the jmp statement itself.

This is called a backward reference. The code illustrates a forward reference.

     jmp quit                     ; exit from program
          .
          .
     quit: INVOKE ExitProcess, 0  ; exit with return code 0

There are several 80×86 jmp instructions, in two major groups. All work by changing the value in the

instruction pointer register EIP, so that the next instruction to be executed comes from a new address rather
than from the address immediately following the current instruction. Jumps can be intersegment, changing
the code segment register CS as well as EIP. However, this does not happen with flat memory model
programming, so these instructions will not be covered. The intrasegment jumps are summarized in Fig.
5.3; the first two are the most commonly used.

  Clock Cycles    

Type 386 486 Pentium Number of Bytes Opcode

relative near 7+ 3 1 5 E9

relative short 7+ 3 1 2 EB

register indirect 10+ 5 2 2 FF

memory indirect 10+ 5 2 2+ FF

Figure 5.3: jmp instructions

Each relative jump instruction contains the displacement of the target from the jmp statement itself. This

displacement is added to the address of the next instruction to find the address of the target. The
displacement is a signed number, positive for a forward reference and negative for a backward reference.
For the relative short version of the instruction, only a single byte of displacement is stored; this is changed
to a signextended to a doubleword before the addition. The relative near format includes a 32-bit
displacement.

The 8-bit displacement in an relative short jump can serve for a target statement up to 128 bytes before or
127 bytes after the jmp instruction. This displacement is measured from the byte following the object code
of the jmp itself since at the time an instruction is being executed, EIP logically contains the address of the

next instruction to be executed. The 32-bit displacement in a relative near jump instruction can serve for a
target statement up to 2,147,483,648 bytes before or 2,147,483,647 bytes after the jmp instruction.

There is no difference in the coding for a relative short jump and for a relative near jump. The assembler
uses a short jump if the target is within the small range in order to generate more compact code. A near
jump is used automatically if the target is more than 128 bytes away.

The indirect jump instructions use a 32-bit address for the target rather than a displacement. However, this
address is not encoded in the instruction itself. Instead, it is either in a register or in a memory doubleword.
Thus the format

     jmp edx

means to jump to the address stored in EDX. The memory indirect format can use any valid reference to a



doubleword of memory. If Target is declared as a DWORD in the data section, then

     jmp Target

jumps to the address stored in that doubleword, not to that point in the data section. Using register indirect
addressing, you could have

     jmp DWORD PTR [ebx]

that causes a jump to the address stored at the doubleword whose address is in EBX! Fortunately, these
indirect forms are rarely needed.

Exercises 5.1

If the statement1.

hardLoop: jmp hardLoop

is executed, it continues to execute "forever." What is the object code for this statement?

Identify the type (relative near, relative short, register indirect, or memory indirect) of each jmp

instruction in the following code fragment.

2.

.DATA
          ...
addrStore DWORD ?
          ...
.CODE
          ...
doAgain:

          ... (3 instructions)
          jmp doAgain

          ... (200 instructions)
          jmp doAgain
          ...
          jmp addrStore
          ...
          jmp eax
          ...
          jmp [edi]

Programming Exercise 5.1

Modify the program in Fig. 5.1 so that the prompt rather than the response to it tells which number is
being entered. That is, the sample run in Fig. 5.2 would be changed to

1.

As you input numbers one at a time, this program
will report the sum so far and the average.
     number           1 ? 10
     sum           10     average      10

     number           2 ? 50
     sum           60     average      30

and so forth.



5.2 Conditional Jumps, Compare Instructions, and if Structures

Conditional jump instructions make it possible to implement if structures, other selection structures,

and loop structures in 80×86 machine language. There are many of these instructions. Each has the
format

          j-  targetStatement

where the last part of the mnemonic identifies the condition under which the jump is to be executed. If
the condition holds, then the jump takes place; otherwise, the next instruction (the one following the
conditional jump) is executed.

With one exception (the jcxz/jecxz instruction, covered in Section 5.4), the "conditions" considered

by the conditional jump instructions are settings of various flags in the flag registers. For example, the
instruction

     jz     endWhile

means to jump to the statement with label endWhile if the zero flag ZF is set to 1; otherwise fall

through to the next statement.

Conditional jump instructions do not modify the flags; they only react to previously set flag values.
Recall how the flags in the flag register get values in the first place. Some instructions (like mov) leave
some or all flags unchanged, some (like add) explicitly set some flags according to the value of a
result, and still others (like div) unpredictably alter some flags, leaving them with unknown values.

Suppose, for example, that the value in the EAX register is added to a sum representing an account
balance, and three distinct treatments are needed, depending on whether the new balance is negative,
zero, or positive. A pseudocode design for this could be

add value to balance;

if balance < 0
then
...
{ design for negative balance }
elseif balance = 0
then
...
{ design for zero balance }
else
...
{ design for positive balance }
end if;

The following 80×86 code fragment implements this design.

            add   balance,eax   ; add value to balance
            jns   elseIfZero    ; jump if balance not negative
            ...                 ; code for negative balance
            jmp   endBalanceCheck
elseIfZero: jnz   elsePos         ; jump if balance not zero
            ...                 ; code for zero balance
            jmp   endBalanceCheck
elsePos:    ...                 ;code for positive balance

endBalanceCheck:

Appropriate flags are set or cleared by the add instruction. No other instruction shown in the above

code fragment changes the flags. The design checks first for (balance < 0). The code does this with the



instruction

     jns elseIfZero

which says to jump to elseIfZero if the sign flag is not set; that is, if (balance < 0) is not true. The

code following this instruction corresponds to statements following the first then in the design. The
statement

     jmp endBalanceCheck

at the end of this block of statements is necessary so that the CPU skips the statements that
correspond to the other cases. If the first conditional jump transfers control to elseIfZero, then the

balance must be non-negative. The design checks to see if the balance is zero; the instruction

     elseIfZero: jnz   elsePos

jumps to elsePos if the zero flag ZF=0. The last instruction that set flags is the add at the beginning,

so the jump occurs of the balance was not zero. The code for the (balance=0) case must again end
with an unconditional jump to endBalanceCheck. Finally, the code that corresponds to the else in the
design is at elsePos. This last block of code does not need a jump to endBalanceCheck since

execution will fall through to this point.

The 80×86 code above directly corresponds to the order of statements in the design. If you are actually
doing production coding in assembly language, a good technique is to initially code following a careful
design and then reexamine the code to see if there are places where you can make it more efficient if
there is a need to do so. This corresponds to what happens in many high-level language compilers.
Most initially produce machine language that corresponds to the order of the high-level language
statements being translated. Some compilers may then optimize the code, rearranging some
statements for efficiency.

In the previous code, the label endBalanceCheck is on a line by itself. Technically this label will

reference the address of whatever statement follows it, but it is far simpler to treat it as the part of the
current design structure without worrying about what comes next. If what comes after this structure is
changed, the code for this structure can remain the same. If the next statement requires another label,
that is perfectly okay-multiple labels can reference the same spot in memory. Labels are not part of
object code, so extra labels do not add to the length of object code or to execution time.

When writing code to mirror a design, one often wants to use labels like if, then, else, and endif.
Unfortunately, IF, ELSE, and ENDIF are MASM directives, so they cannot be used as labels. In
addition, IF1, IF2, and several other desirable labels are also reserved for use as directives. One
solution is to use long descriptive labels like elseIfZero in the above example. Since no reserved
word contains an underscore, another solution is to use labels like if_1 and endif_2 that parallel

keywords in the original design.

The terms set a flag and reset a flag are often used to mean "give the value 1" to a flag and "give the
value 0" to a flag, respectively. (Sometimes the word clear is used instead of reset.) As you have seen,
many instructions set or reset flags. However, the cmp (compare) instructions are probably the most

common way to establish flag values.

Each cmp instruction compares two operands and sets or resets AF, CF, OF, PF, SF, and ZF. The only
job of a cmp instruction is to fix flag values; this is not just a side effect of some other function. Each

has the form

     cmp   operand1, operand2

A cmp executes by calculating operand1 minus operand2, exactly like a sub instruction; the value of
the difference and what happens in doing the subtraction determines the flag settings. A cmp
instruction is unlike sub in that the value at the operand1 location is not changed. The flags that are of

most interest in this book are CF, OF, SF, and ZF. The carry flag CF is set if there is a borrow for the
subtraction and reset if no borrow is required. The overflow flag OF is set if there is an overflow and



reset otherwise. The sign flag SF is set if the difference represents a negative 2's complement number
(the leading bit is one) and is reset if the number is zero or positive. Finally, the zero flag ZF is set if the
difference is zero and is reset if it is nonzero.

Here are a few examples showing how the flags are set or reset when some representative byte length
numbers are compared. Recall that the subtraction operation is the same for unsigned and signed (2's
complement) values. Just as a single bit pattern can be interpreted as a unsigned number or a signed
number, flag values have different interpretations after comparison of unsigned or signed values. The
"interpretation" columns below show the relationship of the operands under both signed and unsigned
interpretations.

What flag values characterize the relations equal, less than, and greater than? Equality is easy; the ZF
flag is set if and only if operand1 has the same value as operand2 no matter whether the numbers are
interpreted as signed or unsigned. This is illustrated by Example 1 below. Less than and greater than
take a bit more analysis.

        flags interpretation

  operand1 operand2 difference CF OF SF ZF signed unsigned

1 3B 3B 00 0 0 0 1 op1=op2 op1=op2

2 3B 15 26 0 0 0 0 op1>op2 op1>op2

3 15 3B DA 1 0 1 0 op1<op2 op1<op2

4 F9 F6 03 0 0 0 0 op1>op2 op1>op2

5 F6 F9 FD 1 0 1 0 op1<op2 op1<op2

6 15 F6 1F 1 0 0 0 op1>op2 op1<op2

7 F6 15 E1 0 0 1 0 op1<op2 op1>op2

8 68 A5 C3 1 1 1 0 op1>op2 op1<op2

9 A5 68 3D 0 1 0 0 op1<op2 op1>op2

When one first thinks about less than, it seems as if the carry flag should be set for a borrow whenever
operand1 is less than operand2. This logic is correct if one interprets the operands as unsigned
numbers. Examples 3, 5, 6, and 8 all have operand1 < operand2 as unsigned numbers, and these are
exactly the examples where CF=1. Therefore, for unsigned numbers, CF=0 means that operand1 =
operand2. Strict inequality for unsigned numbers is characterized by CF=0 and ZF=0, that is operand1
= operand2 and operand1 [.notequal] operand2.

Examples 3, 5, 7, and 9 have operand1 < operand2 as signed numbers. What characterizes this
situation is that SF[.notequal]OF. In the remaining examples, SF=OF, and operand1 = operand2 are
signed numbers. Strict inequality for unsigned numbers is characterized by SF=OF and ZF=0, that is
operand1 = operand2 and operand1 [.notequal] operand2.

The cmp instructions are listed in Fig. 5.4. Looking back at Fig. 4.5, one sees that the entries in the
various columns are almost all the same as for sub instructions. When the first operand is in memory,
the cmp instructions require fewer clock cycles than corresponding sub instructions since the result

need not be stored. There are alternative opcodes for some operand combinations-the ones listed are
those chosen by MASM 6.11.



    Clock Cycles    

Destination
Operand

Source Operand 386 486 Pentium Number of
Bytes

opcode

register 8 immediate 8 2 1 1 3 80

register 16 immediate 8 2 1 1 3 83

register 32 immediate 8 2 1 1 3 83

register 16 immediate 16 2 1 1 4 81

register 32 immediate 32 2 1 1 6 81

AL immediate 8 2 1 1 2 3C

AX immediate 16 2 1 1 3 3D

EAX immediate 32 2 1 1 5 3D

memory byte immediate 8 5 2 2 3+ 80

memory word immediate 8 5 2 2 3+ 83

memory
doubleword

immediate 8 5 2 2 3+ 83

memory word immediate 16 5 2 2 4+ 81

memory
doubleword

immediate 32 5 2 2 6+ 81

register 8 register 8 2 1 1 2 38

register 16 register 16 2 1 1 2 3B

register 32 register 32 2 1 1 2 3B

register 8 memory byte 6 2 2 2+ 3A

register 16 memory word 6 2 2 2+ 3B

register 32 memory
doubleword

6 2 2 2+ 3B

memory byte register 8 5 2 2 2+ 38

memory word register 16 5 2 2 2+ 39

memory
doubleword

register 32 5 2 2 2+ 39

Figure 5.4: cmp instructions

A few reminders are in order about immediate operands. These can be coded in your choice of bases
or as characters. Assuming that pattern references a word in the data segment, each of the following is
allowable.

     cmp   eax, 356
     cmp   pattern, 0d3a6h
     cmp   bh, '$'

Note that an immediate operand must be the second operand. The instruction

     cmp   100, total      ; illegal

is not acceptable since the first operand is immediate.

Finally it is time to list the conditional jump instructions; they are shown in Fig. 5.5. Many of these have
alternative mnemonics that generate exactly the same machine code; these describe the same set of
conditions a different way. Often one mnemonic is more natural than the other for implementation of a
given design.



Appropriate for use after comparison of unsigned operands

      opcode

mnemonic description flags to jump short near

ja jump if above CF=0 and ZF=0 77 OF 87

jnbe jump if not below or equal      

jae jump if above or equal CF=0 73 OF 83

jnb jump if not below      

jb jump if below CF=1 72 OF 82

jnae jump if not above or equal      

jbe jump if below or equal CF=1 or ZF=1 76 OF 86

jna jump if not above      

jg jump if greater SF=OF and ZF=0 7F OF 8F

jnle jump if not less or equal      

jge jump if greater or equal SF=OF 7D OF 8D

jnl jump if not less      

jl jump if less SF OF 7C OF 8C

jnge jump if not greater or equal      

jle jump if less or equal SF OF or ZF=1 7E OF 8E

jng jump if not greater      

      Opcode

Other conditional jumps

mnemonic description flags to jump short near

je jump if equal ZF=1 74 OF 84

jz jump if zero      

jne jump if not equal ZF=0 75 OF 85

jnz jump if not zero      

js jump if sign SF=1 78 OF 88

jns jump if not sign SF=0 79 OF 89

jc jump if carry CF=1 72 0F 82

jnc jump if not carry CF=0 73 0F 83

jp jump if parity PF=1 7A OF 8A

jpe jump if parity even      

jnp jump if not parity PF=0 7B OF 8B

jpo jump if parity odd      

jo jump if overflow OF=1 70 OF 80

jno jump if not overflow OF=0 71 OF 81

Figure 5.5: Conditional jump instructions

Conditional jump instructions always compare the first operand to the second operand. For example,
for the instruction jg, "jump if greater" means to jump if operand1 > operand2.

Each conditional jump instruction takes a single clock cycle for execution. No conditional jump
instruction changes any flag value. Each instruction has a short version and a near version. Just as
with short unconditional jump instructions, a short conditional jump encodes a single-byte displacement
and can transfer control 128 bytes before or 127 bytes after the address of the byte following the
instruction itself. A short conditional jump requires two bytes of object code, one for the opcode and



one for the displacement. A near conditional jump encodes a 32-bit displacement in addition to a two-
byte opcode, giving a total length of six bytes. It can transfer control up to 2,147,483,648 bytes
backward or 2,147,483,647 forward. The number of bytes and number of clock cycles for conditional
jump instructions is summarized in Fig. 5.6.

  Clock Cycles  

  386 486 Pentium Number of Bytes

short conditional jump 7+, 3 3, 1 1 2

near conditional jump 7+, 3 3, 1 1 6

For the 80386 and 80486 the longer time is when the jump is executed; the shorter time is for
no jump.

Figure 5.6: Timing and size of conditional jump instructions

One more pair of examples will illustrate the difference between the conditional jumps appropriate after
comparison of signed and unsigned numbers. Suppose a value is stored in EAX and some action
needs to be taken when that value is larger than 100. If the value is unsigned, one might code

     cmp      eax, 100
     ja       bigger

The jump would be chosen for any value bigger than 0000006416, including values between
8000000016 and FFFFFFFF16, which represent both large unsigned numbers and negative 2's
complement numbers. If the value in EAX is interpreted as signed, then the instructions

     cmp      ax,100
     jg       bigger

are appropriate. The jump will only be taken for values between 00000064 and 7FFFFFFF, not for
those bit patterns that represent negative 2's complement numbers.

We now look at three examples showing implementation of if structures. The implementations are
consistent with what a high-level language compiler would use. First consider the design

if value < 10
then
     add 1 to smallCount;
else
     add 1 to largeCount;
end if;

Suppose that value is stored in the EBX register and that smallCount and largeCount reference words
in memory. The following 80×86 code implements this design.

                cmp ebx, 10           ; value < 10 ?
                jnl elseLarge
                inc smallCount        ; add 1 to small_count
                jmp endValueCheck
     elseLarge: inc largeCount        ; add 1 to large_count
     endValueCheck:

Note that this code is completely self-contained; you do not need to know what comes before or after in
the overall design to implement this portion. You must have a plan for making labels, though, to avoid
duplicates and reserved words. A compiler often produces a label consisting of a letter followed by a
sequence number, but most of the time we can do better as humans writing code.

Now consider the design



if (total = 100) or (count = 10)
then
    add value to total;
end if;

Assume that total and value reference doublewords in memory and that count is stored in the CX
register. Here is assembly language code to implement this design.

           cmp total, 100       ; total >= 100 ?
           jge addValue
           cmp cx, 10           ; count = 10 ?
           jne endAddCheck
     addValue: mov ebx, value   ; copy value
           add total, ebx       ; add value to total
     endAddCheck:

Notice that the design's or requires two cmp instructions. If either of the corresponding tests is passed,
then the addition is performed. (Why was the addition done with two statements? Why not use add
total,value?) This code implements a short-cut or - if the first condition is true, then the second is

not checked at all. The code implemented for some languages always checks both operands of an or
operation, even if the first is true.

Finally consider the design

if (count > 0) and (ch = backspace)
then
     subtract 1 from count;
end if;

For this third example, assume that count is in the CX register, ch is in the AL register and that
backspace has been equated to 0816, the ASCII backspace character. This design can be implemented
as follows.

           cmp cx, 0           ; count > 0 ?
           jng endCheckCh
           cmp al, backspace   ; ch a backspace?
           jne endCheckCh
           dec count           ; subtract 1 from count
     endCheckCh:

This compound condition uses and, so both parts must be true in order to execute the action. This
code implements a short-cut and - if the first condition is false, then the second is not checked at all.
The code implemented for some languages always checks both operands of an and operation, even if
the first is false.

This section ends with an example implementing a simple game program. The computer asks one
player to enter a number. After it is typed in, the screen is cleared, and the other player tries to guess
the number. After each guess the computer reports "too low," "too high," or "you got it." After the
number is finally guessed, the number of attempts is reported, and the players are asked if they want to
play another game. The pseudocode design in Fig. 5.7 gives a more precise description.

   until response='N' or response='n' loop

       prompt first player for target;
       input target and convert to 2's complement form;
       clear screen;
       count := 0;



   until guess=target loop

       add 1 to count;
       prompt second player for guess;
       input guess and convert to 2's complement;

       if guess=target

       then
         display "you got it";
       elseif guess<target
       then
         display "too low";
       else
         display "too high";
       end if;

       end until; {guess=target}

       convert count to ASCII;
       display count;
       display "Do you want to play again?";
       input response;

   end until; { response= 'N' or response='n' }

Figure 5.7: Design for game program

The assembly language source code for the game program is shown in Fig. 5.8. Note that screen is
cleared by writing 24 line feed characters. The loop and selection structures in the program faithfully
follow the design. Recall that an until loop is a post-test loop. The next section carefully describes how
to implement both until and while loops.

; program to implement number guessing game
; author: R. Detmer
; date: revised 9/97

.386

.MODEL FLAT

INCLUDE io.h

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

cr          EQU      0dh    ; carriage return character
Lf          EQU      0ah    ; linefeed character
.STACK   4096               ; reserve 4096-byte stack
.DATA                       ; reserve storage for data
prompt1     BYTE     cr,Lf,Lf,"Player 1, please enter a number: ", 0
target      DWORD    ?
clear       BYTE 24 DUP (Lf), 0
prompt2     BYTE cr,Lf,"Player 2, your guess? ", 0
stringIn    BYTE 20 DUP (?)
lowOutput   BYTE "too low", cr, Lf, 0
highOutput  BYTE "too high", cr, Lf, 0
gotItOutput BYTE "you got it", cr, Lf, 0
countLabel  BYTE Lf, "Number of guesses:"
countOut    BYTE 6 DUP (?)
            BYTE cr, Lf, Lf, Lf, "Do you want to play again? ",0
.CODE                             ; start of main program code
_start:



untilDone:  output prompt1        ; ask player 1 for target
            input  stringIn, 20   ; get number
            atod   stringIn       ; convert to integer
            mov    target,eax     ; store target
            output clear          ; clear screen
            mov    cx, 0          ; zero count

untilMatch: inc    cx             ; increment count of guesses
            output prompt2        ; ask player 2 for guess
            input  stringIn, 20   ; get number
            atod   stringIn       ; convert to integer

            cmp    eax, target    ; compare guess and target
            jne    ifLess         ; guess = target ?
equal:      output gotItOutput    ; display "you got it"
            jmp    endCompare
ifLess:     jnl    isGreater      ; guess < target ?
            output lowOutput      ; display "too low"
            jmp    endCompare
isGreater:  output highOutput     ; display "too high"
endCompare:
            cmp    eax, target    ; compare guess and target
            jne    untilMatch     ; ask again if guess not = target

            itoa   countOut, cx   ; convert count to ASCII
            output countLabel     ; display label, count and prompt
            input  stringIn, 20   ; get response
            cmp    stringIn, 'n'  ; response = 'n' ?
            je     endUntilDone   ; exit if so
            cmp    stringIn, 'N'  ; response = 'N' ?
            jne untilDone         ; repeat if not
endUntilDone:

            INVOKE ExitProcess, 0 ; exit with return code 0

PUBLIC _start                     ; make entry point public
            END                   ; end of source code

Figure 5.8: Game program

The outside until loop in the game program is terminated by either a "N" or "n" response to a query to
the players. The input macro is used to get the response in the same input area as used for numbers
earlier. Since the address of a multibyte object is the address of its first byte, the instruction

     cmp   stringIn, 'n'   ; response = 'n' ?

is really comparing the first (and probably only) character of input to the letter "n". This is not a
comparison of two strings.

Exercises 5.2

Assume for each part of this problem that the EAX register contains 00 00 00 4F and the
doubleword referenced by value contains FF FF FF 38. Determine whether or not each of the
conditional jump statements causes a jump to dest.

1.



(a)
cmp   eax, value
jl    dest

(b)
cmp   eax, value
jb dest

(c)
cmp   eax, 04fh
je    dest

(d)
cmp   eax, 79
jne   dest

(e)
cmp   value, 0
jl    dest

(f)
cmp   value, - 200
jge   dest

(g)
add   eax, 200
js    dest

(h)
add   value, 200
jz    dest

1.

Each part of this problem gives a design with an if structure and some assumptions about how
the variables are stored in an assembly language program. Give a fragment of assembly
language code that implements the design.

design:
if count = 0
then
  count := value;
end if;

Assumptions: count is in ECX; value references a doubleword in memory

design:
if count > value
then
  count := 0;
end if;

Assumptions: count is in ECX; value references a doubleword in memory

design:
if a + b = c
then
  check := 'Y';
else
  check := 'N';
end if;

Assumptions: each of a, b, and c references a doubleword in memory; the character check
is in the AL register

design:
if (value = -1000) or (value = 1000)
then
  value := 0;
end if;

Assumption: value is in EDX

2.



design:
if (ch = 'a') and (ch = 'z')
then
  add 1 to lowerCount;
else
  if (ch = 'A') and (ch = 'Z')
  then
    add 1 to upperCount;
  else
    add 1 to otherCount;
  end if;
end if;

Assumptions: ch is in AL; each of lowerCount, upperCount, and other-Count references a
doubleword in memory

Programming Exercises 5.2

Modify the game program to accept only numbers between 0 and 1000 from either player. A
design for the new code section is

1.

until (value = 0) and (value = 1000) loop
  input value and convert to 2's complement;
  if (value < 0) or (value > 1000)
  then
    display "enter value 0 to 1000";
  end if;
end until;

Modify the game program so that it only allows Player 2 five attempts at guessing the number
entered by Player 1. If the fifth attempt is incorrect, display "Sorry, the number is value of target"
and proceed to asking the players if they want another game.

2.



5.3 Implementing Loop Structures

Most programs contain loops. Commonly used loop structures include while, until, and for loops. This
section describes how to implement all three of these structures in 80×86 assembly language. The next
section describes additional instructions that can be used to implement for loops.

A while loop can be indicated by the following pseudocode design.

while continuation condition loop
  ... { body of loop }
end while;

The continuation condition, a Boolean expression, is checked first. If it is true, then the body of the loop
is executed. The continuation condition is then checked again. Whenever the value of the Boolean
expression is false, execution continues with the statement following end while.

An 80×86 implementation of a while loop follows a pattern much like this one.

     while:      .      ; code to check Boolean expression
                 .
                 .
     body:       .      ; loop body
                 .
                 .
                jmp while ; go check condition again
     endWhile:

It often takes several statements to check the value of the Boolean expression. If it is determined that
the value is false, then there will be a jump to endWhile. If it is determined that the continuation
condition is true, then the code will either fall through to body or there will be a jump to its label. Notice
that the body of the loop ends with a jmp to go check the condition again. Two common mistakes are

to omit this jump or to jump to the body instead.

The label while in this model is not allowed in actual code since while is a reserved word in MASM. In
fact, MASM 6.11 has a while directive that simplifies writing code for while loops. It is not used in this

book since our main concern is understanding how structures are implemented at the machine
language level.

For an example, suppose that the design

------------
while (sum < 1000) loop
    ... { body of loop }
end while;
------------

is to be coded in 80×86 assembly language. Assuming that sum references a doubleword in memory,
one possible implementation is

     whileSum:      cmp sum, 1000      ; sum < 1000?
                    jnl endWhileSum    ; exit loop if not
                     .                 ; body of loop
                     .
                     .
                    jmp whileSum       ; go check condition again
     endWhileSum:

The statement

     jnl   endWhileSum



directly implements the design. An alternative would be to use

     jge  endWhileSum

which transfers control to the end of the loop if sum = 1000. This works since the inequality (sum =
1000) will be true exactly when the (sum < 1000) is false, but the jnl mnemonic makes it easier to

implement the design without having to reverse the inequality.

For a short example showing a complete loop body, suppose that the integer base 2 logarithm of a
positive number needs to be determined. The integer base 2 logarithm of a number is the largest
integer x such that

     2x = number

The following design does the job.

----------
x := 0;
twoToX := 1;
while twoToX = number
      multiply twoToX by 2;
      add 1 to x;
end while;
subtract 1 from x;
----------

Assuming that number references a doubleword in memory, the following 80×86 code implements the
design, using the EAX register for twoToX and the CX register for x.

                    mov cx, 0            ; x := 0
                    mov eax, 1           ; twoToX := 1
     whileLE:       cmp eax, number      ; twoToX <= number?
                    jnle endWhileLE      ; exit if not
     body:          add eax, eax         ; multiply twoToX by 2
                    inc cx               ; add 1 to x
                    jmp whileLE          ; go check condition again
     endWhileLE:
                    dec cx               ; subtract 1 from x

Often the continuation condition in a while is compound, having two parts connected by Boolean
operators and or or. Both operands of an and must be true for a true conjunction. With an or, the only
way the disjunction can be false is if both operands are false.

Changing a previous example to include a compound condition, suppose that the following design is to
be coded.

while (sum < 1000) and (count = 24) loop
     ... { body of loop }
end while;

Assuming that sum references a doubleword in memory and the value of count is in CX, an
implementation is

     whileSum:   cmp   sum, 1000      ; sum < 1000?
                 jnl   endWhileSum    ; exit if not
                 cmp   cx, 24         ; count <= 24
                 jnle  endWhileSum    ; exit if not
                  .                   ; body of loop



                  .
                  .
                 jmp   whileSum       ; go check condition again
     endWhileSum:

Modifying the example another time, here is a design with an or instead of an and.

while (sum < 1000) or (flag = 1) loop
     ... { body of loop }
end while;

This time, assume that sum is in the EAX register and that flag is a single byte in the DH register. Here
is 80×86 code that implements the design.

     whileSum:   cmp   eax, 1000      ; sum < 1000?
                 jl    body           ; execute body if so
                 cmp   dh,1           ; flag = 1?
                 jne   endWhileSum    ; exit if not
     body:        .                   ; body of loop
                  .
                  .
                 jmp whileSum         ; go check condition again
     endWhileSum:

Notice the difference in the previous two examples. For an and the loop is exited if either operand of
the compound condition is false. For an or the loop body is executed if either operand of the compound
condition is true.

Sometimes processing in a loop is to continue while normal values are encountered and to terminate
when some sentinel value is encountered. If data are being entered from the keyboard, this design can
be written

get value from keyboard;
while (value is not sentinel) loop
     ... { body of loop }
     get value from keyboard;
end while;

In some high-level languages, implementation code must exactly parallel this design. One of the
advantages of assembly language is that one has more flexibility. An equivalent design is

while (value entered from keyboard is not sentinel) loop
    ... { body of loop }
end while;

This design does not require two separate instructions to input data. It can be coded in some high-level
languages and also in 80×86 assembly language.

For a concrete example illustrating implementation of such a design, suppose that non-negative
numbers entered at the keyboard are to be added, with any negative entry serving as a sentinel value.
A design looks like

sum := 0;
while (number keyed in is not negative) loop
     add number to sum;
end while;

Assuming appropriate definitions in the data segment, the 80×86 code could be



             mov ebx, 0         ; sum := 0
whileNotNeg: output prompt      ; prompt for input
             input number,10    ; get number from keyboard
             atod number        ; convert to 2's complement
             js endWhile        ; exit if negative
             add ebx, eax       ; add number to sum
             jmp whileNotNeg    ; go get next number
     endWhile:

Recall that the atod macro affects the sign flag SF, setting it if the ASCII characters are converted to a

negative number in the EAX register and clearing it otherwise.

The body of a for loop, a counter-controlled loop, is executed once for each value of a loop index (or
counter) in a given range. In some high-level languages, the loop index can be some type other than
integer; in assembly language the index is usually an integer. A for loop can be described by the
following pseudocode.

for index := initialValue to finalValue loop
     ... { body of loop }
end for;

A for loop can easily be translated into a while structure.

index := initialValue;
while index = finalValue loop
     ... { body of loop }
     add 1 to index;
end while;

Such a while is readily coded in 80×86 assembly language.

As an example, suppose that a collection of numbers needs to be added and no value is convenient as
a sentinel. Then one might want to ask a user how many numbers are to be entered and loop for that
many entries. The design looks like

prompt for tally of numbers;
input tally;
sum := 0
for count := 1 to tally loop
     prompt for number;
     input number;
     add number to sum;
end for;

Making straightforward assumptions about definitions in the data segment, here is an 80×86
implementation of the design.

          output prompt1          ; prompt for tally
          input  value, 20        ; get tally (ASCII)
          atoi   value            ; convert to 2's complement
          mov    tally, ax        ; store tally

          mov    edx, 0           ; sum := 0
          mov    bx, 1            ; count := 1

forCount: cmp    bx, tally        ; count <= tally?
          jnle   endFor           ; exit if not
          output prompt2          ; prompt for number
          input  value, 20        ; get number (ASCII)
          atod   value            ; convert to 2's complement



          add    edx, eax         ; add number to sum
          inc    bx               ; add 1 to count
          jmp    forCount         ; repeat
endFor:

In a for loop implementation where one is sure that the body of the loop will be executed at least once
(i.e., initialValue = finalValue), one can check the index against the final value at the end of the loop
body rather than prior to the body. Other variations are also possible. Additional instructions for
implementing for loops will be covered in Section 5.4.

You have already seen examples of until loops. In general, an until loop can be expressed as follows
in pseudocode.

until termination condition loop
     ... { body of loop }
end until;

The body of the loop is executed at least once; then the termination condition is checked. If it is false,
then the body of the loop is executed again; if true, execution continues with the statement following
end until.

An 80×86 implementation of an until loop usually looks like the following code fragment.

     until:      .      ; start of loop body
                 .      .
                 .      .
                 .      ; code to check termination condition
     endUntil:

If the code to check the termination condition determines that the value is false, then there will be a
jump to until. If it is determined that the value is true, then the code will either fall through to endUntil or
there will be a jump to that label.

The game program implemented in Fig. 5.8 contained two simple until loops. Here is an example with a
compound terminating condition. Given the design

count := 0;
until (sum > 1000) or (count = 100) loop
     ... { body of loop }
     add 1 to count;
end until;

the following 80×86 code provides an implementation. Assume that sum references a word in the data
segment and that count is stored in CX.

               mov   cx, 0      ; count := 0
     until:     .               ; body of loop
                .
                .
               inc cx           ; add 1 to count
               cmp sum, 1000    ; sum > 1000 ?
               jg endUntil      ; exit if sum > 1000
               cmp cx, 100      ; count = 100 ?
               jne until        ; continue if count not = 100
     endUntil:

Other loop structures can also be coded in assembly language. The forever loop is frequently useful.
As it appears in pseudocode, it almost always has an exit loop statement to transfer control to the end
of the loop; this is often conditional—that is, in an if statement. Here is a fragment of a typical design.



forever loop
     .
     .
     .
     if (response = 's') or (response = 'S')
     then
         exit loop;
     end if;
     .
     .
     .
end loop;

Assuming that the value of response is in the AL register, this can be implemented as follows in 80×86
assembly language.

     forever:      .
                   .
                   .
                  cmp  al, 's'      ; response = 's'?
                  je   endLoop      ; exit loop if so
                  cmp  al, 'S'      ; response = 'S'?
                  je   endLoop      ; exit loop if so
                   .
                   .
                   .
                  jmp  forever      ; repeat loop body
     endLoop:

Exercises 5.3

Each part of this problem contains a design with a while loop. Assume that sum references a
doubleword in the data segment and that the value of count is in the ECX register. Give a
fragment of 80×86 code that implements the design.

sum := 0;
count := 1;
while (sum < 1000) loop
  add count to sum;
  add 1 to count;
end while;

sum := 0;
count := 1;
while (sum < 1000) and (count = 50) loop
  add count to sum;
  add 1 to count;
end while;

sum := 0;
count := 100;
while (sum < 1000) or (count = 0) loop
  add count to sum;
  subtract 1 from count;
end while;

1.

2.



Each part of this problem contains a design with a until loop. Assume that sum references a
doubleword in the data segment and that the value of count is in the ECX register. Give a
fragment of 80×86 code that implements the design.

sum := 0;
count := 1;
until (sum > 5000) loop
  add count to sum;
  add 1 to count;
end until;

sum := 0;
count := 1;
until (sum > 5000) or (count = 40) loop
  add count to sum;
  add 1 to count;
end until;

sum := 0;
count := 1;
until (sum = 5000) and (count > 40) loop
  add count to sum;
  add 1 to count;
end until;

2.

Each part of this problem contains a design with a for loop. Assume that sum references a
doubleword in the data segment and that the value of count is in the ECX register. Give a
fragment of 80×86 code that implements the design.

sum := 0;
for count := 1 to 100 loop
  add count to sum;
end for;

sum := 0;
for count := -10 to 50 loop
  add count to sum;
  end for;

sum := 1000;
for count := 100 downto 50 loop
  subtract 2*count from sum;
end for;

3.

Programming Exercise 5.3

Write a complete 80×86 assembly language program that will accept numbers from the
keyboard and report the minimum and maximum of the numbers. Implement the following

1.



design, adding appropriate labels to output.

1.

display "First number? ";
input number;
minimum := number;
maximum := number;
while (response to "Another number? " is 'Y' or 'y') loop
   input number;
   if (number < minimum)
   then
      minimum := number;
   end if;
   if (number > maximum)
   then
      maximum := number;
   end if;
end while;
display the minimum value;
display the maximum value;

Write a complete 80×86 assembly language program that will accept numbers from the
keyboard and report the sum and average of the numbers. The count of numbers is not known
in advance; use the value - 999999 as a sentinel to terminate input. Implement the following
design, adding appropriate prompts for input and labels for output.

2.

sum := 0;
count := 0;

while (number entered from keyboard   -999999) loop
    add number to sum;
    add 1 to count;
end while;

if (count = 0)
then
    display "No numbers entered";
else
    average := sum/count;
    display sum and average;
end if;

Write a complete 80×86 assembly language program to help your overworked instructor analyze
examination grades. The program will input an unknown number of examination grades, using
any negative grade as a sentinel, and then report the number of As (90–100), Bs (80–89), Cs
(70–79), Ds (60–69), and Fs (under 60). Implement the following design. Prompt for input as
appropriate.

3.

ACount := 0;
BCount := 0;
CCount := 0;
DCount := 0;
FCount := 0;

while (grade entered at keyboard = 0) loop
   if (grade = 90)
   then
      add 1 to ACount;
   elseif (grade = 80)
   then
      add 1 to BCount;
   elseif (grade = 70)



   then
      add 1 to CCount;
   elseif (grade = 60)
   then
      add 1 to DCount;
   else
      add 1 to FCount;
   end if;
end while;

display "Number of As", ACount;
display "Number of Bs", BCount;
display "Number of Cs", CCount;
display "Number of Ds", DCount;
display "Number of Fs", FCount;

The greatest common divisor of two non-negative integers is the largest integer that evenly
divides both numbers. The following algorithm will find the greatest common divisor of number1
and number2.

4.

gcd := number1;
remainder := number2;

until (remainder = 0) loop
    dividend := gcd;
    gcd := remainder;
    remainder := dividend mod gcd;
end until;

Write a complete 80×86 assembly language program that implements the following design, with
appropriate prompts for input and labels for output.

until (number1 > 0) loop
    input number1;
    end until;

    until (number2 > 0) loop
        input number2;
    end until;

    find gcd of number1 and number2; (see design above)
    display gcd;

Write a complete 80×86 assembly language program to simulate a simple calculator. The
calculator does addition and subtraction operations and also accepts commands to clear the
accumulated value or to quit. Implement the following design.

5.

total := 0;

forever loop
    display "number? ";
    input number;

    display "action (+, -, c or q) ? ";
    input action;

    if (action = '+')
    then
       add number to total;
    elseif (action = '-')
    then
       subtract number from total;



    elseif (action = 'c') or (action = 'C')
    then
       total := 0;
    elseif (action = 'q') or (action = 'Q')
    then
       exit loop;
    else
       display "Unknown action";
    end if;

    display "total", total;
end loop;



5.4 for Loops in Assembly Language

Often the number of times the body of a loop must be executed is known in advance, either as a
constant that can be coded when a program is written, or as the value of a variable that is assigned
before the loop is executed. The for loop structure is ideal for coding such a loop.

The previous section showed how to translate a for loop into a while loop. This technique always works
and is frequently the best way to code a for loop. However, the 80×86 microprocessor has instructions
that make coding certain for loops very easy.

Consider the following two for loops, the first of which counts forward and the second of which counts
backward.

for index := 1 to count loop
     ... { body of loop }
end for;

and

for index := count downto 1 loop
     ... { body of loop }
end for;

The body of each loop executes count times. If the value of index is not needed for display or for
calculations within the body of the loop, then the loop that counts down is equivalent to the loop that
counts up, although the design may not be as natural. Backward for loops are very easy to implement
in 80×86 assembly language with the loop instruction.

The loop instruction has the format

     loop statementLabel

where statementLabel is the label of a statement that is a short displacement (128 bytes backward or
127 bytes forward) from the loop instruction. The loop instruction causes the following actions to take

place:

the value in ECX is decremented

if the new value in ECX is zero, then execution continues with the statement following the loop
instruction

if the new value in ECX is nonzero, then a jump to the instruction at statementLabel takes place

In addition to the loop instruction, there are two conditional loop instructions that are less frequently

used. Features of all three instructions are summarized in Fig. 5.9. Each requires two bytes of object
code; the first byte is the opcode and the second byte is the displacement to the destination statement.
Two times are given for 80486 and Pentium instructions, the first showing how many clock cycles are
required if the jump is not taken, and the second showing how many clock cycles are required if it is
taken. The situation is more complex for the 80386, but it also has two distinct execution times. None of
these instructions changes any flag.

  Clock Cycles    

Mnemonic 386 486 Pentium Number of Bytes Opcode

loop 11+ 6/7 5/6 2 E2

loope/loopz 11+ 6/9 7/8 2 E1

loopne/loopnz 11+ 6/9 7/8 2 E0

Figure 5.9: loop instructions



Although the ECX register is a general register, it has a special place as a counter in the loop

instruction and in several other instructions. No other register can be substituted for ECX in these
instructions. In practice this often means that when a loop is coded, either ECX is not used for other
purposes or a counter value is put in ECX before a loop instruction is executed but is saved elsewhere
to free ECX for other uses for most of the body of the loop.

The backward for loop structure

for count := 20 downto 1 loop
     ... { body of loop }
end for;

can be coded as follows in 80×86 assembly language.

               mov   ecx, 20      ; number of iterations
     forCount:  .                 ; body of loop
                .
                .
               loop forCount                ; repeat body 20 times

The counter in the ECX register will be 20 the first time the body of the loop is executed and will be
decremented to 19 by the loop instruction. The value 19 is not zero, so control transfers to the start of
the loop body at label forCount. The second time the body of the loop is executed, the ECX register

will contain 19. The last time the value in ECX will be one; it will be decremented to zero by the loop
instruction, and the jump to for-Count will not be taken.

The obvious label to mark the body of a for loop is for. Unfortunately this is a reserved word in MASM.

It is used for a directive that simplifies coding of for loops. Again, our primary interest is in learning how
the computer works at the machine level, so this directive will not be used.

Now suppose that the doubleword in memory referenced by number contains the number of times a
loop is to be executed. The 80×86 code to implement a backward for loop could be

               mov   ecx, number      ; number of iterations
     forIndex:  .                     ; body of loop
                .
                .
               loop forIndex          ; repeat body number times

This is safe code only if the value stored at number is not zero. If it is zero, then the loop body is
executed, the zero value is decremented to FFFFFFFF (a borrow is required to do the subtraction), the
loop body is executed again, the value FFFFFFFF is decremented to FFFFFFFE, and so forth. The
body of the loop is executed 4,294,967,296 times before the value in ECX gets back down to zero! To
avoid this problem, one could code

               mov   ecx, number      ; number of iterations
               cmp   ecx, 0           ; number = 0 ?
               je    endFor           ; skip loop if number = 0
     forIndex:  .                     ; body of loop
                .
                .
               loop forIndex          ; repeat body number times
     endFor:

If number is a signed value and might be negative, then

     jle   endFor      ; skip loop if number <= 0

is a more appropriate conditional jump.



There is another way to guard a for loop so that it is not executed when the value in ECX is zero. The
80×86 instruction set has a jecxz conditional jump instruction that jumps to its destination if the value
in the ECX register is zero. Using the jecxz instruction, the example above can be coded as

               mov   ecx, number      ; number of iterations
               jecxz endFor           ; skip loop if number = 0
     forIndex:  .                     ; body of loop
                .
                .
               loop forIndex          ; repeat body number times
     endFor:

There is also a jcxz instruction that checks the CX register rather than the ECX register. Both

instructions are two bytes long, the opcode E3 plus a single-byte displacement; the prefix byte 67
distinguishes between the 16-bit size and the 32-bit versions. Like the other conditional jump
instructions, jcxz/jecxz affects no flag value. They do take longer to execute, six clock cycles on a

Pentium if the jump takes place (if the value in ECX is zero), and five clock cycles to fall through to the
next statement otherwise.

The jecxz instruction can be used to code a backward for loop when the loop body is longer than 127
bytes, too large for the loop instruction's single-byte displacement. For example, the structure

for counter := 50 downto 1 loop
     ... { body of loop }
end for;

could be coded as

                mov   ecx, 50      ; number of iterations
     forCounter: .                 ; body of loop
                 .
                 .
                dec   ecx          ; decrement loop counter
                jecxz endFor       ; exit if counter = 0
                jmp   forCounter   ; otherwise repeat body
     endFor:

However, since the dec instruction sets or resets the zero flag ZF, the faster conditional jump

     jz endFor

can be used instead of the jecxz instruction.

It is often convenient to use a loop statement to implement a for loop, even when the loop index
increases and must be used within the body of the loop. The loop statement uses ECX to control the

number of iterations, while a separate counter serves as the loop index.

For example, to implement the for loop

for index := 1 to 50 loop
     ...{ loop body using index }
end for;

the EBX register might be used to store index counting from 1 to 50 while the ECX register counts
down from 50 to 1.

               mov   ebx, 1      ; index := 1
               mov   ecx, 50     ; number of iterations for loop
     forNbr:    .
                .                ; use value in EBX for index



                .
               inc   ebx         ; add 1 to index
               loop  forNbr      ; repeat

Figure 5.9 listed two variants of the loop instruction, loopz/loope and loopnz/loopne. Each of
these work like loop, decrementing the counter in ECX. However, each examines the value of the zero

flag ZF as well as the new value in the ECX register to decide whether or not to jump to the destination
location. The loopz/loope instruction jumps if the new value in ECX is nonzero and the zero flag is
set (ZF=1). The loopnz/loopne instruction jumps if the new value in ECX is nonzero and the zero

flag is clear (ZF=0).

The loopz and loopnz instructions are useful in special circumstances. Some programming

languages allow loop structures such as

for year := 10 downto 1 until balance = 0 loop
     ... { body of loop }
end for;

This confusing structure means to terminate loop execution using whichever loop control is satisfied
first. That is, the body of the loop is executed 10 times (for year = 10, 9,…,1) unless the condition
balance = 0 is true at the bottom of some execution of the loop body, in which case the loop terminates
with fewer than 10 iterations. If the value of balance is in the EBX register, the following 80×86 code
could be used.

                mov    ecx, 10      ; maximum number of iterations
       forYear:  .                  ; body of loop
                 .
                 .
                cmp    ebx, 0       ; balance = 0 ?
                loopne forYear      ; repeat 10 times if balance not 0

Exercises 5.4

Each part of this problem has a for loop implemented with a loop statement. How many times

is each loop body executed?

      mov ecx, 10
forA:  .
       .            ; body of loop
       .
      loop forA

      mov  ecx, 1
forB:  .
       .            ; body of loop
       .
      loop forB

      mov  ecx, 0
forC:  .
       .            ; body of loop
       .
      loop forC

      mov ecx, -1
forD:  .

1.



       .            ; body of loop
       .
      loop forD

Each part of this problem contains a design with a for loop. Assume that sum references a
doubleword in the data segment. Give a fragment of 80×86 code that uses a loop statement to
implement the design. Use the dtoa and output macros for display, assuming that the data

segment contains

2.

ASCIIcount   BYTE 11 DUP (?)
ASCIIsum     BYTE 11 DUP (?)
             BYTE 13, 10, 0   ; carriage return, linefeed

sum := 0;
for count := 50 downto 1 loop
     add count to sum;
     display count, sum;
end for;

sum := 0;
for count := 1 to 50 loop
     add count to sum;
     display count, sum;
end for;

sum := 0;
for count := 1 to 50 loop
     add (2*count - 1) to sum;
     display count, sum;
end for;

Programming Exercise 5.4

Write a complete 80×86 program to input a positive integer value N and to display a table of
integers from 1 to N and their squares. Use a two-column format such as

1.

number     square
     1          1
     2          4
     3          9
     4         16
     5         25

A Pythagorean triple consists of three positive integers A, B, and C such that A2 + B2 = C2. For
example, the numbers 3, 4, and 5 form a Pythagorean triple since 9 + 16 = 25. Write a complete
80×86 program to input a value for C and then display all possible Pythagorean triples with this
value for C, if any. For example, if 5 is entered for the value of C, then the output might be

2.

A      B      C
3      4      5
4      3      5



5.5 Arrays

Programs frequently use arrays to store collections of data values. Loops are commonly used to manipulate the
data in arrays. This section shows one way to access 1-dimensional arrays in 80×86 assembly language; other
techniques will appear in Chapter 9 with discussion of additional memory addressing modes.

This section contains a complete program to implement the design below. The program first accepts a collection
of positive numbers from the keyboard, counting them and storing them in an array. It then calculates the
average of the numbers by going back through the numbers stored in the array, accumulating the total in sum.
Finally the numbers in the array are scanned again, and this time the numbers larger than the average are
displayed. The first two loops could be combined, of course, with the sum being accumulated as the numbers
are keyed in. As a general programming philosophy, clearer code results from separating tasks; they should be
combined only if there is a real need to save execution time or bytes of object code.

     nbrElts := 0;      { input numbers into array }
     get address of first item of array;

     while (number from keyboard > 0) loop
         convert number to 2's complement;
         store number at address in array;
         add 1 to nbrElts;
         get address of next item of array;
     end while;

     sum := 0;         { find sum and average }
     get address of first item of array;

     for count := nbrElts downto 1 loop
          add doubleword at address in array to sum;
          get address of next item of array;
     end for;

     average := sum/nbrElts;
     display average;

     get address of first item of array; { list big numbers }

     for count := nbrElts downto 1 loop
          if doubleword of array > average
          then
             convert doubleword to ASCII;
             display value;
          end if;
          get address of next item of array;
     end for;

This design contains the curious instructions "get address of first item of array" and "get address of next item of
array." These reflect the particular assembly language implementation, one which works well if the task at hand
involves moving sequentially through an array. The 80×86 feature which makes this possible is register indirect
addressing, first discussed in Chapter 3. The example will use the EBX register to contain the address of the
word currently being accessed; then [ebx] references the doubleword at the address in the EBX register rather
than the doubleword in the register itself. In the 80×86 architecture any of the general registers EAX, EBX, ECX,
and EDX or the index registers EDI and ESI are appropriate for use as a "pointer." The ESI and EDI registers
are often reserved for use with strings, which are usually arrays of characters. String operations are covered in
Chapter 7. The program listing appears in Fig. 5.10.

; input a collection of numbers
; report their average and the numbers which are above average
; author: R. Detmer
; date: revised 9/97



.386

.MODEL FLAT

INCLUDE io.h

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

cr          EQU   0dh   ; carriage return character
Lf          EQU   0ah   ; linefeed character
maxNbrs     EQU   100   ; size of number array

.STACK      4096

.DATA
directions  BYTE    cr, Lf, 'You may enter up to 100 numbers'
            BYTE    ' one at a time.',cr,Lf
            BYTE    'Use any negative number to terminate
                    input.',cr,Lf,Lf
            BYTE    'This program will then report the average and
                    list',cr,Lf
            BYTE    'those numbers which are above the
                    average.',cr,Lf,Lf,Lf,0
prompt      BYTE    'Number? ',0
number      BYTE    20 DUP (?)
nbrArray    DWORD   maxNbrs DUP (?)
nbrElts     DWORD   ?
avgLabel    BYTE    cr,Lf,Lf,'The average is'
outValue    BYTE    11 DUP (?), cr,Lf,0
aboveLabel  BYTE    cr,Lf,'Above average:',cr,Lf,Lf,0

.CODE
_start:
; input numbers into array

            output directions             ; display directions
            mov    nbrElts,0              ; nbrElts := 0
            lea    ebx,nbrArray           ; get address of nbrArray

whilePos:   output prompt                 ; prompt for number
            input  number,20              ; get number
            atod   number                 ; convert to integer
            jng    endWhile               ; exit if not positive
            mov    [ebx],eax              ; store number in array
            inc    nbrElts                ; add 1 to nbrElts
            add    ebx,4                  ; get address of next item of array
            jmp    whilePos               ; repeat
endWhile:

; find sum and average

            mov    eax,0                  ; sum := 0
            lea    ebx,nbrArray           ; get address of nbrArray
            mov    ecx,nbrElts            ; count := nbrElts

            jecxz  quit                   ; quit if no numbers
forCount1:  add    eax,[ebx]              ; add number to sum
            add    ebx,4                  ; get address of next item of array
            loop   forCount1              ; repeat nbrElts times

            cdq                           ; extend sum to quadword
            idiv   nbrElts                ; calculate average
            dtoa   outValue,eax           ; convert average to ASCII
            output avgLabel               ; print label and average
            output aboveLabel             ; print label for big numbers



; display numbers above average
            lea    ebx,nbrArray           ; get address of nbrArray
            mov    ecx,nbrElts            ; count := nbrElts

forCount2:  cmp    [ebx],eax              ; doubleword > average ?
            jng    endIfBig               ; continue if average not less
            dtoa   outValue,[ebx]         ; convert value from array to
                                          ; ASCII
            output outValue               ; display value
endIfBig:
            add    ebx,4                  ; get address of next item of array
            loop   forCount2              ; repeat

quit:  INVOKE ExitProcess, 0              ; exit with return code 0

PUBLIC _start                             ; make entry point public

            END                           ; end of source code

Figure 5.10: Program using array

The design statement "get address of first item of array" is implemented by the 80×86 statement

     lea  ebx, nbrArray

The mnemonic lea stands for "load effective address." The lea instruction has the format

     lea  destination, source

The destination will normally be a 32-bit general register; the source is any reference to memory. The address
of the source is loaded into the register. (Contrast this with mov destination, source where the value at
the source address is copied to the destination.) The lea instruction has opcode 8D takes one clock cycle on a

Pentium, one or two on an 80486, and two on an 80386.

The design statement "get address of next item of array" is implemented using the 80×86 statement

     add  ebx, 4

Since each doubleword occupies four bytes of storage, adding 4 to the address of the current element of an
array gives the address of the next element of the array.

If one were planning to code this program in a high-level language, then the design of the first two loops might
be

nbrElts := 0;       { input numbers into array }
while number from keyboard > 0 loop
  add 1 to nbrElts;
  store number in nbrSrray[nbrElts];
end while;

sum := 0;           { find sum and average }
for count := 1 to nbrElts loop
  add nbrArray[count] to sum;
end for;

This design exploits one of the principal features of arrays, namely that any element can be accessed at any
time by simply giving its index; the elements do not have to be accessed sequentially. Such random access can
be implemented using register indirect addressing. For example, the design statement "add nbrArray[count] to
sum" can be implemented as follows, assuming the same register usage as before—the ECX register for count
and the EAX register for sum.



     mov  edx,ecx         ; count
     dec  edx             ; count-1
     add  edx,edx         ; 2*(count-1)
     add  edx,edx         ; 4*(count-1)
     lea  ebx,nbrArray    ; starting address of array
     add  ebx,edx         ; address of nbrArray[count]
     add  eax,[ebx]       ; add array[count] to sum

The technique here is to calculate the number of bytes in the array prior to the desired element and add this
number to the starting address. There are more efficient ways to directly access an array element; these will be
covered in later chapters.

Exercises 5.5

Modify the program in Fig. 5.10, adding a loop that will display those elements of the array that are
smaller than the average. (The numbers that are equal to the average should not be displayed by either
loop.)

1.

Modify the program in Fig. 5.10, replacing the last loop by one that displays all numbers that are within 5
of the average. Include values equal to average–5 or to average+5.

2.

Modify the program in Fig. 5.10, adding a loop that will display the list of numbers backwards. (Hint: Find
the address of nbrArray[nbrElts], display the element at this address first, and subtract 4 repeatedly until
all elements are displayed.)

3.

Modify the program in Fig. 5.10 to ensure that the user gives at most maxNbrs values.4.

Programming Exercises 5.5

It is often necessary to search an array for a given value. Write a complete program that inputs a
collection of integers and then sequentially searches for values stored in the array. Implement the
following design.

1.

nbrElts := 0;
get address of first item of array;
while (number from keyboard > 0) loop
  convert number to 2's complement;
  store number at address in array;
  add 1 to nbrElts;
  get address of next item of array;
end while;
until (response = 'N') or (response = 'n')
  display "Search for? ";
  input keyValue;
  convert keyValue to 2's complement;
  get address of first item of array;
  count := 1;
  forever loop
    if count > nbrElts
    then
    display keyValue, "not in array";
    exit loop;
    end if;
    if keyValue = current element of array
    then
      display keyValue, "is element", count;
      exit loop;
    end if;
    add 1 to count;
    get address of next item of array;
  end loop;



  display "Search for another number? ";
  input response;
end until;

Programming Exercise 1 above shows one way to search an array. An alternative way is to put the value
you are searching for at the end of the array. A search then always finds the value, and success or
failure depends on whether the value was found before or after position nbrElts. Write a complete
program that uses this technique. The design is the same as in Exercise 1 except for the body of the
search loop; it is replaced by the following.

2.

until (response = 'N') or (response = 'n')
  display "Search for? ";
  input keyValue;
  convert keyValue to 2's complement;
  store keyValue at position (nbrElts+1) in array;
  get address of first item of array;
  count := 1;

while keyValue not equal to current array element loop
  add 1 to count;
  get address of next word of array;
end while;

if count > nbrElts
then
  display keyValue, "not in array";
  exit loop;
  else
    display keyValue, "is element", count;
    exit loop;
  end if;

  display "Search for another number? ";
  input response;
end until;

There are many ways to determine prime numbers. Here is a design for one way to find the first 100
primes. Implement this design in 80×86 assembly language.

prime[1] := 2; { first prime number }
prime[2] := 3; { second prime number }
primeCount := 2;
candidate := 4; { first candidate for a new prime }
while primeCount < 100 loop
  index := 1;
  while (index = primeCount)
          and (prime[index] does not evenly divide
          candidate)loop
    add 1 to index;
  end while;
  if (index > primeCount)
  then {no existing prime evenly divides the candidate, so it is a new prime}
  add 1 to primeCount;
    prime[primeCount] := candidate;
  end if;
  add 1 to candidate;
end while;

display "Prime Numbers";
for index := 1 to 100 loop {display the numbers 5 per line }
  display prime[index];

3.



  if index is divisible by 5 then skip to a new line;
  end if;
end for;



5.6 Something Extra: Pipelining

Chapter 2 discussed the central processing unit's basic operation cycle:

fetch an instruction from memory

decode the instruction

execute the instruction

A CPU must have circuitry to perform each of these functions. One of the things that computer
designers have done to speed up CPU operation is to design CPUs with stages that can carry out
these (and other) operations almost independently.

The first stage of the CPU might have the job of fetching the next instruction from memory, perhaps
doing just enough decoding to recognize the number of bytes the instruction has and update the
program counter PC. The first stage passes on information to the second stage whose job might be to
finish decoding the instruction, perhaps also computing some operand addresses. Meanwhile the first
stage can be fetching the next instruction from memory. The second stage could pass a fully-decoded
instruction to the third stage for execution. Meanwhile, the first stage could have passed on its second
instruction to stage two, so that the first stage can be fetching a third instruction. This sort of design is
called a pipeline. If the pipeline is kept full, the resulting throughput of the CPU is three times faster
than if it had to finish the complete fetch-decode-execute process for each instruction before
proceeding to the next one.

Figure 5.11 illustrates the operation of a pipeline. The instructions being processed are shown as
horizontal strips of three boxes labeled with 1, 2, and 3 to indicate stages. The horizontal axis shows
time. You can see that at any given time parts of three instructions are being executed.

CPU Stage Instruction being processed

1 1 2 3 4 5 6 7 8 9 10 11

2   1 2 3 4 5 6 7 8 9 10

3     1 2 3 4 5 6 7 8 9

Time interval 1 2 3 4 5 6 7 8 9 10 11

Figure 5.11: Instructions in a pipeline

A pipelined CPU is not as simple as illustrated above. One problem may occur if, say, stage 2 needs to
compute an address based on the contents of a register modified by stage 3 of the previous instruction;
the register might not yet contain the correct address. A CPU can be designed to avoid such problems,
usually at the cost of a "hole" in the pipeline.

A more serious problem occurs when the CPU executes a conditional jump instruction. With a
conditional jump the CPU cannot tell which of two possible sequences of instructions will be executed
next until the condition itself is evaluated by the last stage. Earlier stages may be working on one
instruction stream, only to be forced to discard all this work and refill the pipeline from the beginning
with instructions from the alternative stream.



Chapter Summary

This chapter introduced 80×86 instructions that can be used to implement many high-level design or
language features including if statements, various loops structures, and arrays.

The jmp instruction unconditionally transfers control to a destination statement. It has several versions,
including one that jumps to a short destination 128 bytes before or 127 bytes after the jmp and one that
jumps to a near destination a 32-bit displacement away. The jmp instruction is used in implementing

various loop structures, typically transferring control back to the beginning of the loop, and in the if-
then-else structure at the end of the "then code" to transfer control to endif so that the else code is not
also executed. A jmp statement corresponds directly to the goto statement that is available in most

high-level languages.

Conditional jump instructions examine the settings of one or more flags in the flag register and jump to
a destination statement or fall through to the next instruction depending on the flag values. Conditional
jump instructions have short and near displacement versions. There is a large collection of conditional
jump instructions. They are used in if statements and loops, often in combination with compare
instructions, to check Boolean conditions.

The cmp (compare) instructions have the sole purpose of setting or resetting flags in the EFLAGS

register. Each compares two operands and assigns flag values. The comparison is done by subtracting
the second operand from the first. The difference is not retained as it is with a sub instruction.

Compare instructions often precede conditional jump instructions.

Loop structures like while, until, and for loops can be implemented using compare, jump, and
conditional jump instructions. The loop instruction provides another way to implement many for loops.

To use the loop instruction, a counter is placed in the ECX register prior to the start of the loop. The
loop instruction itself is at the bottom of the loop body; it decrements the value in ECX and transfers

control to a destination (normally the first statement of the body) if the new value in ECX is not zero.
This results in the body of the loop being executed the number of times originally placed in the ECX
register. The conditional jump jecxz instruction can be used to guard against executing such a loop

when the initial counter value is zero.

Storage for an array can be reserved using the DUP directive in the data segment of a program. The

elements of an array can be sequentially accessed by putting the address of the first element of the
array in a register and adding the size of an array element repeatedly to get to the next element. The
current element is referenced using register indirect addressing. The lea (load effective address)

instruction is commonly used to load the initial address of the array.

Pipelining is done by a CPU with multiple stages that work on more than one instruction at a time, doing
such tasks as fetching one, while decoding another, while executing a third. This can greatly speed up
CPU operation.



Chapter 6: Procedures

The 80×86 architecture enables implementation of procedures that are similar to those in a high-level
language. Procedures use the hardware stack for several purposes. This chapter begins with a
discussion of the 80×86 stack and then turns to important procedure concepts-how to call a procedure
and return from one, parameter passing, local data, and recursion. The concluding section describes
how procedures are implemented in one architecture that does not have a hardware stack.

6.1 The 80×86 Stack

Programs in this book have allocated stacks with the code

     .STACK   4096

This .STACK directive tells the assembler to reserve 4096 bytes of uninitialized storage. The operating

system initializes ESP to the address of the first byte above the 4096 bytes in the stack. A larger or
smaller stack could be allocated, depending on the anticipated usage in the program.

The stack is most often used by pushing words or doublewords on it or by popping them off it. This

pushing or popping is done automatically as part of the execution of call and return instructions
(Section 6.2). It is also done manually with push and pop instructions. This section covers the
mechanics of push and pop instructions, describing how they affect the contents of the stack.

Source code for a push instruction has the syntax

     push source

The source operand can be a register 16, a register 32, a segment register, a word in memory, a

doubleword in memory, an immediate byte, an immediate word, or an immediate doubleword. The only
byte-size operand is immediate, and as you will see, multiple bytes are pushed on the stack for an
immediate byte operand. Figure 6.1 lists the allowable operand types. The usual mnemonic for a push
instruction is just push. However, if there is ambiguity about the size of the operand (as would be with a
small immediate value), then you can use pushw or pushd mnemonics to specify word or

doublewordsize operands, respectively.

  Clock Cycles   Number  

Operand 386 486 Pentium of Bytes Opcode

register 2 1 1 1  

    EAX or AX         50

    ECX or CX         51

    EDX or DX         52

    EBX or BX         53

    ESP or SP         54

    EBP or BP         55

    ESI or SI         56

    EDI or DI         57

segment register 2 3 1    

    CS       1 0E

    DS       1 1E

    ES       1 06

    SS       1 16

    FS       2 0F A0



    GS       2 0F A8

memory word 5 4 2 2+ FF

memory doubleword 5 4 2 2+ FF

immediate byte 2 1 1 2 6A

immediate word 2 1 1 3 68

immediate doubleword 2 1 1 5 68

Figure 6.1: push instructions

When a push instruction is executed for a word-size operand, the stack pointer ESP is decremented by
2. Recall that initially ESP contains the address of the byte just above the allocated space. Subtracting
2 makes ESP point to the top word in the stack. The operand is then stored at the address in ESP; that
is, at the high-memory end of the stack space. Execution is similar for a doubleword-size operand,
except that ESP is decremented by 4 before the operand is stored. The immediate byte operand is
interesting. Although a single byte is stored in the instruction, it is sign-extended to a doubleword that is
actually stored on the stack. The byte-size operand saves three bytes of object code, but no stack
space at execution time.

Example Example

We now show an example of execution of two push instructions. It assumes that ESP initially contains
00600200. The first push instruction decrements ESP to 006001FE and then stores the contents of AX

at that address. Notice that the low and high-order byte are reversed in memory. The second push
decrements ESP to 006001FA and stores FFFFFF10 (- 24010) at that address.

As additional operands are pushed onto the stack, ESP is decremented further and the new values are
stored. No push instruction affects any flag bit.

Notice that a stack "grows downward," contrary to the image that you may have of a typical software
stack. Also notice that the only value on the stack that is readily available is the last one pushed; it is at
the address in ESP. Furthermore, ESP changes frequently as you push values and as procedure calls
are made. In Section 6.3 you will learn a way to establish a fixed reference point in the middle of the
stack using the EBP register, so that values near that point can be accessed without having to pop off
all the intermediate values.



Pop instructions do the opposite job of push instructions. Each pop instruction has the format

     pop destination

where destination can reference a word or doubleword in memory, any register 16, any register 32, or
any segment register except CS. (The push instruction does not exclude CS.) The pop instruction gets

a word-size value from the stack by copying the word at the address in ESP to the destination, then
incrementing ESP by 2. Operation for a doubleword value is similar, except that ESP is incremented by
4. Figure 6.2 gives information about pop instructions for different destination operands.

  Clock Cycles      

Operand 386 486 Pentium Number of Bytes Opcode

register 4 1 1 1  

    EAX or AX         58

    ECX or CX         59

    EDX or DX         5A

    EBX or BX         5B

    ESP or SP         5C

    EBP or BP         5D

    ESI or SI         5E

    EDI or DI         5F

segment register 7 3 3    

    DS       1 1F

    ES       1 07

    SS       1 17

    FS       2 0F A1

    GS       2 0F A9

memory word 5 6 3 2+ 8F

memory doubleword 5 6 3 2+ 8F

Figure 6.2: pop instructions

This example shows how pop instructions work. The doubleword at the address in ESP is copied to
ECX before ESP is incremented by 4. The values popped from the stack are physically still there even
though they logically have been removed. Note again that the bytes of a doubleword are stored
backward in memory in the 80x86 architecture, but forward in the ECX register.



One use of push and pop instructions is to save the contents of a register temporarily on the stack.

We have noted previously that registers are a scarce resource when programming. Suppose, for
example, that you are using EDX to store some program variable but need to do a division that requires
you to extend a dividend into EDXEAX prior to the operation. One way to avoid losing your value in
EDX is to push it on the stack.

     push  edx     ; save variable
     cdq           ; extend dividend to doubleword
     idiv  Divisor ; divide
     pop   edx     ; restore variable

This example assumes that you don't need the remainder the division operation puts in EDX. If you do
need the remainder, it could be copied somewhere else before popping the value stored on the stack
back to EDX.

As the above example shows, push and pop instructions are often used in pairs. When we examine

how the stack is used to pass parameters to procedures, you will see a way to discard values from the
stack without copying them to a destination location.

In addition to the ordinary push and pop instructions, special mnemonics push and pop flag registers.
These mnemonics are pushf (pushfd for the extended flag register) and popf (popfd for the

extended flag register). These are summarized in Fig. 6.3. They are often used in procedure code.
Obviously popf and popfd instructions change flag values; these are the only push or pop instructions

that change flags.



  Clock Cycles      

Instruction 386 486 Pentium Number of Bytes Opcode

pushf 4 4 3 1 9C

pushfd          

popf 5 9 4 1 9D

popfd          

Figure 6.3: pushf and popf instructions

The 80x86 architecture has instructions that push or pop all general purpose registers with a single
instruction. The pushad instruction pushes EAX, ECX, EDX, EBX, ESP, EBP, ESI and EDI, in this

order. The value pushed for ESP is the address it contains before any of the registers are pushed. The
popad instruction pops the same registers in the opposite order, except that the value for ESP is

discarded. Popping the registers in the reverse order ensures that if these instructions are used in a
pushad-popad pair, each register (except ESP) will get back its original value. Figure 6.4 shows the
push all and pop all instructions, including the pusha and popa instructions that push and pop the 16-

bit registers.

  Clock Cycles      

Instruction 386 486 Pentium Number of Bytes Opcode

pusha 18 11 5 1 60

pushad          

popa 24 9 5 1 61

popad          

Figure 6.4: Push all and pop all instructions

Finally, a note of caution. Although the Intel architecture allows 16-bit or 32-bit quantities to be pushed
on the stack, some operating systems (including Microsoft Windows NT) require parameters used in
system calls to be on doubleword boundaries, that is, a parameter's address must be a multiple of 4.
The stack starts on a doubleword boundary, but to maintain this alignment, only doublewords should be
pushed on the stack prior to a system call. (See Chapter 12 for examples of system calls.)

Exercises 6.1

For each instruction, give the opcode, the number of clock cycles for execution, and the number
of bytes of object code. Assume that Double references a doubleword in memory. Assume a
Pentium system for the number of clock cycles.

(a) push ax (b) pushd 10

(c) pusha (d) pop ebx

(e) pop Double (f) popad

(g) pushf    

1.

For each part of this problem, assume the "before" values when the given instructions are
executed. Give the requested "after" values. Trace execution of the instructions by drawing a
picture of the stack

2.



  Before Instructions After

(a) ESP: 06 00 10 00
CX: 01 A2

push ecx
pushw 10

ESP, ECX

(b) ESP: 02 00 0B 7C
EBX: 12 34 56 78

pushd 20
push ebx

ESP, EBX

(c) ESP: 00 00 F8 3A
EAX: 12 34 56 78

push eax
pushw 30
pop bx
pop ecx

ESP, EAX, BX, ECX

2.

Many microprocessors do not have an instruction equivalent to xchg. With such systems, a

sequence of instructions like the following can be used to exchange the contents of two
registers:

3.

push   eax
push   ebx
pop    eax
pop    ebx

Explain why this sequence works to exchange the contents of the EAX and EBX registers.
Compare the number of bytes of code and clock cycles required to execute this sequence with
those required for the instruction xchg eax,ebx.

Another alternative to the xchg instruction is to use4.

push   eax
mov    eax, ebx
pop    ebx

Explain why this sequence works to exchange the contents of the EAX and EBX registers.
Compare the number of bytes of code and clock cycles required to execute this sequence with
those required for the instruction xchg ax, bx.



6.2 Procedure Body, Call and Return

The word procedure is used in high-level languages to describe a subprogram that is almost a self-
contained unit. The main program or another subprogram can call a procedure by including a statement
that consists of the procedure name followed by a parenthesized list of arguments to be associated
with the procedure's formal parameters.

Many high-level languages distinguish between a procedure that performs an action and a function that
returns a value. A function is similar to a procedure except that it is called by using its name and
argument list in an expression. It returns a value associated with its name; this value is then used in the
expression. All subprograms in the C/C++ language are technically functions in this sense, but the
language allows for functions that return no value.

In assembly language and in some high-level languages the term procedure is used to describe both
types of subprograms, those that return values and those that do not. The term procedure will be used
in both senses in this book.

Procedures are valuable in assembly language for the same reasons as in high-level languages. They
help divide programs into manageable tasks and they isolate code that can be used multiple times
within a single program or that can be saved and reused in several programs.

This section describes how to write 80x86 procedures, as well as how to assemble and link them using
Microsoft software. Information is included on how to define a procedure, and how to transfer execution
control to a procedure and back to the calling program. We show how the stack is used to save register
contents, so that a procedure returns to the caller with almost all registers unchanged. Other important
concepts to be considered with procedures are how to pass arguments to a procedure and how to
implement local variables in a procedure body; these topics are covered in later sections.

The code for a procedure always follows a .CODE directive. The body of each procedure is bracketed
by two directives, PROC and ENDP. Each of these directives has a label that gives the name of the
procedure. With the Microsoft Macro Assembler, the PROC directive allows several attributes to be
specified; we are only going to use one, NEAR32. This attribute says that the procedure will be located

in the same code segment as the calling code and that 32-bit addresses are being used. These
choices are normal for flat 32-bit memory model programming. Figure 6.5 shows relevant parts of a
program that incorporates a procedure named Initialize. The job of the procedure is to initialize several
variables; the calling program is sketched, but the code for the procedure itself is complete.

   ; procedure structure example
   ; Author:  R. Detmer
   ; Date:    revised 10/97

   .386
   .MODEL FLAT

   ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

   .STACK  4096             ; reserve 4096-byte stack

   .DATA                    ; reserve storage for data
   Count1      DWORD   11111111h
   Count2      DWORD   22222222h
   Total1      DWORD   33333333h
   Total2      DWORD   44444444h
   ;           other data here

   .CODE                           ; program code

   Initialize  PROC   NEAR32
               mov    Count1,0          ; zero first count



               mov    Count2,0          ; zero second count
               mov    Total1,0          ; zero first total
               mov    Total2,0          ; zero second total
               mov    ebx,0             ; zero balance
               ret                      ; return
   Initialize  ENDP

   _start:                              ; program entry point
               call   Initialize        ; initialize variables

   ; -- other program tasks here

               call   Initialize        ; reinitialize variables

   ; -- more program tasks here

               INVOKE ExitProcess, 0    ; exit with return code 0
   PUBLIC _start                    ; make entry point public

   END                              ; end of source code

Figure 6.5: Procedure structure

In Fig. 6.5 the procedure Initialize is bracketed by PROC and ENDP. The distance attribute NEAR32

declares this to be a near procedure. Although this example shows the procedure body prior to the
main code, it could also have been placed afterwards. Recall that execution of a program does not
necessarily begin at the first statement of the code segment; the statement identified by the label
_start marks the first instruction to be executed.

Most of the statements of procedure Initialize are ordinary mov instructions. These could have been
used in the main program at the two places that the call statements are coded; however, using the

procedure makes the main code both shorter and clearer. The procedure affects doublewords defined
in the program's data segment and the EBX register; it has no local variables.

When the main program executes, the instruction

     call  Initialize

transfers control from the main code to the procedure. The main program calls the procedure twice; in
general, a procedure may be called any number of times. The return instruction

     ret

transfers control from the procedure back to the caller; there is almost always at least one ret
instruction in a procedure and there can be more than one. If there is only one ret, it is ordinarily the

last instruction in the procedure since subsequent instructions would be unreachable without "spaghetti
code." Although a call instruction must identify its destination, the ret does not-control will transfer to
the instruction following the most recent call. The 80x86 uses the stack to store the return address.

When the example program in Fig. 6.5 is assembled, linked, and executed, there is no visible output.
However, it is informative to trace execution with a tool like WinDbg. Figure 6.6 show WinDbg's initial
display. Note that ESP contains 0063FE3C. The memory window has been opened to start at address
0063FE30, 12 bytes down into the stack. The EIP register contains 0040103E, the address of the first
instruction to be executed (the first call). Figure 6.7 shows the new state after this statement is
executed. The EIP register now contains 00401010, the address of the first statement in procedure
Initialize. The ESP register contains 0063FE38, so four bytes have been pushed onto the stack.
Looking in memory at this address, you see 43 10 40 00-that is, 00401043, an address five bytes larger
than the address of the first call. If you examine the listing file for the program, you see that the each



call instruction takes five bytes of object code, so that 00401043 is the address of the instruction
following the first call.

Figure 6.6: State prior to procedure call

Figure 6.7: State after procedure call

In general, a call instruction pushes the address of the next instruction (the one immediately following
the call) onto the stack and then transfers control to the procedure code. A near call instruction works
by pushing the EIP to the stack and then changing EIP to contain the address of the first instruction of
the procedure.

Return from a procedure is accomplished by reversing the above steps. A ret instruction pops EIP, so

that the next instruction to be executed is the one at the address that was pushed on the stack.

Recall that 80x86 programming can be done using either a flat memory model or a segmented memory
model. With a segmented memory model a procedure may be in a different segment from the calling
code. In fact, with 16-bit segmented programming, segments were limited to 65,536 bytes, so
procedures were often in separate segments. The 80x86 architecture uses a far call to transfer

control to a procedure in a different memory segment: A far call pushes both EIP and CS onto the
stack. A far return pops both off the stack. With 32-bit flat memory model programming, there is no
need for anything other than near calls.

The syntax of the 80x86 call statement is

     call destination

Figure 6.8 lists some of the available 80x86 call instructions, omitting 16-bit forms and forms used
primarily for systems programming. The "+" notations on the timings for the 80386 processor indicate
that there are additional clock cycles that depend on the next instruction. The program in Fig. 6.6
included a near procedure, designated by the PROC operand NEAR32. In general, the assembler
determines whether destination references a near or far procedure from the PROC directive or from



some other directive or operand. No call instruction modifies any flag.

    Clock Cycles    

Operand 386 486 Pentium Number of Bytes Opcode

near relative 7+ 3 1 5 E8

near indirect         FF

using register 7+ 5 2 2  

using memory 10+ 5 2 2+  

far direct 17+ 18 4 7 9A

far indirect 22+ 17 5 6 FF

Figure 6.8: call instructions

All of the procedures used in this book will be the first type, near relative. For a near relative procedure,
the assembler calculates a 32-bit displacement to the destination, and the E8 opcode plus this
displacement comprise the five bytes of the instruction. The transfer of control when a procedure is
called is similar to the transfer of a relative jump, except that the old contents of EIP are pushed, of
course.

Near indirect calls encode a register 32 or a reference to a doubleword in memory. When the call is
executed, the contents of that register or doubleword are used as the address of the procedure. This
makes it possible for a call instruction to go to different procedures different times.

All far calls must provide both new CS contents and new EIP contents. With far direct calls, both of
these are coded in the instruction, adding six bytes to the opcode. With far indirect calls, these are
located at a six-byte block in memory, and the address of that block is coded in the instruction.

The return instruction ret is used to transfer control from a procedure body back to the calling point.

Its basic operation is simple; it pops the address previously stored on the stack and loads it into the
instruction pointer EIP. Since the stack contains the address of the instruction following the call,
execution will continue at that point. A near return just has to restore EIP. A far return instruction
reverses the steps of a far call, restoring both EIP and CS; both of these values are popped from the
stack.

There are two formats for the ret instruction. The more common form has no operand and is simply

coded

     ret

An alternative version has a single operand and is coded

     ret count

The operand count is added to the contents of ESP after completion of the other steps of the return
process (restoring EIP and, for a far procedure, CS). This can be useful if other values (parameters in
particular) have been saved on the stack just for the procedure call, and can be logically discarded
when the procedure is exited. (Parameters are discussed further in the next section.) Figure 6.9 lists
the various formats of ret instructions.

    Clock Cycles      

Type Operand 386 486 Pentium Number of Bytes Opcode

near none 10+ 5 2 1 C3

near immediate 10+ 5 3 3 C2

far none 18+ 13 4 1 CB

far immediate 18+ 14 4 3 CA



Figure 6.9: ret instructions

If a procedure's PROC directive has the operand NEAR32, then the assembler generates near calls to
the procedure and near returns to exit from it. The Microsoft Macro Assembler also has retn (return
near) and retf (return far) mnemonics to force near or far returns; we will not need these mnemonics.

To construct building blocks for large programs, it is often desirable to assemble a procedure or group
of procedures separately from the code that calls them; that is, with procedures and calling programs in
separate files. There are a few additional steps required to do this. First, you must assemble the
procedures so that their names are visible outside the file containing them. Second, you must let the
calling program know necessary information about the external procedures. Finally, you must link the
additional .OBJ files to get an executable program.

The PUBLIC directive is used to make procedure names visible outside the file containing them. This is
the same directive we have been using to make the symbol _start visible. In general, its syntax is

     PUBLIC symbol1 [, symbol2]...

A file may contain more than one PUBLIC directive.

The EXTRN directive gives the calling program information about external symbols. It has many options,

including

     EXTRN symbol1:type [, symbol2:type]

A file may contain more than one EXTRN directive. Figure 6.10 outlines how this all fits together for two

procedures, Procedure1 and Procedure2, which are assembled in a file separate from the main code.
Note that .386 and .MODEL FLAT directives will also be required, and INCLUDE directives may be

needed.

   File containing procedure definitions

   PUBLIC      Procedure1, Procedure2

   .CODE

   Procedure1  PROC  NEAR32
               ...
   Procedure1  ENDP

   Procedure2  PROC  NEAR32
               ...
   Procedure2  ENDP

               END

   File containing procedure calls

   EXTRN Procedure1:NEAR32, Procedure2:NEAR32
               ...
   .CODE
               ...
               call  Procedure1
               ...
               call  Procedure2
               ...
               END

Figure 6.10: Code for external procedures

You assemble each of the above files just as if it were the main program. Each assembly produces a



.OBJ file. To link the files, simply list all .OBJ files in the link command-you already have been linking
your programs with the separately assembled file IO.OBJ.

We conclude this section with a procedure that will calculate the integer square root of a positive
integer Nbr; that is, the largest integer SqRt such that SqRt*SqRt = Nbr. The procedure code is in Fig.
6.11. This is not a complete file ready for assembly; the procedure code could be assembled separately
with the addition of the directives shown in Fig. 6.10, or it could be included in a file with a calling
program.

   ; procedure to compute integer square root of number Nbr
   ; Nbr is passed to the procedure in EAX
   ; The square root SqRt is returned in EAX
   ; Other registers are unchanged.
   ; author:  R. Detmer    revised:  10/97

   Root      PROC  NEAR32
             push  ebx           ; save registers
             push  ecx
             mov   ebx, 0        ; SqRt := 0
   WhileLE:  mov   ecx, ebx      ; copy SqRt
             imul  ecx, ebx      ; SqRt*SqRt
             cmp   ecx, eax      ; SqRt*SqRt <= Nbr ?
             jnle  EndWhileLE    ; exit if not
             inc   ebx           ; add 1 to SqRt
             jmp   WhileLE       ; repeat
   EndWhileLE:
             dec   ebx           ; subtract 1 from SqRt
             mov   eax, ebx      ; return SqRt in AX
             pop   ecx           ; restore registers
             pop   ebx
             ret                 ; return
   Root      ENDP

Figure 6.11: Procedure to find integer square root

Procedure Root implements the following design.

     Sqrt := 0;
      while Sqrt*Sqrt Nbr loop
          add 1 to SqRt;
      end while;
      subtract 1 from Sqrt;

This algorithm works by trying larger and larger integer candidates for SqRt; after it overshoots the
correct value, it backs up one unit. This is not a very efficient technique, but it is easy to code.

The calling program must put the value for Nbr in the EAX register; the next section discusses a more
common way of passing parameters to procedures. Procedure Root will return the value of SqRt in the
EAX register; functions that return a single integer value frequently use the accumulator for this
purpose.

In addition to the code that implements the design, the procedure contains two push instructions at the

beginning, with corresponding pops immediately before the return. The purpose of these instructions is
to preserve the contents of the EBX and ECX registers; that is, to return to the calling program with the
same values in the registers as they had before call Root. This makes the procedure relatively

independent of the calling program since someone using procedure Root does not have to worry about
unexpected side-effects. This technique is extended in the next section.

Exercises 6.2

Suppose that the NEAR32 procedure Exercise 1 is called by the instruction1.



1.

call Exercise1

If this call statement is at address 00402000 and ESP contains 00406000 before the call, what
return address will be on the stack when the first instruction of procedure Exercise 1 is executed?
What will the value in ESP be?

Why is the PUBLIC directive used when procedures are separately compiled? Why is the EXTRN

directive used when procedures are separately compiled?

2.

Programming Exercises 6.2

Write a main program that will input an integer, call procedure Root (Fig. 6.11) to find the integer
square root, and display the value of the square root. Include this program in the same file as
procedure Root and assemble them together.

1.

Repeat Exercise 1, except assemble procedure Root and your main program in separate files.2.

Write a procedure GetValue that prompts for and inputs an integer between 0 and a specified
size MaxValue. A main program must send MaxValue to the procedure in the EAX register.
Procedure GetValue will return the integer it inputs in EAX. Procedure GetValue will repeatedly
prompt for input until the user enters a value in the specified range. Write procedure GetValue
so that EAX is the only register changed upon return to the calling program; even the flags
register must be unchanged.

3.



6.3 Parameters and Local Variables

Using a high-level language, a procedure definition often includes parameters or formal parameters that
are associated with arguments or actual parameters when the procedure is called. For the procedure’s
in (pass-by-value) parameters, values of the arguments, which may be expressions, are copied to the
parameters when the procedure is called, and these values are then referenced in the procedure using
their local names, which are the identifiers used to define the parameters. In-out (pass-by-location or
variable) parameters associate a parameter identifier with an argument that is a single variable and
can be used to pass a value either to the procedure from the caller or from the procedure back to the
caller. A common technique for passing parameters is discussed in this section. This technique can be
used to pass word-size or doubleword-size values for in parameters, or addresses of data in the calling
program for in-out parameters.

Although simple procedures can be written using only registers to pass parameters, most procedures
use the stack to pass parameters. The stack is also frequently used to store local variables. As you will
see, the techniques for using the stack for parameters and for local variables are closely related.

We start with a simple example to show how the stack is used to pass parameters. Suppose that the
job of a NEAR32 procedure Add2 is to add two doubleword-size integers, returning the sum in EAX. If

the calling program passes these parameters by pushing them on the stack, then its code might look
like

     push   Value1   ; first argument value
     push   ecx      ; second argument value
     call   Add2     ; call procedure to find sum
     add    esp,8    ; remove parameters from stack

Before we look at how the parameter values are accessed from the stack, notice how they are removed
from the stack following the call. There is no need to pop them off the stack to some destination; we
simply add eight to the stack pointer to move ESP above the parameters. It is important to remove
parameters from the stack since otherwise repeated procedure calls might exhaust the stack space.
Even more serious, if procedure calls are nested and the inside call leaves parameters on the stack,
then the outside return will not find the correct return address on the stack. An alternative to adding n to
the stack pointer in the calling program is to use ret n in the procedure, the version of the return

instruction that adds n to ESP after popping the return address. Both forms will be illustrated in this
book.

Figure 6.12 shows how the procedure Add2 can retrieve the two parameter values from the stack. The
procedure code uses the based addressing mode. In this mode, a memory address is calculated as the
sum of the contents of a base register and a displacement built into the instruction. The Microsoft
assembler accepts several alternative notations for a based address; this book will use
[register+number], for example, [ebp+6]. Any general register (e.g., EAX, EBX, ECS, EDX, ESI,

EDI, EBP, or ESP) can be used as the base register; EBP is the normal choice for accessing values in
the stack.

   Add2         PROC NEAR32  ; add two words passed on the stack
                             ; return the sum in the EAX register
                push   ebp                ; save EBP
                mov    ebp,esp            ; establish stack frame
                mov    eax,[ebp+8]        ; copy second parameter
                                          ; value
                add    eax,[ebp+12]       ; add first parameter value
                pop    ebp                ; restore EBP
                ret                       ; return
   Add2         ENDP

Figure 6.12: Using parameter values passed on stack



This method of passing argument values works as follows. Upon entry to the procedure, the stack looks
like the left illustration in Fig. 6.13. After the procedure’s instructions

     push   ebp            ; save EBP
     mov    ebp,esp        ; establish stack frame

Figure 6.13: Locating parameters in the stack

are executed, the stack looks like the right illustration in Fig. 6.13.

Eight bytes are stored between the address stored in EBP (and also ESP) and the second parameter
value. Therefore parameter 2 can be referenced by [bp+8]. The first parameter value is four bytes
higher on the stack; its reference is [bp+12]. The code

     mov    eax,[bp+8]     ; copy second parameter
     add    eax,[bp+12]    ; add first parameter

uses the values from memory locations in the stack to compute the desired sum.

You may wonder why EBP is used at all. Why not just use ESP as a base register? The principal
reason is that ESP is likely to change, but the instruction mov ebp,esp loads EBP with a fixed

reference point in the stack. This fixed reference point will not change as the stack used for other
purposes—for example, to push additional registers or to call other procedures.

Some procedures need to allocate stack space for local variables, and most procedures need to save
registers as illustrated in Fig. 6.11. Instructions to accomplish these tasks, along with the instructions

     push   ebp            ; save EBP
     mov    ebp,esp        ; establish stack frame



make up the entry code for a procedure. However, the two instructions here are always the first entry
code instructions. Because they are, you can count on the last parameter being exactly eight bytes
above the reference point stored in EBP. The EBP register itself is always the first pushed and last
popped so that upon return to the calling program it has the same value as prior to the call.

We now show how the stack can provide space for local variables. For this purpose, we revisit the
algorithm for computing the greatest common divisor of two integers that appeared in Programming
Exercises 5.3.

     gcd := number1;
     remainder := number2;

     until (remainder = 0) loop
       dividend := gcd;
       gcd := remainder;
       remainder := dividend mod gcd;
     end until;

Figure 6.14 shows this design implemented as a NEAR32 procedure that computes the greatest

common divisor of two doubleword-size integer values passed to the procedure on the stack, returning
the GCD in EAX. Figure 6.14 includes more than the procedure itself. It shows a complete file, ready
for separate assembly.

   PUBLIC GCD
   ; Procedure to compute the greatest common divisor of two
   ; doubleword-size integer parameters passed on the stack.
   ; The GCD is returned in EAX.
   ; No other register is changed.  Flags are unchanged.
   ; Author:  R. Detmer     Revised:  10/97

   GCD     PROC   NEAR32
           push   ebp           ; establish stack frame
           mov    ebp,esp
           sub    esp,4         ; space for one local doubleword
           push   edx           ; save EDX
           pushf                ; save flags

           mov     eax,[ebp+8]  ; get Number1
           mov     [ebp--4],eax ; GCD := Number1
           mov    edx,[ebp+12]  ; Remainder := Number1
   until0: mov     eax,[ebp--4] ; Dividend := GCD
           mov    [ebp--4],edx  ; GCD := Remainder
           mov    edx,0         ; extend Dividend to doubleword
           div    DWORD PTR [ebp--4]   ; Remainder in EDX
           cmp    edx, 0        ; remainder = 0?
           jnz    until0        ; repeat if not

           mov    eax,[ebp--4]  ; copy GCD to EAX
           popf                 ; restore flags
           pop    edx           ; restore EDX
           mov    esp,ebp       ; restore ESP
           pop    ebp           ; restore EBP
           ret    8             ; return, discarding parameters
   GCD     ENDP
           END

Figure 6.14: Greatest common divisor procedure



In this procedure, gcd is stored on the stack until it is time to return the value in EAX. The instruction

     sub  esp,4       ; space for one local doubleword

moves the stack pointer down four bytes, reserving one doubleword of space below where EBP was
stored and above where other registers are stored. After EDX and the flags register are pushed, the
stack has the contents shown in Fig. 6.15. Now the local variable gcd can be accessed as [ebp–4],

since it is four bytes below the fixed reference point stored in EBP.

Figure 6.15: Stack usage with local variables

The rest of the procedure is a straightforward implementation of the design. In this example, a register
could have been used to store gcd, but many procedures have too many local variables to store them
all in registers. Within reason, you can reserve as many local variables on the stack as you wish,
accessing each by [ebp-offset]. Notice that registers are saved after local variable space is

reserved, so that the number of registers saved does not affect the offset down to a variable. Note also
that most procedures will need to save more than two registers if register contents are to be unchanged
upon return to the calling program.

Finally, consider the exit code for the procedure.

     popf           ; restore flags
     pop   edx      ; restore EDX
     mov   esp,ebp  ; restore ESP
     pop   ebp      ; restore EBP
     ret   8        ; return, discarding parameters

The first two pop instructions simply restore the flag register and EDX; these instructions are popped in
the opposite order in which they were pushed. It may seem that the next instruction should be add
sp,4 to undo the effects of the corresponding subtraction in the entry code. However, the instruction



mov esp,ebp accomplishes the same objective more efficiently, working no matter how many bytes of

local variable space were allocated, and without changing flags like an add instruction. Finally, we are
using the ret instruction with operand 8, so that for this procedure the calling program must not

remove parameters from the stack; this task is accomplished by the procedure.

Figure 6.16 summarizes typical entry code and exit code for a procedure. High-level language
compilers generate similar code for subprograms. In fact, you can usually write an assembly language
procedure that is called by a high-level language program with code like this. Check reference materials
for the compiler before beginning since there are many variations of these techniques.

   Entry code:

   push    ebp          ; establish stack frame
   mov     ebp,esp

   sub     esp,n        ; n bytes of local variables space
   push    ...          ; save registers
   ...
   push    ...
   pushf                ; save flags

   Exit code:

   popf                 ; restore flags
   pop     ...          ; restore registers
   ...
   pop     ...
   mov     esp,ebp      ; restore ESP if local variables used
   pop     ebp          ; restore EBP
   ret                  ; return

Figure 6.16: Typical procedure entry and exit code

How can a high-level language implement variable parameters? How can large parameters such as an
array, a character string, or a record be efficiently passed to a procedure? Either of these can be
implemented by passing the address of an argument rather than the value of the argument to the
procedure. The procedure can then either use the value at the address or store a new value at the
address. Figure 6.17 shows a procedure that might implement the Pascal procedure with header

     PROCEDURE Minimum(A : IntegerArray;
               Count : INTEGER;
               VAR Min : INTEGER);
     (* Set Min to smallest value in A[1], A[2], ..., A[Count] *)

   ; Procedure to find the smallest word in array A[1..Count]
   ; Parameters:   (1)  address of array A
   ;               (2)  value of Count (word)
   ;               (3)  address of Min (destination for smallest)
   ; No register is changed.  Flags are unchanged
   Minimum PROC   NEAR32
           push   ebp            ; establish stack frame
           mov    ebp,esp
           pushad                ; save all registers
           pushf                 ; save flags

           mov    ebx,[ebp+14]   ; get address of array A
           mov    ecx, 0         ; ensure high order 0s in ECX
           mov    cx,[ebp+12]    ; get value of Count
           mov    eax,7fffffffh  ; smallest so far (MaxInt)



           jecxz  endForCount    ; exit when no elements to check
   forCount:
           cmp    [ebx],eax      ; element < smallest so far ?
           jnl    endIfLess      ; exit if not
           mov    eax,[ebx]      ; new smallest
   endIfLess:
           add    ebx,4          ; address of next array element
           loop   forCount       ; iterate
   endForCount:
           mov    ebx,[ebp+8]    ; get address of Min
           mov    [ebx],eax      ; move smallest to Min
           popf                  ; restore flags
           popad                 ; restore registers
           pop    ebp            ; restore EBP
           ret                   ; return
   Minimum ENDP

Figure 6.17: Procedure using address parameters

In this implementation the addresses of arguments corresponding to A and Min are passed to
procedure Minimum. The procedure uses register indirect addressing, first to examine each array
element, and at the end to store the smallest value.

The instructions pushad and popad save and restore all general registers. These instructions are

convenient, but they cannot be used if the procedure generates a value to be returned in a register.
Note that since the Count parameter is word-size, the address of the first parameter is 14 bytes above
the fixed base point—four bytes for EBP, four bytes for the return address, four bytes for the address of
Min, and two bytes for the value of Count. (Draw the stack picture.)

Calling code for procedure Minimum could look like the following.

     lea   eax, Array           ; Parameter 1: address of Array
     push  eax
     push  Count                ; Parameter 2: value of Count
     lea   eax, Min             ; Parameter 3: address of Min
     push  eax
     call  Minimum              ; call procedure
     add   esp, 10              ; discard parameters

After this code is executed, the smallest value from Array will be in the word referenced by Min.

It is perfectly legal for a procedure to store local variables in the data segment. The .DATA directive

can be included in a file used for separate assembly of procedures. In fact, a program may have
multiple .DATA directives, although this is generally not necessary. You should normally keep variables

as local as possible, stored on the stack or in part of the data segment that is visible only during
assembly of the file containing the definitions. Even when a procedure and a calling program are
assembled in a single file, you should avoid referencing the calling code’s variables directly in the
procedure.

Because 80x86 instructions are often the output of a compiler, the 80x86 architecture includes
additional instructions to facilitate implementation of procedures. The enter instruction has syntax

     enter  localBytes, nestingLevel

When nestingLevel is zero, this does precisely the job of the following familiar instructions:

     push  ebp
     mov   ebp,esp

     sub   esp, localBytes



that is, it establishes a stack frame and reserves the requested numbers of local bytes of storage. If
nestingLevel > 0, the enter instruction also pushes the stack frame pointers from nestingLevel–1

levels back onto the stack above the new frame pointer. This gives this procedure easy access to the
variables of procedures in which it is nested. If used, an enter instruction would normally be the first

instruction in a procedure.

The leave instruction reverses the actions of the enter instruction. Specifically, it does the same thing

as the instruction pair

     mov  esp,ebp  ; restore ESP
     pop  ebp      ; restore EBP

and normally would be used immediately before a return instruction. We will not use the enter or
leave instructions for procedures in this book.

You have observed that each program we write exits with the statement

     INVOKE ExitProcess, 0   ; exit with return code 0

INVOKE is not an instruction—MASM references call it a directive. However, it acts more like a macro.
In fact, if the directive .LISTALL precedes the above line of code, you see the expansion

     push   +000000000h
     call   ExitProcess

This is clearly a call to procedure ExitProcess with a single doubleword parameter with value 0.

Exercises 6.3

Suppose that a NEAR32 procedure begins with1.

push  ebp         ; save EBP
mov   ebp,esp     ; new base pointer
push  ecx         ; save registers
push  esi
...

Assume that this procedure has three parameters passed on the stack, (1) a doubleword, (2) a
word, and (3) a second word. Draw a picture of the stack following execution of the above code.
Include parameters, return address, and show the bytes to which EBP and ESP point. How can
each parameter be referenced?

Give entry code (Fig. 6.16) for a NEAR32 procedure that reserves eight bytes of storage on the

stack for local variables. Assuming that this space is used for two doublewords, how can each
local variable be referenced?

2.

Explain why you cannot use pushad and popad in a procedure that returns a value in EAX.3.

Programming Exercises 6.3

Write a NEAR32 procedure to perform each task specified below. For each procedure, use the stack to

pass arguments to the procedure. Except for those problems that explicitly say to return a result in a
register, register contents should be unchanged by the procedure; that is, registers, including the flags
register, which are used in the procedure should be saved at the beginning of the procedure and
restored before returning. Allocate stack space as needed for local variables. Use the ret instruction

with no operand. For each problem, write a separately assembled test driver, a simple main program
that will input appropriate values, call the procedure, and output results. The main program must
remove arguments from the stack. Link and run each complete program.

Write a procedure Min2 to find the minimum of two word-size integer parameters. Return the
minimum in the AX register.

1.

2.



1.

Write a procedure Max3 to find the maximum of three doubleword-size integer parameters.
Return the maximum in the EAX register.

2.

Write a procedure Avg to find the average of collection of doublewordsize integers in an array.
Procedure Avg will have three parameters:

the address of the array1.

the number of integers in the array (passed as a doubleword)2.

the address of a word at which to store the result.3.

3.

Write a procedure Search to search an array of doublewords for a specified doubleword value.
Procedure Search will have three parameters:

the value for which to search (a doubleword)1.

the address of the array2.

the number N of doublewords in the array (passed as a doubleword)

Return in EAX the position (1,2,…,N) at which the value is found, or return 0 if the value
does not appear in the array.

3.

4.



6.4 Recursion

A recursive procedure or function is one that calls itself, either directly or indirectly. The best algorithms for
manipulating many data structures are recursive. It is frequently very difficult to code certain algorithms in a
programming language that does not support recursion.

It is almost as easy to code a recursive procedure in 80x86 assembly language as it is to code a
nonrecursive procedure. If parameters are passed on the stack and local variables are stored on the stack,
then each call of the procedure gets new storage allocated for its parameters and local variables. There is
no danger of the arguments passed to one call of a procedure being confused with those for another call
since each call has its own stack frame. If registers are properly saved and restored, then the same
registers can be used by each call of the procedure.

This section gives one example of a recursive procedure in 80x86 assembly language. It solves the Towers
of Hanoi puzzle, pictured in Fig. 6.18 with four disks. The object of the puzzle is to move all disks from
source spindle A to destination spindle B, one at a time, never placing a larger disk on top of a smaller disk.
Disks can be moved to spindle C, a spare spindle. For instance, if there are only two disks, the small disk
can be moved from spindle A to C, the large one can be moved from A to B, and finally the small one can
be moved from C to B.

Figure 6.18: Towers of Hanoi puzzle

In general, the Towers of Hanoi puzzle is solved by looking at two cases. If there is only one disk, then the
single disk is simply moved from the source spindle to the destination. If the number of disks NbrDisks is
greater than one, then the top (NbrDisks-1) disks are moved to the spare spindle, the largest one is moved
to the destination, and finally the (NbrDisks-1) smaller disks are moved from the spare spindle to the
destination. Each time (NbrDisks-1) disks are moved, exactly the same procedure is followed, except that
different spindles have the roles of source, destination, and spare. Figure 6.19 expresses the algorithm in
pseudocode.

   procedure Move(NbrDisks, Source, Destination, Spare);
   begin
          if NbrDisks = 1
          then
               display "Move disk from ", Source, " to ", Destination
          else
               Move(NbrDisks -- 1, Source, Spare, Destination);
               Move(1, Source, Destination, Spare);
               Move(NbrDisks -- 1, Spare, Destination, Source);
          end if;
   end procedure Move;
   begin {main program}
          prompt for and input Number;
          Move(Number, 'A', 'B', 'C');
   end;

Figure 6.19: Pseudocode for Towers of Hanoi Solution

Figure 6.20 shows 80x86 code that implements the design. The stack is used to pass parameters to
procedure Move, which is a NEAR32 procedure referencing the data segment for output only. A standard
stack frame is established, and registers used by the procedure are saved and restored. The code is a fairly



straightforward translation of the pseudocode design. The operator DWORD PTR is required in the statement

; program to print instructions for "Towers of Hanoi" puzzle
; author: R. Detmer revised: 10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

include io.h                 ; header file for input/output

cr      equ      0dh         ; carriage return character
Lf      equ      0ah         ; line feed

.STACK  4096                 ; reserve 4096-byte stack

.DATA                        ; reserve storage for data
prompt      BYTE   cr,Lf,'How many disks? ',0
number      BYTE   16 DUP (?)
message     BYTE   cr,Lf,'Move disk from spindle '
source      BYTE   ?
            BYTE   ' to spindle '
dest        BYTE   ?
            BYTE    '.',0
.CODE
Move        PROC   NEAR32
; procedure Move(NbrDisks : integer; { number of disks to move }
;           Source, Dest, Spare : character { spindles to use } )
; parameters are passed in words on the stack

            push   ebp           ; save base pointer
            mov    ebp,esp       ; copy stack pointer
            push   eax           ; save registers
            push   ebx

            cmp    WORD PTR [ebp+14],1 ; NbrDisks = 1?
            jne    elseMore      ; skip if more than 1
            mov    bx,[ebp+12]   ; Source
            mov    source,bl     ; copy character to output
            mov    bx,[ebp+10]   ; destination
            mov    dest,bl       ; copy character to output
            output message       ; print line
            jmp    endIfOne      ; return
elseMore:   mov    ax,[ebp+14]   ; get NbrDisks
            dec    ax            ; NbrDisks - 1
            push   ax            ; parameter 1: NbrDisks-1
            pushw  [ebp+12]      ; parameter 2: source does not change
            pushw  [ebp+8]       ; parameter 3: old spare is new destination
            pushw  [ebp+10]      ; parameter 4: old destination is new spare
            call   Move          ; Move(NbrDisks-1,Source,Spare,Destination)
            add    esp,8         ; remove parameters from stack

            pushw  1             ; parameter 1: 1
            pushw  [ebp+12]      ; parameter 2: source does not change
            pushw  [ebp+10]      ; parameter 3: destination unchanged
            pushw  [ebp+8]       ; parameter 4: spare unchanged
            call   Move          ; Move(1,Source,Destination,Spare)
            add    esp,8         ; remove parameters from stack

            push   ax            ; parameter 1: NbrDisks-1
            pushw  [ebp+8]       ; parameter 2: source is original spare



            pushw  [ebp+10]      ; parameter 3: original destination
            pushw  [ebp+12]      ; parameter 4: original source is spare
            call   Move          ; Move(NbrDisks-1,Spare,Destination,Source)
            add    esp,8         ; remove parameters from stack
endIfOne:
            pop    ebx           ; restore registers
            pop    eax
            pop    ebp           ; restore base pointer
            ret                  ; return
Move        ENDP

_start:     output prompt        ; ask for number of disks
            input  number,16     ; read ASCII characters
            atoi   number        ; convert to integer
            push   ax            ; argument 1: Number
            mov    al,'A'        ; argument 2: ' A'
            push   ax
            mov    al,'B'        ; argument 3: ' B'
            push   ax
            mov    al,'C'        ; argument 4: ' C'
            push   ax
            call   Move          ; Move(Number,Source,Dest,Spare)
            add    esp,8         ; remove parameters from stack

            INVOKE   ExitProcess, 0 ; exit with return code 0

PUBLIC _start                    ; make entry point public
END                              ; end of source code

Figure 6.20: Towers of Hanoi solution

     cmp   DWORD PTR [bp+14],1

so that the assembler knows whether to compare words or byte size operands. Similarly, the pushw

mnemonic is used several places so that the assembler knows to push wordsize parameters. Notice that
the recursive calls are implemented exactly the same way as the main program call, by pushing four
parameters on the stack, calling procedure Move, then removing the parameters from the stack. However,
in the main program the spindle parameters are constants, stored as the low order part of a word since
single bytes cannot be pushed on the 80x86 stack.

Exercises 6.4

What will go wrong in the Towers of Hanoi program if EAX is not saved at the beginning of
procedure Move and restored at the end?

1.

Suppose that the Towers of Hanoi program is executed and 2 is entered for the number of disks.
Trace the stack contents from the first push in the main program through the instruction add esp,8

in the main program.

2.

Programming Exercises 6.4

The factorial function is defined for a non-negative integer argument n by

Write a recursive assembly language procedure named Factorial that implements this recursive
definition. Use the stack to pass the single doubleword integer argument; return the value of the
function in the EAX register. The calling program should remove the parameter from the stack. Test

1.



your function by calling it from a main program that inputs an integer, calls the Factorial function, and
displays the value returned by the function. Why is it better to use doubleword-size than word-size
integers for this function?

The greatest common divisor (GCD) of two positive integers m and n can be calculated recursively
by the function described below in pseudocode. function GCD(m, n : integer) : integer;

2.

if n = 0
then

   return m;
else

   Remainder := m mod n;

   return GCD(n, Remainder);
end if;

Implement this recursive definition in assembly language. Use the stack to pass the two doubleword-
size argument values. Return the value of the function in the EAX register. The procedure should
remove the parameters from the stack. Test your function with a main program that inputs two
integers, calls the greatest common divisor function GCD, and displays the value returned.



6.5 Other Architectures: Procedures Without a Stack

Not all computer architectures provide a hardware stack. One can always implement a software stack
by setting aside a block of memory, thinking of it as a stack, maintaining the stack top in a variable, and
pushing or popping data by copying to or from the stack. However, this is much less convenient than
having an architecture like the 80x86 that automatically adjusts the stack top for you as you push
values, pop values, call procedures, and return from procedures.

Obviously the stack plays a large role in 80x86 procedure implementation. How can you reasonably
implement procedures in an architecture that has no stack? This section gives a brief description of one
system for doing this. It is based on the conventions commonly used in IBM mainframe computers
whose architecture is derived from the System/360 (S/360) systems first introduced in the 1960s.

The S/360 architecture includes sixteen 32-bit general purpose registers (GPRs), numbered 0 to 15.
Addresses are 24 bits long and an address can be stored in any register. The architecture includes
addressing modes comparable to direct, register indirect, and indexed.

A procedure is usually called by loading its address into GPR 15 and then executing a branch and link
instruction that jumps to the procedure code after copying the address of the next instruction into GPR
14. This makes return easy; simply jump to the address in GPR 14.

Parameter passing is more challenging. Normally GPR 1 is used to pass the address of a parameter
address list. This is a list of 32-bit storage locations (32 bits is called a word in the S/360 architecture),
the first word containing the address of the first parameter, the second word containing the address of
the second parameter, etc. To retrieve a word-size parameter, one must first get its address from the
parameter address list, then copy the word at that address.

Since the same general purpose registers are normally used for the same tasks each time a procedure
is called, problems may occur if one procedure calls another. For instance, a second procedure call
would put the second return address into GPR 14, wiping out the first return address. To avoid this
problem, the main program and each procedure allocates a block of storage for a register save area
and puts its address in GPR 13 prior to a procedure call. The procedure then saves general purpose
registers 0-12, 14, and 15 in the register save area of the calling program and GPR 13 in its own
register save area. This system is relatively complicated compared to using a stack, but it works well
except for recursive procedure calls. Since there is only one register save area per procedure,
recursive procedure calls are impossible without modifying the scheme.

Exercises 6.5

If you translate the IBM S/360 parameter passing scheme into 80x86 assembly language, you
get code that looks like the following in the calling program.

1.

Double1   DWORD ?
...
Value1    DWORD ?
Value2    DWORD ?
...
AddrList  DWORD OFFSET Value1  ; address of parameter 1
DWORD     OFFSET Value2        ; address of parameter 2
DWORD     OFFSET Double1       ; address of parameter 3
...
          lea    ebx,AddrList  ; get address of AddrList
          call Proc1

Note that the parameters do not need to be in consecutive storage locations, but their addresses
are in consecutive words at AddrList. Give code to show how the values of the three parameters
can be accessed from within procedure Proc1.

Describe what happens if you attempt a recursive procedure call using the system described in
this section.

2.





Chapter Summary

This chapter has discussed techniques for implementing procedures in the 80x86 architecture. The
stack serves several important purposes in procedure implementation. When a procedure is called, the
address of the next instruction is stored on the stack before control transfers to the first instruction of
the procedure. A return instruction retrieves this address from the stack in order to transfer control back
to the correct point in the calling program. Argument values or their addresses can be pushed onto the
stack to pass them to a procedure; when this is done, the base pointer EBP and based addressing
provide a convenient mechanism for accessing the values in the procedure. The stack can be used to
provide space for a procedure's local variables. The stack is also used to "preserve the environment"-
for example, register contents can be pushed onto the stack when a procedure begins and popped off
before returning to the calling program so that the calling program does not need to worry about what
registers might be altered by the procedure.

Recursive algorithms arise naturally in many computing applications. Recursive procedures are no
more difficult than nonrecursive procedures to implement in the 80x86 architecture.

Some computer architectures do not have a hardware stack. Nonrecursive procedures can be
implemented using registers to store addresses, and memory to save registers when one procedure
calls another.



Chapter 7: String Operations

Computers are frequently used to manipulate characters strings as well as numeric data. In data
processing applications names, addresses, and so forth must be stored and sometimes rearranged.
Text editor and word processor programs must be capable of searching for and moving strings of
characters. An assembler must be able to separate assembly language statement elements, identifying
those that are reserved mnemonics. Even when computation is primarily numerical, it is often
necessary to convert either a character string to an internal numerical format when a number is entered
at the keyboard or an internal format to a character string for display purposes.

An 80x86 microprocessor has instructions to manipulate character strings. The same instructions can
manipulate strings of doublewords or words. This chapter covers 80x86 instructions that are used to
handle strings, with emphasis on character strings. A variety of applications are given, including
procedures that are similar to those in some high-level languages and the procedure called by the
dtoa macro.

7.1 Using String Instructions

Five 80x86 instructions are designed for string manipulation: movs (move string), cmps (compare
string), scas (scan string), stos (store string), and lods (load string). The movs instruction is used to
copy a string from one memory location to another. The cmps instruction is designed to compare the
contents of two strings. The scas instruction can be used to search a string for one particular value.
The stos instruction can store a new value in some position of a string. Finally, the lods instruction

copies a value out of some position of a string.

A string in the 80x86 architecture refers to a contiguous collection of bytes, words, or doublewords in
memory. Strings are commonly defined in a program's data segment using such directives as

     response     BYTE  20 DUP (?)
     label1       BYTE  'The results are ', 0
     wordString   WORD  50 DUP (?)
     arrayD       DWORD 60 DUP (0)

Note that strings and arrays are actually the same except for the way we look at them.

Each string instruction applies to a source string, a destination string, or both. The bytes, words, or
doublewords of these strings are processed one at a time by the string instruction. Register indirect
addressing is used to locate the individual byte, word, or doubleword elements. The 80x86 instructions
access elements of the source string using the address in the source index register ESI. Elements in
the destination string are accessed using the address in the destination index register EDI. If you
program using a segmented memory model, then you also must know that the source element is in the
data segment (at address DS:ESI) while the destination element is in the extra segment (at address
ES:EDI). With flat memory model programming, both segment registers contain the same segment
number and no distinction between segments.

Since the source and destination addresses of string elements are always given by ESI and EDI,
respectively, no operands are needed to identify these locations. Without any operand, however, the
assembler cannot tell the size of the string element to be used. For example, just movs by itself could

say to move a byte, a word, or a doubleword. The Microsoft Macro Assembler offers two ways around
this dilemma. The first method is to use destination and source operands; these are ignored except that
MASM notes their type (both operands must be the same type) and uses that element size. The second
method is to use special versions of the mnemonics that define the element size-instructions that
operate on bytes use a b suffix, word string instructions use a w suffix, and doubleword string

instructions use a d suffix. For example, movsb is used to move byte strings, movsw is used to move
word strings, and movsd is used to move doubleword strings. Any of these instructions assemble as a
movs and none uses an operand since the assembler knows the element size from the mnemonic. This

book will use mnemonics with b, w, and d suffixes rather than operands for string instructions.

Although a string instruction operates on only one string element at a time, it always gets ready to
operate on the next element. It does this by changing the source index register ESI and/or the



destination index register EDI to contain the address of the next element of the string(s). When byte-
size elements are being used, the index registers are changed by one; for words, ESI and EDI are
changed by two; and for doublewords, the registers are changed by four. The 80x86 can move either
forward through a string, from lower to higher addresses, or backward, from higher to lower addresses.
The movement direction is determined by the value of the direction flag DF, bit 10 of the EFLAGS
register. If DF is set to 1, then the addresses in ESI and EDI are decremented by string instructions,
causing right to left string operations. If DF is clear (0), then the values in ESI and EDI are incremented
by string instructions, so that strings are processed left to right.

The 80x86 has two instructions whose sole purpose is to reset or set the direction flag DF. The cld

instruction clears DF to 0 so that ESI and EDI are incremented by string instructions and strings are
processed left to right. The std instruction sets DF to 1 so that strings are processed backward.

Neither instruction affects any flag other than DF. Technical data about these instructions appear in
Fig. 7.1.

  Clock Cycles    

Instruction 386 486 Pentium Number of Bytes Opcode

cld 2 2 2 1 FC

std 2 2 2 1 FD

Figure 7.1: cld and std instructions

Finally it is time to present all the details about a string instruction. The move string instruction movs

transfers one string element (byte, word, or doubleword) from a source string to a destination string.
The source element at address DS:ESI is copied to address ES:EDI. After the string element is copied,
both index registers are changed by the element size (1, 2, or 4), incremented if the direction flag DF is
0 or decremented if DF is 1. The movs instruction does not affect any flag. It comes in movsb, movsw,
and movsd versions; Fig. 7.2 gives information about each form.

    Clock Cycles    

Mnemonic Element size 386 486 Pentium Number of Bytes Opcode

movsb byte 7 7 4 1 A4

movsw word 7 7 4 1 A5

movsd doubleword 7 7 4 1 A5

Figure 7.2: movs instructions (use ESI and EDI)

Figure 7.3 gives an example of a program that uses the movs instruction. The important part of the

example is the procedure strcopy. This procedure has two parameters passed on the stack, which give
the destination and source addresses of byte or character strings. The source string is assumed to be
null-terminated. Procedure strcopy produces an exact copy of the source string at the destination
location, terminating the destination string by a null byte.

; test of "strcopy" procedure
; author:  R. Detmer   revised: 10/97

.386

.MODEL FLAT
ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD
INCLUDE io.h            ; header file for input/output
cr      equ     0dh     ; carriage return character
Lf      equ     0ah     ; line feed

.STACK  4096            ; reserve 4096-byte stack

.DATA                   ; reserve storage for data
prompt      BYTE   cr, Lf, "Original string? ",0



stringIn    BYTE   80 DUP (?)
display     BYTE   cr, Lf, "Your string was...", cr, Lf
stringOut   BYTE   80 DUP (?)

.CODE
_start:     output prompt           ; ask for string
            input  stringIn, 80     ; get source string
            lea    eax, stringOut   ; destination address
            push   eax              ; first parameter
            lea    eax, stringIn    ; source
            push   eax              ; second parameter
            call   strcopy          ; call string copy procedure
            output display          ; print result
            INVOKE  ExitProcess, 0  ; exit with return code 0

PUBLIC _start                      ; make entry point public

strcopy    PROC NEAR32

; Procedure to copy string until null byte in source is copied.
; It is assumed that destination location is long enough for copy.

; Parameters are passed on the stack:
;   (1) address of destination
;   (2) address of source
          push   ebp              ;save base pointer
          mov    ebp,esp          ;copy stack pointer

          push   edi              ;save registers and flags
          push   esi
          pushf

          mov    esi,[ebp+8]      ;initial source address
          mov    edi,[ebp+12]     ;destination
          cld                     ;clear direction flag
whileNoNull:
          cmp    BYTE PTR [esi],0 ;null source byte?
          je     endWhileNoNull   ;stop copying if null
          movsb                   ;copy one byte
          jmp    whileNoNull      ;go check next byte
endWhileNoNull:
          mov    BYTE PTR [edi],0 ;terminate destination string

          popf                    ;restore flags and registers

          pop    esi
          pop    edi
          pop    ebp
          ret    8                ;exit procedure, discarding parameters
strcopy   ENDP

          END

Figure 7.3: String copy program

The procedure only uses registers ESI and EDI. It saves each of these and the flag register on the
stack so that the procedure will return with them unchanged. The index registers ESI and EDI must be
initialized to the addresses of the first string bytes to be processed. The values for ESI and EDI are the
arguments that were pushed on the stack. The direction flag is cleared for left-to-right copying.

After initialization, the procedure executes the following pseudocode design:

while next source byte is not null
      copy source byte to destination;



      increment source index;
      increment destination index;
end while;
put null byte at end of destination string;

To check whether the next source byte is null, the statement

     cmp   BYTE PTR [esi],0   ; null source byte?

is used. Recall that the notation [esi] indicates register indirect addressing, so that the element at the

address in ESI is used, that is, the current byte of the source string. The operator BYTE PTR is
necessary since MASM cannot tell from the operands [esi] and 0 whether byte, word, or doubleword

comparison is needed. Copying the source byte and incrementing both index registers is accomplished
by the movsb instruction. Finally,

     mov   BYTE PTR [edi],0   ; terminate destination string

serves to move a null byte to the end of the destination string since EDI was incremented after the last
byte of the source was copied to the destination. Again, the operator BYTE PTR tells MASM that the
destination is a byte rather than a word or doubleword.

The program to test strcopy simply inputs a string from the keyboard, calls strcopy to copy it
somewhere else, and finally displays the string copy. The most interesting part of the code is the
collection of instructions needed to call the procedure. The arguments are not removed from the stack
since the procedure does that job.

Normally the source string for a movs instruction does not overlap the destination string. However,

occasionally this is useful. Suppose that you want to initialize a 80 character-long string at starSlash
with the pattern */, repeated 40 times. The following code can do this task.

     starSlash     BYTE 80 DUP (?)
                   ...
                   mov   starSlash, '*'    ; first *
                   mov   starSlash+1, '/'  ; first /
                   lea   esi, starSlash    ; source address
                   lea   edi, starSlash+2  ; destination
                   cld                     ; process left to right
                   mov ecx, 78             ; characters to copy
     forCount:     movsb                   ; copy next character
                   loop forCount           ; repeat

In this example, the first time movsb is executed, a * from the first string position is copied to the third

position. The next iteration, a / is copied from the second to the fourth position. The third time, a * is
copied from the third to the fifth position, and so on. The next section introduces an easier way to
repeat a movs instruction.

Exercises 7.1

What will be the output of the following program?

.386

.MODEL FLAT
ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD
INCLUDE io.h            ; header file for input/output
cr      equ     0dh     ; carriage return character
Lf      equ     0ah     ; line feed

.STACK  4096            ; reserve 4096-byte stack

.DATA                   ; global data
string  BYTE  'ABCDEFGHIJ'
        BYTE  cr, Lf, 0

1.



.CODE
setup1  PROC NEAR32
        lea   esi, string    ; beginning of string
        lea   edi, string+5  ; address of 'F'
        cld                  ; forward movement
        ret
setup1  ENDP

_start:  call setup1      ; set source, destination, direction
         movsb            ; move 4 characters
         movsb
         movsb
         movsb
         output string    ; display modified string
         INVOKE ExitProcess, 0 ; exit with return code 0
PUBLIC  _start             ; make entry point public
         END

Repeat Problem 1, replacing the procedure setup1 by2.

setup2   PROC NEAR32
         lea   esi, string     ; beginning of string
         lea   edi, string+2   ; address of 'C'
         cld                   ; forward movement
         ret
setup2   ENDP

Repeat Problem 1, replacing the procedure setup1 by3.

setup3   PROC NEAR32
         lea  esi, string+9    ; end of string
         lea  edi, string+4    ; address of 'E'
         std                   ; backward movement
         ret
setup3   ENDP

Repeat Problem 1, replacing the procedure setup1 by4.

setup4   PROC NEAR32
         lea  esi, string+9    ; end of string
         lea  edi, string+7    ; address of 'H'
         std                   ; backward movement
         ret
setup4 ENDP

Programming Exercises 7.1

Write a program that copies strings read in one at a time from the keyboard into a large storage
area for later processing. Specifically, use the input macro to input a string, then copy the

string to the first of a 1024 byte block of storage that has been reserved in the data segment.
(Recall that the input macro produces a null-terminated string.) Follow the string by a carriage

return and a linefeed character in this storage area. Repeat the process with additional strings,
copying each subsequent string to the storage area so that it immediately follows the linefeed
after the last string. Exit the loop when the first character of the source string is $-do not copy
this last string to the storage area. Do, however, place a null byte after the linefeed of the last
string in the storage area. Finally, use the output macro to display all the characters in the data
area. The result should be the strings that were entered, one per line.

1.





7.2 Repeat Prefixes and More String Instructions

Each 80x86 string instruction operates on one string element at a time. However, the 80x86 architecture
includes three repeat prefixes that change the string instructions into versions that repeat automatically
either for a fixed number of iterations or until some condition is satisfied. The three repeat prefixes actually
correspond to two different single-byte codes; these are not themselves instructions, but supplement
machine codes for the primitive string instructions, making new instructions.

Figure 7.4 shows two program fragments, each of which copies a fixed number of characters from
sourceStr to destStr. The number of characters is loaded into the ECX register from count. The code in part
(a) uses a loop. Since the count of characters might be zero, the loop is guarded by a jecxz instruction.
The body of the loop uses movsb to copy one character at a time. The loop instruction takes care of

counting loop iterations. The program fragment in part (b) is functionally equivalent to the one in part (a).
After the count is copied into ECX, it uses the repeat prefix rep with a movsb instruction; the rep movsb

instruction does the same thing as the last four lines in part (a).

           lea    esi, sourceStr  ; source string
           lea    edi, destStr    ; destination
           cld                    ; forward movement
           mov    ecx, count      ; count of characters to copy
           jecxz  endCopy         ; skip loop if count is zero
   copy:   movsb                  ; move 1 character
           loop   copy            ; decrement count and continue
   endCopy:

                        (a)  movsbiterated in a loop

           lea    esi, sourceStr  ; source string
           lea    edi, destStr    ; destination
           cld                    ; forward movement
           mov    ecx, count      ; count of characters to copy
           rep movsb              ; move characters

                       (b)  repeat prefix with movsb

Figure 7.4: Copying a fixed number of characters of a string

The rep prefix is normally used with the movs instructions and with the stos instruction (discussed below).

It causes the following design to be executed:

while count in ECX > 0 loop
      perform primitive instruction;
      decrement ECX by 1;
end while;

Note that this is a while loop. The primitive instruction is not executed at all if ECX contains zero. It is not
necessary to guard a repeated string instruction as it often is with an ordinary for loop implemented with the
loop instruction.

The other two repeat prefixes are repe, with equivalent mnemonic repz, and repne, which is the same as
repnz. The mnemonic repe stands for "repeat while equal" and repz stands for "repeat while zero."
Similarly repne and repnz mean "repeat while not equal" and "repeat while not zero," respectively. Each
of these repeat prefixes is appropriate for use with the two string instructions cmps and scas, which affect

the zero flag ZF.

The names of these mnemonics partially describe their actions. Each instruction works the same as rep,

iterating a primitive instruction while ECX is not zero. However, each also examines ZF after the string
instruction is executed. The repe and repz continue iterating while ZF=1, as it would be following a
comparison where two operands were equal. The repne and repnz continue iterating while ZF=0, as it



would be following a comparison where two operands were different. Repeat prefixes themselves do not
affect any flag. The three repeat prefixes are summarized in Fig. 7.5. Note that rep and repz (repe)

generate exactly the same code.

Mnemonic Loop while Number of bytes Opcode

rep ECX>0 1 F3

repz/repe ECX>0 and ZF=1 1 F3

repnz/repne ECX>0 and ZF=0 1 F2

Figure 7.5: Repeat prefixes

The repz and repnz prefixes do not quite produce true while loops with the conditions shown in Fig. 7.5.

The value in ECX is checked prior to the first iteration of the primitive instruction, as it should be with a
while loop. However, ZF is not checked until after the primitive instruction is executed. In practice, this is
very convenient since the instruction is skipped for a zero count, but the programmer does not have to do
anything special to initialize ZF prior to repeated instructions.

Figure 7.6 shows how the repeat prefix rep combines with the movs instructions. In the clock cycles

columns, there is a "set up" time plus a time for each iteration. The n in the table represents the number of
iterations, so that, for example, a rep movsb takes 33 (13+4×5) clock cycles on a Pentium to move five

bytes. (The table entries are not strictly accurate since there are special timings for the 486 and Pentium
when n=0 or n=1.)

  Element Clock Cycles Number  

Mnemonic size 386 486 Pentium of bytes Opcode

rep movsb byte 7+4n 12+3n 13+4n 2 F3 A4

rep movsw word         F3 A5

rep movsd doubleword         F3 A5

Figure 7.6: rep movs instructions

The cmps instructions, summarized in Fig. 7.7, compare elements of source and destination strings.
Chapter 5 explained how a cmp instruction subtracts two operands and sets flags based on the difference.
Similarly, cmps subtracts two string elements and sets flags based on the difference; neither operand is
changed. If a cmps instruction is used in a loop, it is appropriate to follow cmps by almost any of the

conditional jump instructions, depending on the design being implemented.

  Element Clock Cycles Number  

Mnemonic size 386 486 Pentium of bytes Opcode

cmpsb byte 10 8 5 1 A6

cmpsw word         A7

cmpsd doubleword         A7

repe cmpsb byte 5+9n 7+7n 9+4n 2 F3 A6

repe cmpsw word         F3 A7

repe cmpsd doubleword         F3 A7

repne cmpsb byte 5+9n 7+7n 9+4n 2 F2 A6

repne cmpsw word         F2 A7

repne cmpsd doubleword         F2 A7



Figure 7.7: cmps instructions

Repeat prefixes are often used with cmps instructions. In fact, for the task of finding if two strings are
identical, the repe prefix is a perfect companion for cmps. Figure 7.7 summarizes all the cmps instructions,
including repeated ones. Again, the timings are not strictly accurate for 486 and Pentium CPUs; for rep
cmps there are special timings when n=0.

It is often necessary to search for one string embedded in another. Suppose that the task at hand is to find
the position, if any, at which the string at key appears in the string at target. One simple algorithm to do this
is

position := 1;
while position < (targetLength - keyLength + 1) loop
      if key matches the substring of target starting at position
      then
           report success;
           exit process;
      end if;
      add 1 to position;
end while;
report failure;

This algorithm checks to see if the key string matches the portion of the target string starting at each
possible position. Using 80x86 registers, checking for one match can be done as follows:

ESI := address of key;
EDI := address of target + position - 1;
ECX := length of key;

forever loop
     if ECX = 0 then exit loop; end if;
     compare [ESI] and [EDI] setting ZF;
     increment ESI;
     increment EDI;
     decrement ECX;
     if ZF = 0 then exit loop; end if;
end loop;

if ZF = 1
then
      match was found;
end if;

The forever loop is exactly what is done by the repeated string instruction repe cmpsb. Since the loop is

terminated when either ECX = 0 or when ZF = 0, it is necessary to be sure that the last pair of characters
compared were the same; this is the reason for the extra if structure at the end of the design. Figure 7.8
shows a complete program that implements this design.

; program to search for one string embedded in another
; author: R. Detmer revised: 10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD
INCLUDE io.h

cr          EQU    0dh   ; carriage return character
Lf          EQU    0ah   ; linefeed character

.STACK 4096              ; reserve 4096-byte stack



.DATA
prompt1     BYTE   "String to search? ", 0
prompt2     BYTE   cr, Lf, "Key to search for? ", 0
target      BYTE   80 DUP (?)
key         BYTE   80 DUP (?)
trgtLength  DWORD  ?
keyLength   DWORD  ?
lastPosn    DWORD  ?
failure     BYTE   cr,Lf,Lf,"The key does not appear in the string.",cr,Lf,0
success     BYTE   cr,Lf,Lf,'The key appears at position'
position    BYTE   11 DUP (?)
            BYTE   "   in the string.", cr, Lf, 0

PUBLIC _start                      ; make entry point public
.CODE

_start:     output prompt1         ; ask for
            input  target,80       ; and input target string
            lea    eax, target     ; find length of string
            push   eax             ; length parameter
            call   strlen
            mov    trgtLength,eax  ; save length of target
            output prompt2         ; ask for
            input  key,80          ; and input key string
            lea    eax, key        ; find length of string
            push   eax             ; length parameter
            call   strlen
            mov    keyLength,eax   ; save length of key

; calculate last position of target to check
            mov    eax,trgtLength
            sub    eax,keyLength
            inc    eax             ; trgtLength -  keyLength + 1
            mov    lastPosn, eax
            cld                    ; left to right comparison

            mov    eax,1           ; starting position
whilePosn:  cmp    eax,lastPosn    ; position <= last_posn?
            jnle   endWhilePosn    ; exit if past last position
            lea    esi,target      ; address of target string
            add    esi,eax         ; add position
            dec    esi             ; address of position to check
            lea    edi,key         ; address of key
            mov    ecx,keyLength   ; number of positions to check
            repe   cmpsb           ; check
            jz     found           ; exit on success
            inc    eax             ; increment position
            jmp    whilePosn       ; repeat
endWhilePosn:
            output failure         ; the search failed
            jmp    quit            ; exit
found:      dtoa   position,eax    ; convert position to ASCII
            output success         ; search succeeded
quit:
            INVOKE ExitProcess, 0  ; exit with return code 0
strlen      PROC   NEAR32
; find length of string whose address is passed on stack
; length returned in EAX
            push   ebp             ; establish stack frame
            mov    ebp, esp
            pushf                  ; save flags
            push   ebx             ; and EBX



            sub    eax, eax        ; length := 0
            mov    ebx, [ebp+8]    ; address of string
whileChar:  cmp    BYTE PTR [ebx], 0 ; null byte?
            je     endWhileChar    ; exit if so
            inc    eax             ; increment length
            inc    ebx             ; point at next character
            jmp    whileChar       ; repeat
endWhileChar:
            pop    ebx             ; restore registers and flags
            popf
            pop    ebp
            ret    4               ; return, discarding parameter
strlen      ENDP

            END

Figure 7.8: String search program

The scan string instruction scas is used to scan a string for the presence or absence of a particular string

element. The string that is examined is a destination string; that is, the address of the element being
examined is in the destination index register EDI. With a scasb instruction, the element searched for is the
byte in the AL register; with a scasw, it is the word in the AX register; and with a scasd, it is the
doubleword in the EAX register. The scasb, scasw, and scasd instructions use no operand since the
mnemonics tell the element size. Figure 7.9 summarizes the scas instructions; as with the previous

repeated instructions, there are special timings for n=0 on the 486 and Pentium.

  Element Clock Cycles Number  

Mnemonic size 386 486 Pentium of bytes Opcode

scasb byte 7 6 4 1 AE

scasw word         AF

scasd doubleword         AF

repe scasb byte 5+8n 7+5n 9+4n 2 F3 AE

repe scasw word         F3 AF

repe scasd doubleword         F3 AF

repne scasb byte 5+8n 7+5n 9+4n 2 F2 AE

repne scasw word         F2 AF

repne scasd doubleword         F2 AF

Figure 7.9: scas instructions (use EDI)

The program shown in Fig. 7.10 inputs a string and a character and uses repne scasb to locate the

position of the first occurrence of the character in the string. It then displays the part of the string from the
character to the end. The length of the string is calculated using the strlen procedure that previously
appeared in Fig. 7.8; this time we assume that strlen is separately assembled. The lea instruction is used
to load the offset of the string to be searched and cld ensures a forward search.

; Program to locate a character within a string.
; The string is displayed from the character to the end.
; author: R. Detmer revised: 10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD



INCLUDE io.h
EXTRN strlen:NEAR32
PUBLIC _start

cr        EQU     0dh    ; carriage return character
Lf        EQU     0ah    ; linefeed character

.STACK 4096              ; reserve 4096-byte stack

.DATA
prompt1   BYTE    "String? ", 0
prompt2   BYTE    cr, Lf, Lf, "Character? ", 0
string    BYTE    80 DUP (?)
char      BYTE    5 DUP (?)
label1    BYTE    cr, Lf, Lf, "The rest of the string is ---", 0
crlf      BYTE    cr, Lf, 0

.CODE
_start:   output  prompt1        ; prompt for string
          input   string,80      ; get string
          lea     eax, string    ; find length of string
          push    eax            ; length parameter
          call    strlen
          inc     ecx            ; include null in string length
          mov     ecx, eax       ; save length of string

          output  prompt2        ; prompt for character
          input   char,5         ; get character
          mov     al, char       ; character to AL

          lea     edi, string    ; offset of string
          cld                    ; forward movement
          repne   scasb          ; scan while character not found
          dec     edi            ; back up to null or matching character

          output  label1         ; print label
          output  [edi]          ; output string
          output  crlf           ; skip to new line

          INVOKE  ExitProcess, 0 ; exit with return code 0
          END

Figure 7.10: Program to find character in string

After the search, the destination index EDI will be one greater than desired since a string instruction always
increments index registers whether or not flags were set. If the search succeeded, EDI will contain the
address of the character following the one that matched with AL, or the address of the character after the
end of the string if ECX was decremented to zero. The dec edi instruction takes care of both cases,

backing up to the position of the matching character if there was one, or to the null byte at the end of the
string otherwise. The string length was incremented so that the null character would be included in the
search. The output macro displays the last portion of the string, whose address is in EDI.

The store string instruction stos copies a byte, a word, or a doubleword from AL, AX, or EAX to an element
of a destination string. A stos instruction affects no flag, so that when it is repeated with rep, it copies the

same value into consecutive positions of a string. For example, the following code will store spaces in the
first 30 bytes of string.

     mov   ecx,30        ; 30 bytes
     mov   al, ' '       ; character to store
     lea   edi, string   ; address of string
     cld                 ; forward direction
     rep stosb           ; store spaces



Information about the stos instructions is in Fig. 7.11. As with previous repeated string instructions, the

80486 and Pentium have special timings when n=0.

  Element Clock Cycles Number  

Mnemonic size 386 486 Pentium of bytes Opcode

stosb byte 4 5 3 1 AA

stosw word         AB

stosd doubleword         AB

rep stosb byte 5+5n 7+4n 9n 2 F3 A6

rep stosw word         F3 A7

rep stosd doubleword         F3 A7

Figure 7.11: stos instructions (use EDI)

The load string instruction lods is the final string instruction. This instruction copies a source string element
to the AL, AX, or EAX register, depending on the string element size. A lods instruction sets no flag. It is
possible to use a rep prefix with lods but it is not helpful-all values except for the last string element would
be replaced as successive values were copied to the destination register. A lods instruction is useful in a

loop set up with other instructions, making it possible to easily process string elements one at a time. The
lods instructions are summarized in Fig. 7.12. Repeated versions are not included since they are not used.

  Element Clock Cycles Number  

Mnemonic size 386 486 Pentium of bytes Opcode

lodsb byte 5 5 2 1 AC

lodsw word         AD

lodsd doubleword         AD

Figure 7.12: lods instructions (use ESI)

Exercises 7.2

For each exercise below, assume that the data segment contains

source  BYTE   "brown"
dest    BYTE   "brine"

Suppose that the following instructions are executed:1.

lea   esi, source
lea   edi, dest
cld
mov   ecx, 5
repne cmpsb

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what will be the values stored in
ESI and EDI following the repne cmpsb instruction? What will be stored in ECX?

Suppose that the following instructions are executed:2.

lea   esi, source
lea   edi, dest
cld



mov   ecx, 5
repe  cmpsb

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what will be the values stored in
ESI and EDI following the repe cmpsb instruction? What will be stored in ECX?

Suppose that the following instructions are executed:3.

mov   al, 'w'
lea   edi, dest
cld
mov   ecx, 5
repe scasb

Assuming that EDI starts at 00010005, what will be the value stored in EDI following the repe scasb

instruction? What will be stored in ECX?

Suppose that the following instructions are executed:4.

mov   al, 'n'
lea   edi, dest
cld
mov   ecx, 5
repne scasb

Assuming that EDI starts at 00010005, what will be the value stored in EDI following the repne
scasb instruction? What will be stored in ECX?

Suppose that the following instructions are executed:5.

mov   al, '*'
lea   edi, dest
cld
mov   ecx, 5
rep   stosb

Assuming that EDI starts at 00010005, what will be the value stored in EDI following the rep stosb

instruction? What will be stored in ECX? What will be stored in the destination string?

Suppose that the following instructions are executed:6.

      lea esi, source
      lea edi, dest
      cld
      mov ecx, 5
for6: lodsb
      inc al
      stosb
      loop  for6
endFor6:

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what will be the values stored in
ESI and EDI following the for loop? What will be stored in ECX? What will be stored in the destination
string?

Suppose that the following instructions are executed:7.

lea   esi, source
lea   edi, dest
cld



mov   ecx, 3
rep   movsb

Assuming that ESI starts at 00010000 and EDI starts at 00010005, what will be the values stored in
ESI and EDI following the rep movsb instruction? What will be stored in ECX? What will be stored in

the destination string?

Suppose that the following instructions are executed:8.

lea   esi, source+4
lea   edi, dest+4
std
mov   ecx, 3
rep   movsb

Assuming that ESI starts at 00010010 and EDI starts at 00010015, what will be the values stored in
ESI and EDI following the rep movsb instruction? What will be stored in ECX? What will be stored in

the destination string?

Programming Exercises 7.2

Write a NEAR32 procedure index to find the position of the first occurrence of a character in a null-

terminated string. Specifically, the procedure must have two parameters: (1) a character and (2) the
address of a string in the data segment. Use the stack to pass the parameters: For the character,
use an entire word with the character in the low-order byte. Use the EAX register to return the
position of the character within the string; return zero if the character is not found. No other register
should be altered. Procedure index will not remove parameters from the stack.

1.

Write a NEAR32 procedure append that will append one null-terminated string to the end of another.

Specifically, the procedure must have two parameters: (1) the address of string1 in the data segment
and (2) the address of string2 in the data segment. Use the stack to pass the parameters. The
procedure should copy the characters of string2 to the end of string1 with the first character of
string2 replacing the null byte at the end of string1, and so on. (Warning: In the data section, enough
space must be reserved after the null byte of the first string to hold the characters from the second
string.) All registers used by the procedure should be saved and restored. Procedure append will not
remove parameters from the stack.

2.

Write a complete program that prompts for and inputs a person's name in the "LastName,
FirstName" format and builds a new string with the name in the format "FirstName LastName." A
comma and a space separate the names originally and there is no character except the null following
FirstName; only a space separates the names in the new string. After you generate the new string in
memory, display it.

3.

Write a complete program which prompts for and inputs a person's name in the "LastName,
FirstName" format and builds a new string with the name in the format "FirstName LastName." One
or more spaces separate the names originally and there may be spaces following FirstName. Only a
single space separates the names in the new string. After you generate the new string in memory,
display it.

4.

Write a complete program that prompts for and inputs a string and a single character. Construct a
new string that is identical to the old one except that it is shortened by removing each occurrence of
the character. After you generate the new string in memory, display it.

5.

Write a complete program that prompts for and inputs a sentence and a single word. Construct a
new sentence that is identical to the old one except that it is shortened by removing each occurrence
of the word. After you generate the new sentence in memory, display it.

6.

Write a complete program that prompts for and inputs a sentence and two words. Construct a new
sentence that is identical to the old one except that each occurrence of the first word is replaced by
the second word. After you generate the new sentence in memory, display it.

7.





7.3 Character Translation

Sometimes character data are available in one format but need to be in another format for processing.
One instance of this occurs when characters are transmitted between two computer systems, one
normally using ASCII character codes and the other normally using EBCDIC character codes. Another
time character codes need to be altered is to transmit them to a device that cannot process all possible
codes; it is sometimes easier to replace the unsuitable codes by acceptable codes than to delete them
entirely.

The 80x86 instruction set includes the xlat instruction to translate one character to another character.

In combination with other string-processing instructions, it can easily translate all the characters in a
string.

The xlat instruction requires only one byte of object code, the opcode D7. It takes five clock cycles to

execute on an 80386, and four clock cycles on an 80486 or a Pentium. Prior to execution, the character
to be translated is in the AL register. The instruction works by using a translation table in the data
segment to look up the translation of the byte in AL. This translation table normally contains 256 bytes
of data, one for each possible 8-bit value in AL. The byte at offset zero in the table-the first byte-is the
character to which 00 is translated. The byte at offset one is the character to which 01 is translated. In
general xlat uses the character being translated as an offset into the table, and the byte at that offset

then replaces the character in AL.

The xlat instruction has no operand. The EBX register must contain the address of the translation

table.

Figure 7.13 illustrates a short program which translates each character of string in place; that is, it
replaces each character by its translation using the original location in memory. The heart of the
program is the translation table and the sequence of instructions

; Translate uppercase letters to lowercase; don't change lower
; case letters and digits. Translate other characters to spaces.
; author: R. Detmer revised: 10/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD
INCLUDE io.h
PUBLIC _start
cr          EQU    0dh    ; carriage return character
Lf          EQU    0ah    ; linefeed character

.STACK  4096              ; reserve 4096-byte stack

.DATA
string      BYTE   'This is a #!$& STRING',0
strLength   EQU    $ - string - 1
label1      BYTE   'Original string ->',0
label2      BYTE   cr, Lf, 'Translated string ->',0
crlf        BYTE   cr, Lf, 0
table       BYTE   48 DUP (' '), '0123456789', 7 DUP (' ')
            BYTE   'abcdefghijklmnopqrstuvwxyz', 6 DUP (' ')
            BYTE   'abcdefghijklmnopqrstuvwxyz', 133 DUP (' ')

.CODE
_start:     output label1           ; display original string
            output string
            output crlf
            mov    ecx, strLength   ; string length
            lea    ebx, table       ; address of translation table
            lea    esi, string      ; address of string



            lea    edi, string      ; destination also string
forIndex:   lodsb                   ; copy next character to AL
            xlat                    ; translate character
            stosb                   ; copy character back into string
            loop   forIndex         ; repeat for all characters

            output label2           ; display altered string
            output string
            output crlf

            INVOKE ExitProcess, 0
            END

Figure 7.13: Translation program

          mov   ecx, strLength ; string length
          lea   ebx, table     ; address of translation table
          lea   esi, string    ; address of string
          lea   edi, string    ; destination also string
forIndex: lodsb                ; copy next character to AL
          xlat                 ; translate character
          stosb                ; copy character back into string
          loop forIndex        ; repeat for all characters

These instructions implement a for loop with the design

for index := 1 to stringLength loop
      load source character into AL;
      translate character in AL;
      copy character in AL to destination;
end for;

One new feature in this program is the use of the location counter symbol $. Recall that the assembler
calculates addresses as if they start at 00000000, and increments a counter every time it generates
bytes of object code. The dollar sign symbol refers to the value of this counter at the time it is
encountered in assembly. In this particular program, it will be at the address just beyond the null byte of
the string. Since the symbol string actually references its address, the expression string - $ is the
length of string, including the null byte. The value equated to strLength is string - $ - 1, which

excludes the null byte. The assembly process will be discussed more in Chapter 9.

Each ASCII code is translated to another ASCII code by this program. Uppercase letters are translated
to lowercase, lowercase letters and digits are unchanged, and all other characters are translated to
spaces. Construction of such a table involves looking at a table of ASCII codes (see Appendix A). For
this program the translation table is defined by

table      BYTE   48 DUP (' '), '0123456789', 7 DUP (' ')
           BYTE   'abcdefghijklmnopqrstuvwxyz', 6 DUP (' ')
           BYTE   'abcdefghijklmnopqrstuvwxyz', 133 DUP (' ')

Careful counting will show that exactly 256 bytes are defined. Recall that a BYTE directive stores the
ASCII code of each character operand. Each of the first 48 bytes of the table will contain the ASCII
code for a space (i.e., blank), 2016. Therefore if the code in the AL register represents any of the first
48 ASCII characters-a control character, or one of the printable characters from 2016 (space) to 2F16

(/)-it will be translated to a space.

Note that it is legal to translate a character to itself. Indeed, this is what will happen for digits; the ASCII
codes 3016 to 3916 for digits 0 through 9 appear at offsets 3016 to 3916. The codes for the seven
characters : through @ are next in an ASCII chart; each of these will be translated to a space. The next
ASCII characters are the uppercase letters and the next entries in the table are codes for the lowercase



letters. For example, the table contains 6116 at offset 4116, so an uppercase A (ASCII code 4116) will
be translated to a lower case a (ASCII code 6116). The next six blanks are at the offsets 9116 ([)
through 9616 (‘), so that each of these characters is translated to a blank. The ASCII code for each
lowercase letter is assembled at an offset equal to its value, so each lowercase letter is translated to
itself. Finally, the translation table contains 133 ASCII codes for blanks; these are the destinations for {,
|, }, ~, DEL, and each of the 128 bit patterns starting with a one, none of them codes for ASCII
characters.

Figure 7.14 shows the output of the program in Fig. 7.13. Notice that "strange" characters are not
deleted, they are replaced by blanks.

   Original string    ->This is a #!$& STRING

   Translated string ->this is a       string

Figure 7.14: Output from translation program

Exercises 7.3

Here is a partial hexadecimal/EBCDIC conversion table:

81 a C1 A 40 space

82 b C2 B 4B .

83 c C3 C 6B ,

84 d C4 D  

85 e C5 E F0 0

86 f C6 F F1 1

87 g C7 G F2 2

88 h C8 H F3 3

89 i C9 I F4 4

91 j D1 J F5 5

92 k D2 K F6 6

93 l D3 L F7 7

94 m D4 M F8 8

95 n D5 N F9 9

96 o D6 O  

97 p D7 P  

98 q D8 Q  

99 r D9 R  

A2 s E2 S  

A3 t E3 T  

A4 u E4 U  

A5 v E5 V  

A6 w E6 W  

A7 X E7 X  

A8 y E8 Y  

A9 z E9 Z  

Give a translation table that would be suitable for xlat translation of EBCDIC codes for letters,

digits, space, period, and comma to the corresponding ASCII codes, translating every other
EBCDIC code to a null character.

1.

2.



Give a translation table that would be suitable for xlat translation of ASCII codes for lowercase

letters to the corresponding uppercase letters, leaving all other characters unchanged.

2.

Here is an alternative to the xlat instruction.3.

movzx   eax, al       ; clear high order bits in EAX
mov     al, [ebx+eax] ; copy new character from table to AL

Given that [ebx+eax] references the memory byte at the address that is the sum of the
contents of EBX and EAX, explain why this pair of instructions is equivalent to a single xlat

instruction.

Programming Exercises 7.3

In the United States, decimal numbers are written with a decimal point separating the integral
part from the fractional part and with commas every three positions to the left of the decimal
point. In many European countries, decimal numbers are written with the roles of commas and
decimal points reversed. For example, the number 1,234,567.89 would be written 1.234.567,89.
Write a program that will interchange commas and periods, translating a string of characters
representing either format of number to the other format. Use the xlat instruction with a

translation table that translates a period to a comma, a comma to a period, each digit to itself,
and any other character to a space. Prompt for and input the number to be translated. Translate
the string. Display the new number format with an appropriate label.

1.



7.4 Converting a 2’s Complement Integer to an ASCII String

The dtoa and itoa macros have been used to convert 2’s complement integers to strings of ASCII

characters for output. The code for these operations is similar. In this section we examine the slightly
shorter code for itoa.

The itoa macro expands into the following sequence of instructions.

     push   ebx             ; save EBX
     mov    bx, source
     push   bx              ; source parameter
     lea    ebx, dest       ; destination address
     push   ebx             ; destination parameter
     call   itoaproc        ; call itoaproc(source,dest)
     pop    ebx             ; restore EBX

These instructions call procedure itoaproc after pushing the source value and the destination address on
the stack. The actual source and destination are used in the expanded macro, not the names source and
dest. So that the user does not need to worry about any register contents being altered, EBX is initially
saved on the stack and is restored at the end of the sequence. The parameters are removed from the
stack by procedure itoaproc since the alternative add esp,6 following the call instruction potentially

changes the flags.

The real work of 2’s complement integer to ASCII conversion is done by the procedure itoaproc. The
assembled version of this procedure is contained in the file IO.OBJ. The source code from file IO.ASM is
shown in Fig. 7.15. The procedure begins by saving all of the registers that it alters on the stack; the flag
register is also saved so that the procedure call to itoaproc will not change flag settings. The flag register
and other registers are restored immediately before returning from the procedure.

; itoaproc(source, dest)
; convert integer (source) to string of 6 characters at destination address

itoaproc    PROC    NEAR32
            push    ebp                ; save base pointer
            mov     ebp, esp           ; establish stack frame
            push    eax                ; Save registers
            push    ebx                ; used by
            push    ecx                ; procedure
            push    edx
            push    edi
            pushf                      ; save flags

            mov     ax, [ebp+12]       ; first parameter (source integer)
            mov     edi, [ebp+8]       ; second parameter (dest address)
ifSpecial:  cmp     ax,8000h           ; special case - 32,768?
            jne     EndIfSpecial       ; if not, then normal case
            mov     BYTE PTR [edi],'-' ; manually put in ASCII codes
            mov     BYTE PTR [edi+1],'3' ; for - 32,768
            mov     BYTE PTR [edi+2],'2'
            mov     BYTE PTR [edi+3],'7'
            mov     BYTE PTR [edi+4],'6'
            mov     BYTE PTR [edi+5],'8'
            jmp     ExitIToA ; done with special case
EndIfSpecial:

            mov     dx, ax             ; save source number

            mov     al,' '             ; put blanks in
            mov     ecx,5              ; first five
            cld                        ; bytes of



            rep     stosb              ; destination field

            mov     ax, dx             ; copy source number
            mov     cl,' '             ; default sign (blank for +)
IfNeg:      cmp     ax,0               ; check sign of number
            jge     EndIfNeg           ; skip if not negative
            mov     cl,'-'             ; sign for negative number
            neg     ax                 ; number in AX now >= 0
EndIfNeg:

            mov     bx,10              ; divisor
WhileMore:  mov     dx,0               ; extend number to doubleword
            div     bx                 ; divide by 10
            add     dl,30h             ; convert remainder to character
            mov     [edi],dl           ; put character in string
            dec     edi                ; move forward to next position
            cmp     ax,0               ; check quotient
            jnz     WhileMore          ; continue if quotient not zero

            mov     [edi],cl           ; insert blank or "-" for sign
ExitIToA:   popf                       ; restore flags and registers
            pop     edi
            pop     edx
            pop     ecx
            pop     ebx
            pop     eax
            pop     ebp
            ret     6                  ;exit, discarding parameters
itoaproc      ENDP

Figure 7.15: Integer to ASCII conversion procedure

The basic idea of the procedure is to build a string of characters right to left by repeatedly dividing the
number by 10, using the remainder to determine the rightmostcharacter. For instance, dividing the number
2895 (0B4F16) by 10 gives a remainder of 5 and a quotient of 289 (012116), the last digit of the number
and a new number with which to repeat the process. This scheme works nicely for positive numbers, but a
negative number must be changed to its absolute value before starting the division loop. To complicate
things further, the bit pattern 800016 represents the negative number - 32,76810, but +32,768 cannot be
represented in 2’s complement form in a 16-bit word.

After standard entry code, the value parameter is copied to AX and the destination address to EDI. The
procedure then checks for the special case 800016. If this is the value, then the ASCII codes for 32768 are
moved one at a time to the destination, using the fact that the destination address is in EDI. The location
for the minus sign is in the EDI register, so register indirect addressing can be used to put this character in
the correct memory byte. The location for the character 3 is one byte beyond the address contained in
EDI; this address is referenced by [edi+1]. The remaining four characters are similarly put in place, and

the procedure is exited.

The next step of the procedure is to put five leading blanks in the six-byte-long destination field. The
procedure does this with a rep stosb, which uses EDI to point to successive bytes in destination field.

Note that EDI is left pointing at the last byte of the destination field.

The procedure next stores the correct "sign" in the CL register. A blank is used for a number greater than
or equal to zero, and minus character (- ) is used for a negative number. A negative number is also
negated, giving its absolute value for subsequent processing.

Finally the main idea is executed. The divisor 10 is placed in the BX register. The non-negative number is
extended to a doubleword by moving zeros to DX. Division by 10 in BX gives a remainder from 0 to 9 in
DX, the last decimal digit of the number. This is converted to the corresponding ASCII code by adding
3016; recall that the ASCII codes for digits 0 through 9 are 3016 through 3916. A mov using register indirect

addressing puts the character in place in the destination string, and EDI is decremented to point at the
next position to the left.



This process is repeated until the quotient is zero. Finally the "sign" stored in CL (blank or –) is copied to
the immediate left of the last code for a digit. Other positions to the left, if any, were previously filled with
blanks.

Exercises 7.4

Why does itoaproc use a destination string six bytes long?1.

Suppose that negative numbers are not changed before the division loop of itoaproc begins and
that an idiv instruction is used rather than a div instruction in this loop. Recall that when a

negative number is divided by a positive number, both quotient and remainder will be negative. For
instance, - 1273 = 10*(- 127) + (- 3). How could the rest of the division loop be modified to
produce the correct ASCII codes for both positive and negative numbers?

2.

Programming Exercises 7.4

Rewrite itoaproc, adding a length parameter. Specifically, the new itoaNew will be a NEAR32

procedure with three parameters, passed on the stack:

the 2’s complement number to convert to ASCII characters (a word)1.

the address of the ASCII string (a doubleword)2.

the desired length of the ASCII string (a word)3.

The number will be converted to a string of ASCII characters starting at the offset in the data
segment. Do not use a blank in front of a positive number. If the length is less than or equal to the
actual number of characters needed to display the number, fill the entire field with pound signs (#).
If the length is larger than needed, pad with extra spaces to the left of the number. The procedure
will remove parameters from the stack and must modify no register.

1.

Write a NEAR32 procedure hexString that converts a 32-bit integer to a string of exactly eight

characters representing its value as a hexadecimal number. (That is, the output characters will be
0–9 and A–F, with no blanks.) The procedure will have two parameters, passed on the stack:

the number1.

the address of the destination string2.

The procedure will remove parameters from the stack and must modify no register. (The remainder
upon division by 16 produces a decimal value corresponding to the rightmost hex digit.)

2.

Write a NEAR32 procedure binaryString that converts a 32-bit integer to a string of exactly 32

characters representing its value as a binary number. The procedure will have two parameters,
passed on the stack:

the number1.

the address of the destination string2.

The procedure will remove parameters from the stack and must modify no register. (The remainder
upon division by 2 gives the rightmost bit.)

3.



7.5 Other Architectures: CISC versus RISC Designs

Early digital computers had very simple instruction sets. When designers began to use microcode to
implement instructions in the 1960s, it became possible to have much more complex instructions. At
the same time high-level programming languages were becoming popular, but language compilers
were fairly primitive. This made it desirable to have machine language statements that almost directly
implemented high-level language statements, increasing the pressure to produce computer
architectures with many complex instructions.

The Intel 80x86 machines use complex instruction set computer (CISC) designs. Instructions such as
the string instructions discussed in this chapter would never have appeared in early computers. CISC
machines also have a variety of memory addressing modes, and the 80x86 family is typical in this
respect, although you have only seen a few of its modes so far. Often CISC instructions take several
clock cycles to execute.

Reduced instruction set computer (RISC) designs began to appear in the 1980s. These machines have
relatively few instructions and few memory addressing modes. Their instructions are so simple that any
one can be executed in a single clock cycle. As compiler technology improved, it became possible to
produce efficient code for RISC machines. Of course, it often takes many more instructions to
implement a given high-level language statement on a RISC than on a CISC machine, but the overall
operation is often faster because of the speed with which individual instructions execute.

In RISC architectures, instructions are all the same format; that is, the same number of bytes are
encoded in a common pattern. This is not the case with CISC architectures. If the 80x86 chips were
RISC designs, then this book would have no questions asking "How many clock cycles?" or "How many
bytes?" When we look at the many 80x86 instruction formats in Chapter 9, you may wish for the
simplicity of a RISC machine.

One unusual feature of many RISC designs is a relatively large collection of registers (sometimes over
500), of which only a small number (often 32) are visible at one time. Registers are used to pass
parameters to procedures, and the registers that are used to store arguments in the calling program
overlap the registers that are used to receive the parameter values in the procedure. This provides a
simple but very efficient method of communication between a calling program and a procedure.

There are proponents of both CICS and RISC designs. At this point in time it is not obvious that one is
clearly better than the other. However, the popular Intel 80x86 and Motorola 680x0 families are both
CISC designs, so we will be dealing with CISC systems at least in the near future.



Chapter Summary

The word string refers to a collection of consecutive bytes, words, or doublewords in memory. The
80x86 instruction set includes five instructions for operating on strings: movs (to move or copy a string
from a source to a destination location), cmps (to compare two strings), scas (to scan a string for a
particular element), stos (to store a given value in a string), and lods (to copy a string element into

EAX, AX, or AL). Each of these has mnemonic forms ending with b, w, or d to give the size of the string
element.

A string instruction operates on one string element at a time. When a source string is involved, the
source index register ESI contains the address of the string element. When a destination string is
involved, the destination index register EDI contains the address of the string element. An index
register is incremented or decremented after the string element is accessed, depending on whether the
direction flag DF is reset to zero or set to one; the cld and std instructions are used to give the

direction flag a desired value.

Repeat prefixes rep, repe (repz), and repne (repnz) are used with some string instructions to

cause them to repeat automatically. The number of times to execute a primitive instruction is placed in
the ECX register. The conditional repeat forms use the count in ECX but will also terminate instruction
execution if the zero flag gets a certain value; these are appropriate for use with the cmps and scas

instructions that set or reset ZF.

The xlat instruction is used to translate the characters of a string. It requires a 256-byte-long

translation table that starts with the destination byte to which the source byte 00 is translated and ends
with the destination byte to which the source byte FF is translated. The xlat instruction can be used

for such applications as changing ASCII codes to EBCDIC codes or for changing the case of letters
within a given character coding system.

The itoa macro expands to code that calls a procedure itoaproc. Basically this procedure works by

repeatedly dividing a non-negative number by 10 and using the remainder to get the rightmost
character of the destination string.

The 80x86 chips are examples of complex instruction set computer (CISC) architecture. They include
many complex instructions and offer many different addressing modes. Reduced instruction set
computer (RISC) architectures implement fewer and simpler instructions and have more limited
addressing options. Even though RISC computers take more instructions to accomplish a task, they are
usually quite fast since they execute their simple instructions very rapidly.



Chapter 8: Bit Manipulation

A computer contains many integrated circuits that enable it to perform its functions. Each chip
incorporates from a few to many thousand logic gates, each an elementary circuit that performs
Boolean and, or, exclusive or, or not operations on bits that are represented by electronic states. The
CPU is usually the most complex integrated circuit in a PC.

Previous chapters have examined the 80x86 microprocessors' instructions for moving data, performing
arithmetic operations, handling strings, branching, and utilizing subroutines. The 80x86 (and most other
CPUs) can also execute instructions that perform Boolean operations on multiple pairs of bits at one
time. This chapter defines the Boolean operations and describes the 80x86 instructions that implement
them. It also covers the instructions that cause bit patterns to shift or rotate in a byte, word, or
doubleword, or to shift from one location to another. Although bit manipulation instructions are very
primitive, they are widely used in assembly language programming, often because they provide the sort
of control that is rarely available in a high-level language. The chapter contains several application
examples, including the procedure that is called by the atoi macro; this procedure uses bit

manipulation instructions in several places.

8.1 Logical Operations

Many high-level languages allow variables of Boolean type; that is, variables that are capable of storing
true or false values. Virtually all high-level languages allow expressions with Boolean values to be used
in conditional (if) statements. In assembly language the Boolean value true is identified with the bit
value 1 and the Boolean value false is identified with the bit value 0. Figure 8.1 gives the definitions of
the Boolean operations using bit values as the operands. The or operation is sometimes called
"inclusive or" to distinguish it from "exclusive or" (xor). The only difference between or and xor is for
two 1 bits; 1 or 1 is 1, but 1 xor 1 is 0; that is, "exclusive" or corresponds to one operand or the other
true, but not both.

Figure 8.1: Definitions of logical operations

The 80x86 has and, or, xor, and not instructions that implement the logical operations. The formats

of these instructions are

     and  destination, source

     or   destination, source

     xor  destination, source

     not  destination

The first three instructions act on pairs of doublewords, words, or bytes, performing the logical



operations on the bits in corresponding positions from the two operands. For example, when the
instruction and bx,cx is executed, bit 0 from the BX register is "anded" with bit 0 from the CX

register, bit 1 from BX is "anded" with bit 1 from CX, and so forth to bit 15 from BX and bit 15 from CX.
The results of these 16 and operations are put in the corresponding positions in the destination.

The not instruction has only a single operand. It changes each 0 bit in that operand to 1 and each 1 bit
to 0. For example, if the AH register contains 10110110 and the instruction not ah is executed, then

the result in AH will be 01001001. This is sometimes called "taking the one's complement" of the
operand.

The not instruction does not affect any flag. However, each of the other three Boolean instructions

affects CF, OF, PF, SF, ZF, and AF. The carry flag CF and overflow flag OF flags are both reset to 0;
the value of the auxiliary carry flag AF may be changed but is undefined. The parity flag PF, the sign
flag SF, and the zero flag ZF are set or reset according to the value of the result of the operation. For
instance, if the result is a pattern of all 0 bits, then ZF will be set to 1; if any bit of the result is not 0,
then ZF will be reset to 0.

The and, or, and xor instructions all accept the same types of operands, use the same number of

clock cycles for execution, and require the same number of bytes of object code. They are summarized
together in Fig. 8.2. Information about the not instruction is given in Fig. 8.3.

Destination Source   Clock Cycles Number of
Bytes

Opcode

Operand Operand 386 486 Pentium and or xor

register 8 immediate 8 2 1 1 3 80 80 80

register 16 immediate 8 2 1 1 3 83 83 83

register 32 immediate 8 2 1 1 3 83 83 83

register 16 immediate 16 2 1 1 4 81 81 81

register 32 immediate 32 2 1 1 6 81 81 81

AL immediate 8 2 1 1 2 24 0C 34

AX immediate 16 2 1 1 3 25 0D 35

EAX immediate 32 2 1 1 5 25 0D 35

memory byte immediate 8 7 3 3 3+ 80 80 80

memory word immediate 8 7 3 3 3+ 83 83 83

memory
doubleword

immediate 8 7 3 3 3+ 83 83 83

memory word immediate 16 7 3 3 4+ 81 81 81

memory
doubleword

immediate 32 7 3 3 6+ 81 81 81

register 8 register 8 2 1 1 2 22 0A 32

register 16 register 16 2 1 1 2 23 0B 33

register 32 register 32 2 1 1 2 23 0B 33

register 8 memory byte 6 2 2 2+ 22 0A 32

register 16 memory word 6 2 2 2+ 23 0B 33

register 32 memory
doubleword

6 2 2 2+ 23 0B 33

memory byte register 8 7 3 3 2+ 20 08 30

memory word register 16 7 3 3 2+ 21 09 31

memory
doubleword

register 32 7 3 3 2+ 21 09 31



Figure 8.2: and, or, and xor instructions

    Clock Cycles Number of Bytes  

Destination Operand 386 486 Pentium   Opcode

register 8 2 1 1 2 F6

register 16 2 1 1 2 F7

register 32 2 1 1 2 F7

memory byte 6 3 3 2 + F6

memory word 6 3 3 2 + F7

memory doubleword 6 3 3 2 + F7

Figure 8.3: not instruction

It is interesting to note that Fig. 8.2 is almost identical to Fig. 4.5, which showed add and sub
instructions. Also, Fig. 8.3 is almost identical to Fig. 4.7, which showed neg instructions. In both cases,

the available operand formats are identical, the timings are identical, and even many of the opcodes
are the same. (Recall that when the opcodes are the same, the second byte of the instruction
distinguishes between add, sub, and, or, and xor instructions.)

Here are some examples showing how the logical instructions work. To compute the results by hand, it
is necessary to expand each hex value to binary, do the logical operations on corresponding pairs of
bits, and convert the result back to hex. These expansions are shown in the examples. Most hex
calculators perform the logical operations directly.

Each of the logical instructions has a variety of uses. One application of the and instruction is to clear

selected bits in a destination. Note that if any bit value is "anded" with 1, the result is the original bit. On
the other hand, if any bit value is "anded" with 0, the result is 0. Because of this, selected bits in a byte
or word can be cleared by "anding" the destination with a bit pattern that has 1s in positions that are not
to be changed and 0s in positions that are to be cleared.

For example, to clear all but the last four bits in the EAX register, the following instruction can be used.

     and   eax, 0000000fh     ; clear first 28 bits of EAX

If EAX originally contained 4C881D7B, this and operation would yield 0000000B:

     0100 1100 1000 1000 0001 1101 0111 1011 4C881D7B
     0000 0000 0000 0000 0000 0000 0000 1111 0000000F
     0000 0000 0000 0000 0000 0000 0000 1011 0000000B



Only one of the leading zeros is needed in 0000000fh, but coding seven zeros helps clarify the purpose
of this operand. The trailing hex digit f corresponds to 1111 in binary, providing the four 1s that will
leave the last four bits in EAX unchanged.

A value that is used with a logical instruction to alter bit values is often called a mask. The Microsoft
assembler MASM accepts numeric values in decimal, hexadecimal, binary, and octal formats. Hex and
binary are preferred for constants used as masks since the bit pattern is obvious for binary values or
easy to figure out for hex values.

As illustrated above, the and instruction is useful when selected bits of a byte or word need to be
cleared. The or instruction is useful when selected bits of a byte or word need to be set to 1 without

changing other bits. Observe that if the value 1 is combined with either a 0 or 1 using the or operation,
then the result is 1. However, if the value 0 is used as one operand, then the result of an or operation is
the other operand.

The exclusive or instruction will complement selected bits of a byte or word without changing other bits.
This works since 0 xor 1 is 1 and 1 xor 1 is 0; that is, combining any operand with 1 using an xor
operation results in the opposite of the operand value.

A second use of logical instructions is to implement high-level language Boolean operations. One byte
in memory could be used to store eight Boolean values. If such a byte is at flags, then the statement

     and   flags, 11011101b      ; flag5 := false; flag1 := false

assigns value false to bits 1 and 5, leaving the other values unchanged. (Recall that bits are numbered
from right to left, starting with zero for the rightmost bit.)

If the byte in memory at flags is being used to store eight Boolean values, then an or instruction can

assign true values to any selected bits. For instance, the instruction

     or   flags, 00001100b       ; flag3 := true; flag2 := true

assigns true values to bits 2 and 3 without changing the other bits.

If the byte in memory at flags is being used to store eight Boolean values, then an xor instruction can

negate selected values. For instance, the design statement

flag6 := NOT flag6;

can be implemented as

     xor   flags, 01000000b      ; flag6 := not flag6

A third application of logical instructions is to perform certain arithmetic operations. Suppose that the
value in the EAX register is interpreted as an unsigned integer. The expression (value mod 32) could
be computed using the following sequence of instructions.

     mov   edx,0      ; extend value to quadword
     mov   ebx,32     ; divisor
     div   ebx        ; divide value by 32

Following these instructions, the remainder (value mod 32) will be in the EDX register. The following
alternative sequence leaves the same result in the EDX register without, however, putting the quotient
in EAX.

     mov   edx,eax        ; copy value to DX
     and   edx,0000001fh  ; compute value mod 32



This choice is much more efficient than the first one (see Exercise 2). It works because the value in
EDX is a binary number; as a sum it is

bit31*231 + bit30*230 + ... + bit2*22 + bit1*2 + bit0

Since each of these terms from bit31*231 down to bit5*25 is divisible by 32 (25), the remainder upon
division by 32 is the bit pattern represented by the trailing five bits, those left after masking by
0000001F. Similar instructions will work whenever the second operand of mod is a power of 2.

A fourth use of logical instructions is to manipulate ASCII codes. Recall that the ASCII codes for digits
are 3016 for 0, 3116 for 1, and so forth, to 3916 for 9. Suppose that the AL register contains the ASCII
code for a digit, and that the corresponding integer value is needed in EAX. If the value in the high-
order 24 bits in EAX are known to be zero, then the instruction

     sub   eax, 00000030h      ; convert ASCII code to integer

will do the job. If the high-order bits in EAX are unknown, then the instruction

     and   eax, 0000000fh      ; convert ASCII code to integer

is a much safer choice. It ensures that all but the last four bits of EAX are cleared. For example, if the
EAX register contains 5C3DF036, junk in the high order bits, and the ASCII code for the character 6 in
AL, then and eax,0000000fh produces the integer 00000006 in EAX.

The or instruction can be used to convert an integer value between 0 and 9 in a register to the

corresponding ASCII character code. For example, if the integer is in BL, then the following instruction
changes the contents of BL to the ASCII code.

     or bl,30h      ; convert digit to ASCII code

If BL contains 04, then the or instruction will yield 34:

     0000 0100   04
     0011 0000   30
     0011 0100   34

With the 80x86 processors, the instruction add bl,30h does the same job using the same number of
clock cycles and object code bytes. However, the or operation is more efficient than addition with

some CPUs.

An xor instruction can be used to change the case of the ASCII code for a letter. Suppose that the CL

register contains the ASCII code for some upper- or lowercase letter. The ASCII code for an uppercase
letter and the ASCII code for the corresponding lowercase letter differ only in the value of bit 5. For
example, the code for the uppercase letter S is 5316 (010100112) and the code for lowercase s is 7316

(011100112). The instruction

     xor   cl, 00100000b      ; change case of letter in CL

"flips" the value of bit 5 in the CL register, changing the value to the ASCII code for the other case
letter.

The 80x86 instruction set includes test instructions that function the same as and instructions except
that destination operands are not changed. This means that the only job of a test instruction is to set
flags. (Remember that a cmp instruction is essentially a sub instruction that sets flags but does not
change the destination operand.) One application of a test instruction is to examine a particular bit of

a byte or word. The following instruction tests bit 13 of the DX register.

     test  dx, 2000h      ; check bit 13



Note that 2000 in hex is the same as 0010 0000 0000 0000 in binary, with bit 13 equal to 1. Often this
test instruction would be followed by a jz or jnz instruction, and the effect would be to jump to the

destination if bit 13 were 0 or 1, respectively.

The test instruction can also be used to get information about a value in a register. For example,

     test  cx, cx         ; set flags for value in CX

"ands" the value in the CX register with itself, resulting in the original value. ("Anding" any bit with itself
gives the common value.) The flags are set according to the value in CX. The instruction

     and   cx, cx         ; set flags for value in CX

will accomplish the same goal and is equally efficient. However, using test makes it clear that the only

purpose of the instruction is testing.

The various forms of the test instruction are listed in Fig. 8.4. They are almost the same as for and, or,
and xor instructions. Only the accumulator can be the destination when the source is in memory, but

MASM lets you specify any register as the destination and transposes the operands to have the
memory operand first, one of the allowable formats.

Destination Source Clock Cycles Number of Bytes  

Operand Operand 386 486 Pentium   Opcode

register 8 immediate 8 2 1 1 3 F6

register 16 immediate 16 2 1 1 4 F7

register 32 immediate 32 2 1 1 6 F7

AL immediate 8 2 1 1 2 A8

AX immediate 16 2 1 1 3 A9

EAX immediate 32 2 1 1 5 A9

memory byte immediate 8 5 2 2 3+ F6

memory word immediate 16 5 2 2 4+ F7

memory doubleword immediate 32 5 2 2 6+ F7

register 8 register 8 2 1 1 2 84

register 16 register 16 2 1 1 2 85

register 32 register 32 2 1 1 2 85

memory byte register 8 5 2 2 2+ 84

memory word register 16 5 2 2 2+ 85

memory doubleword register 32 5 2 2 2+ 85

Figure 8.4: test instructions

Exercises 8.1

For each part of this problem, assume the "before" values when the given instruction is
executed. Give the requested "after" values.

1.



Before Instruction After

(a) BX: FA 75
CX: 31 02

and bx,cx BX, SF, ZF

(b) BX FA 75
CX 31 02

or bx,cx BX, SF, ZF

(c) BX FA 75
CX 31 02

xor bx,cx BX, SF, ZF

(d) BX FA 75 not bx BX

(e) AX FA 75 and ax,000fh AX, SF, ZF

(f) AX FA 75 or ax,0fff0h AX, SF, ZF

(g) AX FA 75 xor ax,0ffffh AX, SF, ZF

(h) AX FA 75 test ax,0004h AX, SF, ZF

1.

Recall the two methods given in this section for computing (value mod 32) when value is an
unsigned integer in the EAX register:

2.

mov   edx,0      ; extend value to quadword
mov   ebx,32     ; divisor
div   ebx        ; divide value by 32

and

mov   edx,eax         ; copy value to DX
and   edx,0000001fh   ; compute value mod 32

Find the total number of clock cycles required for execution on a Pentium and the number of
bytes of object code necessary for each of these methods.

Suppose that value is an unsigned integer in the EAX register. Give appropriate instructions to
compute (value mod 8) putting the result in the EBX register and leaving EAX unchanged.

3.

Suppose that each bit of the doubleword at flags represents a Boolean value, with bit 0 for

flag0, and so forth, up to bit 31 for flag31. For each of the following design statements, give a
single 80x86 instruction to implement the statement.

flag2 := true;

flag5 := false; flag16 := false; flag19 := false;

flag12 := NOT flag12

4.

Suppose that the AL register contains the ASCII code for an uppercase letter. Give a
logical instruction (other than xor) that will change its contents to the code for the

corresponding lowercase letter.

a.

Suppose that the AL register contains the ASCII code for a lowercase letter. Give a
logical instruction (other than xor) that will change its contents to the code for the

corresponding uppercase letter.

b.

5.

Programming Exercises 8.1

1.



The Pascal programming language includes the predefined function odd, which has a single
doubleword integer parameter and returns true for an odd integer and false for an even integer.
Write a NEAR32 procedure that implements this function in assembly language, returning - 1 in

EAX for true and 0 in EAX for false. The procedure must not change any register other than
EAX. Use an appropriate logical instruction to generate the return value. The procedure is
responsible for removing the parameter from the stack.

1.

In 2-dimensional graphics programming a rectangular region of the plane is mapped to the
display; points outside this region are clipped. The region, bounded by four lines x = xmin, x =
xmax, y = ymin, and y = ymax, can be pictured

An outcode (or region code) is associated with each point (x,y) of the plane. This 4-bit code is
assigned according to the following rules:

bit 0 (rightmost) is 1 if the point is to the right of the region, that is x > xmax; it is 0 otherwise

bit 1 is 1 if the point is left of the region (x < xmin)

bit 2 is 1 if the point is above the region (y > ymax)

bit 3 is 1 if the point is below the region (y < ymin)

The previous diagram shows the outcodes for each of the nine regions of the plane.

Suppose that the outcode for point (x1,y1) is in the low order four bits of AL, that the
outcode for point (x2,y2) is in the low order four bits of BL, and that other bits of these
registers are reset to 0. Give a single 80x86 statement that will set ZF to 1 if the two
points are both inside the rectangular region and to 0 otherwise. The value in AL or BL
may be changed.

a.

Suppose that the outcode for point (x1,y1) is in the low order four bits of AL, that the
outcode for point (x2,y2) is in the low order four bits of BL, and that other bits of these
registers are reset to 0. Give a single 80x86 statement that will set ZF to 0 if the two
points are both on the same side of the rectangular region. ("Both on the same side"
means both right of x=xmax, both left of x=xmin, both above y=ymax,or both below y=ymin.)
The value in AL or BL may be changed.

b.

Write a NEAR32 procedure setcode that returns the outcode for a point (x,y). Specifically,
setcode has six word-size integer parameters: x, y, xmin, xmax, ymin, and ymax that are

passed on the stack in the order given. Return the outcode in the low order four bits of
the AL register, assigning 0 to each of the higher order bits in EAX.

c.

2.



8.2 Shift and Rotate Instructions

The logical instructions introduced in the previous section enable the assembly language programmer
to set or clear bits in a word or byte stored in a register or memory. Shift and rotate instructions enable
the programmer to change the position of bits within a doubleword, word, or byte. This section
describes the shift and rotate instructions and gives examples of some ways they are used.

Shift instructions slide the bits in a location given by the destination operand to the left or to the right.
The direction of the shift can be determined from the last character of the mnemonic—sal and shl are
left shifts; sar and shr are right shifts. Shifts are also categorized as logical or arithmetic—shl and
shr are logical shifts; sal and sar are arithmetic shifts. The difference between arithmetic and logical

shifts is explained below. The table in Fig. 8.5 summarizes the mnemonics.

Figure 8.5: Shift instructions

The source code format of any shift instruction is

     s-   destination, count

There are three versions of the count operand. This operand can be the number 1, another number
serving as a byte-size immediate operand, or the register specification CL. The original 8086/8088 CPU
had only the first and third of these options.

An instruction having the format

     s-   destination, 1

causes a shift of exactly one position within the destination location. With the format

     s-   destination, immediate8

an immediate operand of 0 to 255 can be coded. However, most of the 80x86 family mask this operand
by 000111112; that is they reduce it mod 32 before performing the shift. This makes sense because
you cannot do over 32 meaningful shift operations to an operand no longer than a doubleword. In the
final format,

     s-   destination, cl

the unsigned count operand is in the CL register. Again, most 80x86 CPUs reduce it modulo 32 before
beginning the shifts.

Arithmetic and logical left shifts are identical; the mnemonics sal and shl are synonyms that generate

the same object code. When a left shift is executed, the bits in the destination slide to the left and 0 bits
fill in on the right. The bits that fall off the left are lost except for the very last one shifted off; it is saved
in the carry flag CF. The sign flag SF, zero flag ZF, and parity flag PF are assigned values
corresponding to the final value in the destination location. The overflow flag OF is undefined for a
multiple-bit shift; for a single-bit shift (count=1) it is reset to 0 if the sign bit of the result is the same as
the sign bit of the original operand value, and set to 1 if they are different. The auxiliary carry flag AF is
undefined.

Arithmetic and logical right shifts are not the same. With both, the bits in the destination slide to the
right and the bits that fall off the right are lost except for the very last one shifted off, which is saved in
CF. For a logical right shift (shr) 0 bits fill in on the left. However, with an arithmetic right shift (sar) the

original sign bit is used to fill in on the left. Therefore, for an arithmetic right shift, if the original operand



represents a negative 2’s complement number, then the new operand will have leading 1 bits for each
position shifted and will also be negative. As with left shifts, the values of SF, ZF, and PF depend on
the result of the operation, and AF is undefined. The overflow flag OF is undefined for a multiple-bit
shift. For a single-bit logical right shift shr, OF is reset to 0 if the sign bit in the result is the same as

the sign bit in the original operand value, and set to 1 if they are different. (Notice that this is equivalent
to assigning OF the sign bit of the original operand.) With a single-bit arithmetic right shift, sar, OF is

always cleared—the sign bits of the original and new value are always the same.

Some hex calculators can directly do shift operations. Hand evaluation requires writing the operand in
binary, shifting or regrouping the bits (filling in with 0s or 1s as appropriate), and then translating the
new bit pattern back to hex. Things are a little simpler for a multiple-bit shift, which shifts four positions
or some multiple of four positions; in this case each group of four bits corresponds to one hex digit, so
one can think of shifting hex digits instead of bits. Here are a few examples that illustrate execution of
shift instructions; each example begins with a word containing the hex value A9 D7 (1010 1001 1101
0111 in binary). The bit(s) shifted off are separated by a line in the original value. The bit(s) added are
in bold in the new value.

Figure 8.6 gives the number of clock cycles and number of bytes required using various operand types
in shift instructions. All four types of shifts discussed so far, as well as the rotate instructions discussed
below, share opcodes. The size of the destination and the type of the count operand are implied by the
opcode. As with some other instructions, the second byte of the object code is used to choose among
the different types of shifts and rotates, as well as between register and memory destinations. Notice
that the single-bit shifts are faster than the multiple-bit shifts—often it is more time-efficient to use
several single-bit shifts than one multiple-bit shift.



    Clock Cycles Number of
Bytes

 

Destination Operand Count
Operand

386 486 Pentium   Opcode

register 8 1 3 3 1 2 D0

register 16/32 1 3 3 1 2 D1

memory byte 1 7 4 3 2+ D0

memory
word/doubleword

1 7 4 3 2+ D1

register 8 immediate 8 3 2 1 3 C0

register 16/32 immediate 8 3 2 1 3 C1

memory byte immediate 8 7 4 3 3+ C0

memory
word/doubleword

immediate 8 7 4 3 3+ C1

register 8 CL 3 3 4 2 D2

register 16/32 CL 3 3 4 2 D3

memory byte CL 7 4 4 2+ D2

memory
word/doubleword

CL 7 4 4 2+ D3

Figure 8.6: Shift and rotate instructions

The shift instructions are quite primitive, but they have many applications. One of these is to do some
multiplication and division operations. In fact, for processors without multiplication instructions, shift
instructions are a crucial part of routines to do multiplication. Even with the 80x86 architecture, some
products are computed more rapidly with shift operations than with multiplication instructions.

In a multiplication operation where the multiplier is 2, a single-bit left shift of the multiplicand results in
the product in the original location. The product will be correct unless the overflow flag OF is set. It is
easy to see why this works for unsigned numbers; shifting each bit to the left one position makes it the
coefficient of the next higher power of two in the binary representation of the number. A single-bit left
shift also correctly doubles a signed operand. In fact, one can use multiplication by 2 on a hex
calculator to find the result of any single-bit left shift.

A single-bit right shift can be used to efficiently divide an unsigned operand by 2. Suppose, for
example, that the EBX register contains an unsigned operand. Then the logical right shift shr ebx,1

shifts each bit in EBX to the position corresponding to the next lower power of two, resulting in half the
original value. The original units bit is copied into the carry flag CF, and is the remainder for the
division.

If EBX contains a signed operand, then the arithmetic right shift sar ebx,1 does almost the same job
as an idiv instruction with a divisor of 2. The difference is that if the dividend is an odd negative
number, then the quotient is rounded down; that is, it is one smaller than it would be using an idiv

instruction. For a concrete example, suppose that the DX register contains FFFF and the AX register
contains FFF7, so that DX-AX has the doubleword size 2’s complement representation for 9. Assume
also that CX contains 0002. Then idiv cx gives a result of FFFC in AX and FFFF in DX; that is, a
quotient of 4 and a remainder of 1. However, if FFFFFF7 is in EBX, then sar ebx,1 gives a result of

FFFFFFFB in EBX and 1 in CF, a quotient of - 5 and a remainder of +1. Both quotient-remainder pairs
satisfy the equation

     dividend = quotient*divisor + remainder

but with the - 5 and +1 combination, the sign of the remainder differs from the sign of the dividend,
contrary to the rule followed by idiv.



Instead of multiplying an operand by 2, it can be doubled by either adding it to itself or by using a left
shift. A shift is sometimes slightly more efficient than addition and either is much more efficient than
multiplication. To divide an operand by 2, a right shift is the only alternative to division and is much
faster; however, the right shift is not quite the same as division by 2 for a negative dividend. To multiply
or divide an operand by 4, 8, or some other small power of two, either repeated single-bit shifts or one
multiple-bit shift can be used.

Shifts can be used in combination with other logical instructions to combine distinct groups of bits into a
byte or a word or to separate the bits in a byte or word into different groups. The program shown in Fig.
8.7 prompts for an integer, uses the atod macro to convert it to 2’s complement form in the EAX

register, and then displays the word in the EAX register as eight hexadecimal digits. To accomplish this
display, eight groups of four bits must be extracted from the value in EAX. Each group of four bits
represents a decimal value from 0 to 15, and each group must be converted to a character for display.
This character is a digit 0 through 9 for integer value 0 (00002) through 9 (10012) or a letter A through F
for integer value 10 (10102) through 15 (11112).

; program to display integer as 8 hex digits
; Author: R. Detmer
; Date:   revised 11/97

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

include io.h              ; header file for input/output

cr      equ     0dh      ; carriage return character
Lf      equ     0ah      ; line feed

.STACK 4096               ; reserve 4096-byte stack

.DATA                                  ; reserve storage for data
prompt          BYTE   "Enter a number: ",0
number          BYTE   20 DUP (?)
result          BYTE   cr,Lf,"The 2's complement representation is "
hexOut          BYTE   8 DUP (?),cr,Lf,0

.CODE                                  ; start of main program code
_start:
                output prompt         ; prompt for number
                input  number,20      ; read ASCII characters
                atod   number         ; convert to integer

                lea    ebx,hexOut+7   ; address for last character
                mov    ecx,8          ; number of characters
forCount:       mov    edx,eax        ; copy pattern
                and    edx,0000000fh  ; zero all but last hex digit
                cmp    edx,9          ; digit?
                jnle   elseLetter     ; letter if not
                or     edx,30h        ; convert to character
                jmp    endifDigit
elseLetter:     add    edx,'A'-10     ; convert to letter
endifDigit:
                mov    BYTE PTR [ebx],dl ; copy character to memory
                dec    ebx            ; point at next character
                shr    eax,4          ; shift one hex digit right
                loop   forCount       ; repeat

                output result         ; output label and hex value

                INVOKE ExitProcess, 0 ; exit with return code 0
PUBLIC _start                         ; make entry point public



END                                   ; end of source code

Figure 8.7: Program to display an integer in hex

The eight characters are stored right to left in contiguous bytes of memory as they are generated; the
EBX register is used to point at the destination byte for each character. The design for the middle of the
program is

--------------
for count := 8 downto 1 loop
     copy EAX to EDX;
     mask off all but last 4 bits in EDX;

     if value in EDX ( 9
     then
          convert value in EDX to a character 0 through 9;
     else
          convert value in EDX to a letter A through F;
     end if;

     store character in memory at address in EBX;
     decrement EBX to point at next position to the left;
     shift value in EAX right four bits;
end for;
---------------

To implement this design, the instruction

     and   edx,0000000fh      ; zero all but last hex digit

masks off all but the last four bits in EDX. The if is implemented by

                 cmp edx,9            ; digit?
                 jnle elseLetter      ; letter if not
                 or edx,30h           ; convert to character
                 jmp endifDigit
     elseLetter: add edx,'A'-10       ; convert to letter
     endifDigit:

A value from 0 to 9 is converted to the ASCII code for a digit using the or instruction; add edx,30h

would work just as well here. To convert numbers 0A to 0F to the corresponding ASCII codes 41 to 46
for letters A to F, the value ’A’–10 is added to the number. This actually adds the decimal number 55,
but the code used is clearer than add edx,55. The shr instruction shifts the value in EAX right four

bits, discarding the hex digit that was just converted to a character.

Programming Exercise 2 of Section 7.4 asked for a procedure to do a job similar to that done by the
program in Fig. 8.7. That procedure was to use the remainder upon division by 16 to produce a value
corresponding to the rightmost hex digit. Notice that the shr and and instructions used in this example

program are both easier to code and more efficient.

The shift instructions discussed above shift the bits of an operand in place, except that one bit affects
the carry flag. The 80x86 architecture has two additional double shift instructions, shld and shrd.

Each of these instructions has the format

     sh-d  destination, source, count

where the destination may be a word or a doubleword in a register or memory, the source is a word or
doubleword in a register, and the count is either immediate or in CL. A shld instruction shifts the
destination left exactly like a shl instruction, except that the bits shifted in come from the left end of the
source operand. The source operand is not changed. A shrd instruction shifts the destination right



exactly like a shr instruction, except that the bits shifted in come from the right end of the source

operand. For both double shifts, the last bit shifted out goes to CF, and SF, ZF, and PF are given
values corresponding to the result in the destination location. The overflow flag OF is left undefined by
a double shift.

The following two examples illustrate double shift instructions. The one with shld shifts off the leading

three hex digits (12 bits) of ECX, filling from the right with the leftmost three hex digits from EAX. The
carry flag CF is 1 since the last bit shifted off was the rightmost bit of 3 (00112). The example using
shrd shifts off the trailing two hex digits (8 bits) of ECX, filling from the left with the rightmost two hex

digits from EAX. The carry flag CF is 0 since the last bit shifted off was the leftmost bit of 7 (01112).

Figure 8.8 lists the various double shift instructions. The source operand is not shown since it is always
a register 16 or register 32, the same size as the destination.

    Clock Cycles Number of
Bytes

Opcode

Destination
Operand

Count
Operand

386 486 Pentium   shild shrd

register 16/32 immediate 8 3 2 4 4 0F 04 0F
AC

memory
word/doubleword

immediate 8 7 4 4 4+ 0F 04 0F
AC

register 16/32 CL 3 3 4 3 0F 05 0F
AD

memory
word/doubleword

CL 7 4 5 3+ 0F 05 0F
AD

Figure 8.8: Double shift instructions

A double shift instruction can be used to get a slightly cleaner version of the program in Fig. 8.7. The
following code generates the hex digits left-to-right instead of right to-left. Each time through the loop, a
shld copies the leading hex digit from EAX into EDX.

            lea   ebx,hexOut           ; address for first character
            mov   ecx,8                ; number of characters
forCount:   shld  edx,eax,4            ; get leading hex digit
            and   edx,0000000fh        ; zero all but last hex digit
            cmp   edx,9                ; digit?
            jnle  elseLetter           ; letter if not
            or    edx,30h              ; convert to character
            jmp   endifDigit
elseLetter: add   edx,'A'-10           ; convert to letter
endifDigit:
            mov   BYTE PTR [ebx],dl    ; copy character to memory



            inc   ebx                 ; point at next character
            shl   eax,4                ; shift one hex digit left
            loop  forCount             ; repeat

Rotate instructions are very similar to single shift instructions. With shift instructions the bits that are
shifted off one end are discarded while vacated space at the other end is filled by 0s (or 1s for a right
arithmetic shift of a negative number). With rotate instructions the bits that are shifted off one end of
the destination are used to fill in the vacated space at the other end.

Rotate instruction formats are the same as single shift instruction formats. A single-bit rotate instruction
has the format

     r-   destination, 1

and there are two multiple-bit versions

     r-   destination, immediate8

     r-   destination, cl

The instructions rol (rotate left) and ror (rotate right) can be used for byte, word, or doubleword

operands in a register or in memory. As each bit "falls off" one end, it is copied to the other end of the
destination. In addition, the last bit copied to the other end is also copied to the carry flag CF. The
overflow flag OF is the only other flag affected by rotate instructions. It is undefined for multibit rotates,
and familiarity with its definition for single-bit rotate instructions is not needed in this book.

As an example, suppose that the DX register contains D25E and the instruction

     rol   dx, 1

is executed. In binary, the operation looks like

resulting in 1010 0100 1011 1101 or A4BD. The carry flag CF is set to 1 since a 1 bit rotated from the
left end to the right.

Timings and opcodes for rotate instructions are identical to those for shift instructions. They are given
in Fig. 8.6.

A rotate instruction can be used to give yet another version of the program in Fig. 8.7. This one
produces the hex digits in a left-to-right order and has the advantage of leaving the value in EAX
unchanged at the end since eight rotations, four bits each time, result in all bits being rotated back to
their original positions.

            lea   ebx,hexOut           ; address for first character
            mov   ecx,8                ; number of characters
forCount:   rol   eax,4                ; rotate first hex digit to end
            mov   edx,eax              ; copy all digits
            and   edx,0000000fh        ; zero all but last hex digit
            cmp   edx,9                ; digit?
            jnle  elseLetter           ; letter if not
            or    edx,30h              ; convert to character
            jmp   endifDigit
elseLetter: add   edx,'A'-10           ; convert to letter
endifDigit:
            mov   BYTE PTR [ebx],dl    ; copy character to memory
            inc   ebx                  ; point at next character
            loop  forCount             ; repeat



There is an additional pair of rotate instructions, rcl (rotate through carry left) and rcr (rotate through

carry right). Each of these instructions treats the carry flag CF as if it were part of the destination. This
means that rcl eax,1 shifts bits 0 through 30 of EAX left one position, copies the old value of bit 31

into CF and copies the old value of CF into bit 0 of EAX. The rotate through carry instructions obviously
alter CF; they also affect OF, but no other flag. The opcodes for rotate through carry instructions are
the same as the corresponding shift instructions and can be found in Fig. 8.6. However, the timings are
different and are not given in this book.

Exercises 8.2

For each part of this problem, assume the "before" values when the given instruction is
executed. Give the requested "after" values.

Before Instruction After

(a) AX: A8 B5 shl ax, 1 AX, CF, OF

(b) AX: A8 B5 shr ax, 1 AX, CF, OF

(c) AX: A8 B5 sar ax, 1 AX, CF, OF

(d) AX: A8 B5 rol ax, 1 AX, CF

(e) AX: A8 B5 ror ax, 1 AX, CF

(f) AX: A8 B5
CL: 04 sal ax, cl AX, CF

(g) AX: A8 B5 shr ax, 4 AX, CF

(h) AX: A8 B5
CL: 04 sar ax, cl AX, CF

(i) AX: A8 B5
CL: 04 rol ax, cl AX, CF

(j) AX: A8 B5 ror ax, 4 AX, CF

(k) AX: A8 B5
CF: 1

rcl ax, 1 AX, CF

(l) AX: A8 B5
CF: 0

rcr ax, 1 AX, CF

(m) AX: A8 B5
CX: FE 40

shrd ax,cx,4 AX, CF

(n) AX: A8 B5
CX: FE 40

shld ax,cx,4 AX, CF

1.

Using clock cycles for the Pentium, compare the total number of clock cycles and bytes of object
code for each of these alternative ways of dividing the unsigned integer in the EAX register by
32:

mov  edx,0    ; extend value to doubleword
mov  ebx,32   ; divisor
div  ebx      ; value div 32

shr  eax,1    ; divide by 2
shr  eax,1    ; divide by 2
shr  eax,1    ; divide by 2
shr  eax,1    ; divide by 2
shr  eax,1    ; divide by 2

shr  eax,5    ; divide by 32

2.

3.



Using clock cycles for the Pentium, compare the total number of clock cycles and bytes of object
code for each of these alternative ways of multiplying the value in the EAX register by 32:

mov  ebx,32   ; multiplier
mul  ebx      ; value * 32

imul eax,32  ; value * 32

shl  eax,1    ; multiply by 2
shl  eax,1    ; multiply by 2
shl  eax,1    ; multiply by 2
shl  eax,1    ; multiply by 2
shl  eax,1    ; multiply by 2

shl  eax,5    ; multiply by 32

3.

Suppose that each of value1, value2, and value3 references a byte in memory and that an
unsigned integer is stored in each byte. Assume that the first value is no larger than 31 so that it
has at most five significant bits and at least three leading 0 bits. Similarly assume that the
second value is no larger than 15 (four significant bits) and the third value is no larger than 127
(seven bits).

Give code to pack all three of these numbers into a 16-bit word in the AX register,
copying the low order five bits from value1 to bits 11–15 of AX, the low order four bits
from value2 to bits 7–10 of AX, and the low-order seven bits from value3 into bits 0–6 of
AX.

a.

Give code to unpack the 16 bit number in the AX register into fivebit, four-bit, and seven-
bit numbers, padding each value with zeros on the left to make eight bits, and storing the
resulting bytes at value1, value2, and value3 respectively.

b.

4.

The instructions5.

mov  ebx, eax   ; value
shl  eax, 1     ; 2*value
add  eax, ebx   ; 3*value

multiplies the value in EAX by 3. Write similar code sequences that use shift and addition
instructions to efficiently multiply by 5, 7, 9, and 10.

Programming Exercises 8.2

Write a NEAR32 procedure binaryString that converts a 32-bit integer to a string of exactly 32

characters representing its value as a binary number. The procedure will have two parameters,
passed on the stack:

the number1.

the address of the destination string

The procedure will remove parameters from the stack and must modify no register. Use a
rotate instruction to extract the bits one at a time, left-to-right, recalling that jc or jnc

instructions look at the carry bit. (This exercise is the same as Programming Exercise 3 in
Section 7.4 except for the method of producing the bits.)

2.

1.

An eight-bit number can be represented using three octal digits. Bits 7 and 6 determine the left
octal digit, which is never larger than 4, bits 5, 4, and 3 the middle digit, and bits 2, 1, and 0 the
right digit. For instance, 110101102 is 11 010 1102 or 3268. The value of a 16-bit number is

2.



represented in split octal by applying the 2–3–3 system to the high-order and low-order bytes
separately. Write a NEAR32 procedure split-Octal which converts an 16-bit integer to a string of

exactly six characters representing the value of the number in split octal. The procedure will
have two parameters, passed on the stack:

the number1.

the address of the destination string2.

The procedure will remove parameters from the stack and must modify no register.

2.



8.3 Converting an ASCII String to a 2's Complement Integer

The atoi and atod macros have been used to scan an area of memory containing an ASCII

representation of an integer, producing the corresponding word-length 2's complement integer in the EAX
register. These macros and the procedures they call are very similar. This section uses atod as an

example.

The atod macro expands into the following sequence of instructions.

     lea   eax,source      ; source address to EAX
     push  eax             ; source parameter on stack
     call  atodproc        ; call atodproc(source)

These instructions simply call procedure atodproc using a single parameter, the address of the string of
ASCII characters to be scanned. The EAX register is not saved by the macro code since the result is to be
returned in EAX. The actual source identifier is used in the expanded macro, not the name source.

The actual ASCII to 2's complement integer conversion is done by the procedure atodproc. The assembled
version of this procedure is contained in the file IO.OBJ. Source code for atodproc is shown in Fig. 8.9. The
procedure begins with standard entry code. The flags are saved so that flag values that are not explicitly set
or reset as promised in the comments can be returned unchanged. The popf and pop instructions at
AToDExit restore these values; however, the word on the stack that is popped by popf will have been

altered by the body of the procedure, as discussed below.

; atodproc(source)
; Procedure to scan data segment starting at source address, interpreting
; ASCII characters as an integer value that is returned in EAX.

; Leading blanks are skipped. A leading - or + sign is acceptable.
; Digit(s) must immediately follow the sign (if any).
; Memory scan is terminated by any nondigit, and the address of
; the terminating character is in ESI.

; The following flags are affected:
;   AC is undefined
;   PF, SF, and ZF reflect sign of number returned in EAX. ; CF reset to 0
;   OF set to indicate error. Possible error conditions are:
;     - no digits in input
;     - value outside range -2,147,483,648 to 2,147,483,647
;     (EAX) will be 0 if OF is set.

atodproc     PROC   NEAR32
             push   ebp                ; save base pointer
             mov    ebp, esp           ; establish stack frame
             sub    esp, 4             ; local space for sign
             push   ebx                ; Save registers
             push   ecx
             push   edx
             pushf                     ; save flags

             mov    esi,[ebp+8]        ; get parameter (source addr)

WhileBlankD: cmp    BYTE PTR [esi],' ' ; space?
             jne    EndWhileBlankD     ; exit if not
             inc    esi                ; increment character pointer
             jmp    WhileBlankD        ; and try again
EndWhileBlankD:

             mov    eax,1              ; default sign multiplier
IfPlusD:     cmp    BYTE PTR [esi],'+' ; leading + ?
             je     SkipSignD          ; if so, skip over



IfMinusD:    cmp    BYTE PTR [esi],'-' ; leading - ?
             jne    EndIfSignD         ; if not, save default +
             mov    eax,-1             ; -1 for minus sign
SkipSignD:   inc    esi                ; move past sign
EndIfSignD:
             mov    [ebp-4],eax        ; save sign multiplier
             mov    eax,0              ; number being accumulated
             mov    cx,0               ; count of digits so far

WhileDigitD: cmp    BYTE PTR [esi],'0' ; compare next character to '0'
             jl     EndWhileDigitD     ; not a digit if smaller than '0'
             cmp    BYTE PTR [esi],'9' ; compare to '9'
             jg     EndWhileDigitD     ; not a digit if bigger than '9'
             imul   eax,10             ; multiply old number by 10
             jo     overflowD          ; exit if product too large
             mov    bl,[esi]           ; ASCII character to BL
             and    ebx,0000000Fh      ; convert to single-digit integer
             add    eax,ebx            ; add to sum
             jc     overflowD          ; exit if sum too large
             inc    cx                 ; increment digit count
             inc    esi                ; increment character pointer
             jmp    WhileDigitD        ; go try next character
EndWhileDigitD:

             cmp    cx,0               ; no digits?
             jz     overflowD          ; if so, set overflow error flag
; if value is 80000000h and sign is '-', want to return 80000000h (-2^32)

             cmp    eax,80000000h      ; 80000000h ?
             jne    TooBigD?
             cmp    DWORD PTR [ebp-4],-1 ; multiplier -1 ?
             je     ok1D               ; if so, return 8000h

TooBigD?:    test   eax,eax            ; check sign flag
             jns    okD                ; will be set if number > 2^32 - 1

overflowD:   pop    ax                 ; get flags
             or     ax,0000100001000100B ; set overflow, zero & parity flags
             and    ax,1111111101111110B ; reset sign and carry flags
             push   ax                 ; push new flag values
             mov    eax,0              ; return value of zero
             jmp    AToDExit           ; quit

okD:         imul   DWORD PTR [ebp-4]  ; make signed number
ok1D:        popf                      ; get original flags
             test   eax,eax            ; set flags for new number
             pushf                     ; save flags
AToDExit:    popf                      ; get flags
             pop    edx                ; restore registers
             pop    ecx
             pop    ebx
             mov    esp, ebp           ; delete local variable space
             pop    ebp
             ret    4                  ; exit, removing parameter
atodproc     ENDP

Figure 8.9: ASCII to doubleword integer conversion

The first job of atodproc is to skip leading spaces, if any. This is implemented with a straightforward while
loop. Note that BYTE PTR [esi] uses register indirect addressing to reference a byte of the source string.
Following the while loop, ESI points at some nonblank character.



The main idea of the procedure is to compute the value of the integer by implementing the following left-to-
right scanning algorithm.

value :=0;
while pointing at code for a digit loop
      multiply value by 10;
      convert ASCII character code to integer;
      add integer to value;
      point at next byte in memory;
end while;

This design works for an unsigned number; a separate multiplier is used to give the correct sign to the final
signed result. The second job of the procedure, after skipping blanks, is to store this multiplier, 1 for a
positive number or 1 for a negative number. The multiplier, stored in local variable space on the stack, is
given the default value 1 and changed to 1 if the first nonblank character is a minus sign. If the first
nonblank character is either plus or a minus sign, then the address in ESI is incremented to skip over the
sign character.

Now the main design is executed. The value is accumulated in the EAX register. If multiplication by 10
produces an overflow, then the result is too large to represent in EAX. The jc overflowD instruction

transfers control to the code at overflowD that takes care of all error situations.

To convert a character to a digit, the character is loaded into the BL register and the instruction and
ebx,0000000Fh clears all bits except the low-order four in the EBX register. Thus, for example, the ASCII

code 3716 for 7 becomes 00000007 in the EBX register. If adding the digit to the accumulated value
produces a carry, the sum is too large for EAX; the jc instruction transfers control to overflowD.

The main loop terminates as soon as ESI points at any character code other than one for a digit. Thus an
integer is terminated by a space, comma, letter, null, or any nondigit. In order to determine if a valid integer
has been entered, the main loop keeps a count of decimal digits in the CX register. When the loop
terminates, this count is checked. If it is zero, there was no digit and the jz instruction jumps to overflowD

for error handling. There is no need to check for too many digits; this would already have been caught by
overflow in the main loop.

If the accumulated value in the AX register is larger than 8000000016(2,147,483,648 as an unsigned
number), then the magnitude of the number is too great to be represented in doubleword-length 2's
complement form. If it is equal to 8000000016, then the multiplier must be - 1 since - 2,147,483,648 can be
represented (as 8000000016), but +2,147,483,648 is too large. The next section of code checks for
800000016 in EAX and a multiplier of - 1; in this case the work is almost done. Otherwise, the instruction
test eax,eax is used to see if the accumulated value is larger than 800000016; the sign bit will be 1 for a

value of this magnitude.

If any of the error conditions occur, the instructions starting at overflowD are executed. The original flags
are popped into the AX register. The bit corresponding to the overflow flag is set to 1 to indicate an error,
and a value of 00000000 will be returned in EAX; other flags are set or reset to correspond to the zero
value. The instruction

     or ax,0000100001000100b ; set overflow, zero & parity flags

sets bit 11 (the position of overflow flag), bit 6 (zero flag), and bit 2 (parity flag). The zero flag is set since
the result returned will be zero; the parity flag is set since 0000000016 has even parity (an even number of 1
bits). The instruction

     and   ax,1111111101111110b ; reset sign and carry flags

clears bit 7 (sign flag) since 00000000 is not negative and bit 0 (carry), which is always cleared. The bit
pattern resulting from these or and and instructions is pushed back on the stack to be popped into the
flags register by popf before exiting the procedure.

When no exceptional condition exists, an imul instruction finds the product of the unsigned value and the
multiplier (+1) giving the correct signed result. Flag values are set in this normal situation by using popf to



recover the original flag values; test eax,eax clears CF and OF and assigns appropriate values to PF,
SF, and ZF. The new flag values are then pushed back on the stack with another pushf to be recovered by
the normal popf in the exit code. The test instruction leaves AC undefined; this is why the comments at

the beginning of the procedure mention AC.

Exercises 8.3

The code for atodproc includes1.

TooBigD?:   test  eax,eax ; check sign flag
            jns   okD ; will be set if number > 2^32 - 1

An alternative sequence would be

TooBigD?:   cmp   eax,80000000h      ; EAX < 2,147,483,648
            jb    okD                ; OK if so

Compare the number of clock cycles and number of bytes of object code for the test and the cmp

instructions.

The procedure atodproc checks for zero digits in the number it is converting, but not for too many
digits. Show why this is unnecessary by tracing the code for 100,000,000,000, the smallest possible
11-digit number. (Another valid reason not to limit the number of digits is that any number of leading
zeros would be valid.)

2.

Programming Exercises 8.3

Write a NEAR32 procedure hexToInt that has a single parameter passed on the stack, the address

of a string. This procedure will be similar to atodproc except that it will convert a string of characters
representing an unsigned hexadecimal number to a doubleword-length 2's complement integer in
EAX. The procedure should skip leading blanks and then accumulate a value until a character that
does not represent a hex digit is encountered. (Valid characters are 0 through 9, A through F, and a
through f.) If there are no hex digits or the result is too large to fit in EAX, then return 0 and set OF;
these are the only possible errors. Clear OF if no error occurs. In all cases set SF, ZF, and PF
according to the value returned in EAX and clear CF.

1.



8.4 The Hardware Level—Logic Gates

Digital computers contain many integrated circuits and many of the components on these circuits are
logic gates. A logic gate performs one of the elementary logical operations described in Section 8.1:
and, or, xor, or not. Each type of gate has a simple diagram that represents its function. These
diagrams are pictured in Fig. 8.10, with inputs shown on the left and output on the right.

Figure 8.10: Logic Gates

These simple circuits operate by getting logic 0 or 1 inputs and putting the correct value on the output.
For example, if the two inputs of the or circuit are 0 and 1, then the output will be 1. Logic values 0 and
1 are often represented by two distinct voltage levels.

These simple circuits are combined to make the complex circuits that perform a computer’s operations.
For example, Fig. 8.11 pictures a half adder circuit. The logic values at inputs x and y of this circuit can
be thought of as two bits to add. The desired results are 0+0=0, 1+0=1, and 0+1=1, each with a carry of
0, and 1+1=0 with a carry of 1. These are exactly the results given by a half adder circuit.

Figure 8.11: Half adder circuit

Exercises 8.4

Addition of multibit numbers is performed much like decimal addition learned in grade school; pairs of
bits are added starting with the right-most pair, but after the first pair, you must also add the carry from
the previous result. To do this takes a series of full adder circuits. One full adder circuit has three inputs
x, y, and carry in, and two outputs, sum and carry out.

Make a chart similar to the one in Fig. 8.11 showing the inputs and outputs for a full adder. The
chart will have five columns (x, y, carry in, sum, and carry out) and eight rows below the header

row.

1.

Draw a full adder circuit. Hint: Use two half adders and an or gate to combine their carry
outputs.

2.

Use three full adders and a half adder to draw a circuit that can add two four bit numbers. This
circuit will have eight inputs (four pairs of bits) and five outputs (four sum bits and a carry bit).
For simplicity, you can draw each adder or half adder as a block diagram, without showing all its
gates.

3.





Chapter Summary

This chapter has explored the various 80x86 instructions that allow bits in a byte, word, or doubleword
destination to be manipulated. The logical instructions and, or, and xor perform Boolean operations

using pairs of bits from a source and destination. Applications of these instructions include setting or
clearing selected bits in a destination. The not instruction takes the one's complement of each bit in its
destination operand, changing each 0 to a 1 and each 1 to a 0. The test instruction is the same as the
and instruction except that it only affects flags; the destination operand is unchanged.

Shift instructions move bits left or right within a destination operand. These instructions come in single-
bit and multiple-bit versions. Single-bit shifts use 1 for the second operand; multiple-bit versions use CL
or an immediate value for the second operand and shift the destination the number of positions
specified. Vacated positions are filled by 0 bits in all single shift operations except for the arithmetic
right shift of a negative number, for which 1 bits are used. Shift instructions can be used for efficient,
convenient multiplication or division by 2, 4, 8 or some higher power of two. Double shift instructions
get bits to shift in from a source register.

Rotate instructions are similar to shift instructions. However, the bit that falls off one end of the
destination fills the void on the other end. Shift or rotate instructions can be used in combination with
logical instructions to extract groups of bits from a location or to pack multiple values into a single byte
or word.

The atod macro generates code that calls the procedure atodproc. This procedure scans a string in

memory, skipping leading blanks, noting a sign (if any), and accumulating a doubleword integer value
as ASCII codes for digits are encountered. Logical instructions are used in several places in the
procedure.

Logic gates are the primitive building blocks for digital computer circuits. Each gate performs one of the
elementary Boolean operations.



Chapter 9: The Assembly Process

The job of an assembler is to turn assembly language source code into object code. With simpler
computer systems this object code is machine language, ready to be loaded into memory and
executed. With more complex systems, object code produced by the assembler must be "fixed up" by a
linker and/or loader before it can be executed. The first section of this chapter describes the assembly
process for a typical assembler and gives some details particular to the Microsoft Macro Assembler.
The second section is very specific to the 80x86 microprocessor family; it details the structure of its
machine language. The third and fourth sections discuss macros and conditional assembly,
respectively. Most assemblers have these capabilities, and these sections describe how MASM
implements them. The final section describes the macros in the header file IO.H.

9.1 Two-Pass and One-Pass Assembly

One of the many reasons for writing assembly language rather than machine language is that
assemblers allow the use of identifiers or symbols to reference data in the data segment and
instructions in the code segment. To code in machine language, a programmer must know run-time
addresses for data and instructions. An assembler maintains a symbol table that associates each
identifier with various attributes. One attribute is a location, typically relative to the beginning of a
segment, but sometimes an absolute address to be used at run time. Another attribute is the type of the
symbol, where possible types include labels for data or instructions, symbols equated to constants,
procedure names, macro names, and segment names. Some assemblers start assembling a source
program with a symbol table that includes all the mnemonics for the language, all register names, and
other symbols with reserved usage.

The other main job of an assembler is to output object code that is close to the machine language
executed when a program is run. A two-pass assembler scans the source code once to produce a
symbol table and a second time to produce the object code. A one-pass assembler only scans the
source code one time, but often must patch the object code produced during this scan. A simple
example shows why: If the segment

          jmp  endLoop
          add  eax, ecx
  endLoop:

is scanned, the assembler finds a forward reference to endLoop in the jmp instruction. At this point the

assembler cannot tell the address of endLoop, much less whether this destination is short (within 27

bytes of the address of the add instruction) or near (within 232 bytes). The first option would use an EB

opcode and a single-byte displacement. The second option would use an E9 opcode and a doubleword
displacement. Clearly the final code must wait at least until the assembler reaches the source code line
with the end-Loop label.

Typical assemblers use two passes, and some actually use three or more passes. The Microsoft Macro
Assembler is a one-pass assembler. This book will not attempt to cover details of how it fixes up object
code. You can see part of MASM’s symbol table by looking at the end of an assembly listing. The
remainder of this section concentrates on a typical symbol table, drawing examples from the program
and listing file that appear in Chapter 3.

If a symbol is a label for data, then the symbol table may include the size of the data. For instance, the
program in Fig. 3.1 contains the directive

     number2 DWORD  ?

and the corresponding line in the listing file (Fig. 3.7) is

     number2 . . . . . . . . . . . . Dword 00000004 _DATA

This shows that the size of number2 has been recorded as a doubleword. Having the size recorded
enables MASM to detect incorrect usage of a symbol—with this definition of number2, MASM would



indicate an error for the instruction

     mov  bh, number2

since the BH register is byte size while the symbol table identifies number2 as doubleword size. In
addition to the size, if a symbol is associated with multiple objects, a symbol table may contain the
number of objects or the total number of bytes associated with the symbol. The MASM symbol listing
does not show this.

If a symbol is equated to a value, then the value is usually stored in the symbol table. When the
assembler encounters the symbol in subsequent code, it substitutes the value recorded in the symbol
table. In the example program, the source code line

     cr      EQU      0dh   ; carriage return character

is reflected in the listing file line

     cr . . . . . . . . . . . . . . . Number 0000000Dh

If a symbol is a label for data or an instruction, then its location is entered in the symbol table. An
assembler keeps a location counter to compute this value. With a typical assembler, the location
counter is set to zero at the beginning of a program or at the beginning of each major subdivision of the
program. The Microsoft Macro Assembler sets the location counter to zero at the beginning of each
segment. As an assembler scans source code, the location of each datum or instruction is the value of
the location counter before the statement is assembled. The number of bytes required by the statement
is added to the location counter to give the location of the next statement. Again looking at the line

     number2 DWORD ?

the listing file shows

     number2 . . . . . . . . . . . . Dword 00000004 _DATA

with 00000004 in the Value column. This is the value of the location counter at the time number2 is
encountered in the data segment. The value is 00000004 since the only item preceding number2 was
number1, and it took four bytes.

The location counter is used the same way when instructions are assembled. Suppose that the location
counter has value 0000012E when MASM reaches the code fragment shown in Fig. 9.1. The location
for the symbol while1 will be 0000012E. The cmp instruction requires three bytes of object code.

(Section 9.2 details how to determine the object code of an 80x86 instruction.) Therefore the location
counter will have value 00000131 when MASM reaches the jnle instruction. The jnle instruction
requires two bytes of object code, so the location counter will increase to 00000133 for the first add
instruction. The first add instruction takes two bytes of object code, so the location counter is
00000135 when MASM reaches the second add instruction. Three bytes are required for add ebx,2
so the location counter is 00000138 for the inc instruction. The inc instruction takes a single byte, so
the location counter is 00000139 for the jmp instruction. The jmp instruction requires two bytes,

making the location counter 0000013B when the assembler reaches the label endWhile1. Therefore
0000013B is recorded in the symbol table as the location of endWhile1.

  while1: cmp  ecx, 100       ; count <= 100 ?
           jnle endWhile1     ; exit if not
           add  eax, [ebx]    ; add value to sum
           add  ebx, 4        ; address of next value
           inc  ecx           ; add 1 to count
           jmp  while1
  endWhile1:



Figure 9.1: Code with forward reference

The location of a symbol is needed for a variety of purposes. Suppose that MASM encounters the
statement

     mov   eax, number

where number is the label on a DWORD directive in the data section. Since the addressing mode for
number is direct, the assembler needs the offset of number for the object code; this offset is precisely
the location of number recorded in the symbol table.

The primary job of an assembler is to generate object code. However, a typical assembler does many
other tasks. One duty is to reserve storage. A statement like

     WORD  20 DUP(?)

sets aside 20 words of storage. This storage reservation is typically done one of two ways:

the assembler may write 40 bytes with some known value (like 00) to the object file, or

the assembler may insert a command that ultimately causes the loader to skip 40 bytes when the
program is loaded into memory

In the latter case, storage at run time will contain whatever values are left over from execution of other
programs.

In addition to reserving storage, assemblers can initialize the reserved memory with specified values.
The MASM statement

     WORD  10, 20, 30

not only reserves three words of storage, it initializes the first to 000A, the second to 0014 and the third
to 001E. Initial values may be expressed in a variety of ways using MASM and most other assemblers.
Numbers may be given in different number systems, often binary, octal, decimal, and hexadecimal. The
assembler converts character values to corresponding ASCII or EBCDIC character codes. Assemblers
usually allow expressions as initial values. The Microsoft Macro Assembler is typical in accepting
expressions that are put together with addition, subtraction, negation, multiplication, division, not, and,
or, exclusive or, shift, and relational operators. Such an expression is evaluated at assembly time,
producing the value that is actually used in the object code.

Most assemblers can produce a listing file that shows the original source code and some sort of
representation of the corresponding object code. Another responsibility of an assembler is to produce
error messages when there are errors in the source code. Rudimentary assemblers just display a line
number and an error code for each error. Slightly less primitive assemblers produce a separate page
with line numbers and error messages. Most assemblers can include an error message in the listing file
at the point where the error occurs. The Microsoft Macro Assembler includes messages in the optional
listing file and also displays them on the console.

In addition to the listing that shows source and object code, an assembler often can generate a listing
of symbols used in the program. Such a listing may include information about each symbol’s
attributes—taken from the assembler’s symbol table—as well as cross references that indicate the line
where the symbol is defined and each line where it is referenced.

Some assemblers begin assembling instructions with the location counter set to a particular actual
memory address and thus generate object code that is ready to be loaded at that address. This is the
only way to generate object code with some simpler systems. Generally such code is not linked; it is
ready to load and run.

One file can reference objects in another. Recall that the EXTRN directive facilitates this for MASM. A

linker combines separate object code files into a single file. If one file references objects in the other,
the linker changes the references from "to be determined" to locations in the combined file.



Most assemblers produce object code that is relocatable; that is, it can be loaded at any address. One
way to do this is to put a map in the object code file that records each place in the program where an
address must be modified. Address modifications are usually carried out by the loader. The loader
finally produces true machine language, ready for execution.

Another way to get relocatable code is to write it with only relative references; that is, so that each
instruction only references an object at some distance from itself, not at a fixed address. In an 80x86
system, most jump instructions are relative, so if a programmer stores data in registers or on the stack,
it is fairly easy to produce such a program.

With MASM, a programmer can actually directly reference the location counter using the $ symbol. The
code fragment from Fig. 9.1 could be rewritten as

     cmp  ecx, 100         ; count <= 100 ?
     jnle $+10             ; exit if not
     add  eax, [ebx]       ; add value to sum
     add  ebx, 4           ; address of next value
     inc  ecx              ; add 1 to count
     jmp  $-11

This works since the value of the location counter $ is the location of the beginning of the jnle

statement as it is assembled. Its two bytes and the eight bytes of the next four statements need to be
skipped to exit the loop. Similarly the backward reference must skip the inc statement and the four
other statements back through the beginning of the cmp statement, a total of eleven bytes. Although

MASM allows use of $ to reference the location counter, obviously this can produce confusing code
and should normally be avoided.

Exercises 9.1

Describe the differences between object code and machine language.1.

Suppose that every symbol reference in an assembly language program is a backward
reference. Would a one-pass assembler ever have to "fix up" the code it produced? Explain your
answer.

2.

Assemble the following code fragment3.

Array   DWORD 10 DUP(?)
ArrSize EQU   SIZE Array

To what value is ArrSize equated? What conclusion can you draw about whether or not MASM
records an attribute that tracks the number of bytes associated with a variable?

This section states that storage reservation with a directive like WORD can work by putting the
correct number of some known byte value in the object file or by inserting a command that
ultimately causes the loader to skip the correct number of bytes. State one advantage and one
disadvantage of each design.

4.



9.2 80x86 Instruction Coding

This section describes the structure of 80x86 machine language. From this information one could almost assemble
an 80x86 assembly language program by hand. However, the primary purpose here is to acquire a better
understanding of the capabilities and limitations of the 80x86 microprocessor family.

An 80x86 instruction consists of several fields, which are summarized in Fig. 9.2. Some instructions have only an
opcode, while others require that other fields be included. Any included fields always appear in this order. Each of
these components is discussed below.

Field
Number of
bytes Purpose

instruction prefix 0 or 1 F316 for REP, REPE, or REPZ F216 for REPNE or REPNZ F016 for
LOCK

address size 0 or 1 value 6716 if present; indicates that a displacement is a 16-bit
address rather than the default 32-bit size

operand size 0 or 1 value 6616 if present; indicates that a memory operand is 16-bit if in
32-bit mode or 32 bit if in 16-bit mode

segment override 0 or 1 indicates that an operand is in a segment other than the default
segment

opcode 1 or 2 operation code

mod-reg-r/m 0 or 1 indicates register or memory operand, encodes register(s)

scaled index base
byte

0 or 1 additional scaling and register information

displacement 0 to 4 an address

immediate 0 to 4 an immediate value

Figure 9.2: 80x86 instruction fields

The repeat prefixes for string instructions were discussed in Chapter 7. There you learned that adding a repeat
prefix to one of the basic string instructions effectively changes it into a new instruction that automatically iterates a
basic operation. The repeat prefix is coded in the instruction prefix byte, with the opcode of the basic string
instruction in the opcode byte. Repeat prefix bytes can be coded only with the basic string instructions.

The LOCK prefix is not illustrated in this book's code. It can be used with a few selected instructions and causes
the system bus to be locked during execution of the instruction. Locking the bus guarantees that the 80x86
processor has exclusive use of shared memory.

All the code in this book uses 32-bit memory addresses. In a 32-bit address environment it is possible to have an
instruction that only contains a 16-bit address. When an address size byte of 6716 is coded, a two-byte rather than
a four-byte displacement is used in the displacement field. This prefix byte will not appear in machine code
generated from the assembly language code shown in this book.

On the other hand, the operand size byte has frequently been generated from this book's assembly language
code. The 80x86 CPU has a status bit that determines whether operands are 16-bit or 32-bit. With the assembly
and linking options we have used, that bit is always set to indicate 32-bit operands. Each time you code a word-
size operand, the generated instruction includes the 6616 prefix byte to indicate the 16-bit operand. Other
assembly and linking options-not used in this book-cause the default operand size to be 16-bit; in this case a 6616

prefix byte indicates a 32-bit operand.

What indicates a byte-size operand? A different opcode. Why don't 16-bit and 32-bit operands use distinct
opcodes? This design decision was made by Intel. The original 8086 processor design had 16-bit registers and
used separate opcodes for 8-bit and 16-bit operand sizes; no instruction used 32-bit operands. When the 80386
was designed with 32-bit registers, the choice was made to "share" opcodes for 16-bit and 32-bit operand sizes
rather than to introduce many new opcodes.



The mod-reg-r/m byte has different uses for different instructions. When present it always has three fields, a two-
bit mod field (for "mode"), a three-bit reg field (for "register," but sometimes used for other purposes), and a 3-bit
r/m field (for "register/memory"). The mod-reg-r/m byte is examined below.

The opcode field completely identifies many instructions, but some require additional information-for example, to
determine the type of operand or even to determine the operation itself. You have previously seen the latter
situation. For example, each of the instructions add, or, adc, sbb, and, sub, xor, and cmp having a byte-size

operand in a register or memory and an immediate operand uses the opcode 80. Which of these eight instructions
is determined by the reg field of the mod-reg-r/m byte. For the particular case of the 80 opcode, the reg field is 000
for add, 001 for or, 010 for adc, 011 for sbb, 100 for and, 101 for sub, 110 for xor, and 111 for cmp.

The opcode 80 is one of twelve in which the reg field of the mod-reg-r/m byte actually determines the instruction.
The others are 81, 82, 83, D0, D1, D2, D3, F6, F7, FE, and FF. The table in Fig. 9.3 gives reg field information for
the most common instructions.

    reg field

Opcode

  000 001 010 011 100 101 110 111

80, 81, 82, 83 ADD OR ADC SBB AND SUB XOR CMP

D0, D1, D2, D3 ROL ROR RCL RCR SHL SHR   SAR

F6, F7 TEST   NOT NEG MUL IMUL DIV IDIV

FE, FF INC DEC         PUSH  

Figure 9.3: reg field for specified opcodes

Each two-operand, nonimmediate 80x86 instruction has at least one register operand. The reg field contains a
code for this register. Figure 9.4 shows how the eight possible register codes are assigned. The meaning of a reg
code varies with the operand size and with the instruction, so that, for example, the same code is used for ECX
and CL. These codes are used any time information about a register is encoded in an instruction, whether in the
reg field or other places.

reg code register 32 register 16 register 8 segment register

000 EAX AX AL ES

001 ECX CX CL CS

010 EDX DX DL SS

011 EBX BX BL DS

100 ESP SP AH FS

101 EBP BP CH GS

110 ESI SI DH  

111 EDI DI BH  

Figure 9.4: 80x86 register codes

The mod field is also used to determine the type of operands an instruction has. Often the same opcode is used
for an instruction that has two register operands or one register operand and one memory operand. The choice
mod=11 means that the instruction is a register-to-register operation or an immediate-to-register operation. For a
register-to-register operation, the destination register is coded in the reg field and the source register is coded in
the r/m field. Both use the register codes shown in Fig. 9.4. For an immediate-to-register operation, the operation
is coded as shown in Fig. 9.3 and the destination register is coded in the r/m field. The situation is complicated for
the other possible mod values and depends on the r/m field as well as the mod field. For r/m=100, it also depends
on the scaled index base (SIB) byte.

The SIB byte consists of three fields, a two-bit scaling field, a three-bit index register field, and a three-bit base



register field.

The scale values are 00 for 1, 01 for 2, 10 for 4, and 11 for 8.

The index and base register encodings are as shown in Fig. 9.4, except that 100 cannot appear in the index
register field since ESP cannot be an index register. Figure. 9.5 shows the different encodings. The mod field in
these formats tells how many bytes there are in the displacement. A value of 00 means that there is no
displacement in the machine code, except when r/m=101 when there is only a displacement. This special case is
for direct memory addressing, so is frequently used. A mod value of 01 means that there is a displacement byte in
the machine code; this byte is treated as a signed number and is extended to a doubleword before it is added to
the value from the base register and/or index register. A value of 10 means that there is a displacement
doubleword in the machine code; this doubleword is added to the value that comes from the base register and/or
scaled index register. The scaling factor is multiplied times the value in the index register.

mod r/m base from SIB
operand
(scale and index from SIB)

00 000   DS:[EAX]

  001   DS:[ECX]

  010   DS:[EDX]

  011   DS:[EBX]

  100 000 DS:[EAX + (scale*index)]

  (use SIB) 001 DS:[ECX + (scale*index)]

    010 DS:[EDX + (scale*index)]

    011 DS:[EBX + (scale*index)]

    100 SS:[ESP + (scale*index )]

    101 DS:[displacement32 + (scale*index)]

    110 DS:[ESI + (scale*index )]

    111 DS:[EDI + (scale*index )]

  101   DS:displacement32

  110   DS:[ESI]

  111   DS:[EDI]

01 000   DS:[EAX + displacement8]

  001   DS:[ECX + displacement8]

  010   DS:[EDX + displacement8]

  011   DS:[EBX + displacement8]

  100 000 DS:[EAX + (scale*index) + displacement8]

  (use SIB) 001 DS:[ECX + (scale*index) + displacement8]

    010 DS:[EDX + (scale*index) + displacement8]

    011 DS:[EBX + (scale*index) + displacement8]

    100 SS:[ESP + (scale*index) + displacement8]

    101 SS:[EBP+ (scale*index) + displacement8]

    110 DS:[ESI + (scale*index) + displacement8]

    111 DS:[EDI + (scale*index) + displacement8]

    101 SS:[EBP + displacement8]

    110 DS:[ESI + displacement8]

    111 DS:[EDI + displacement8]



10 000   DS:[EAX + displacement32]

  001   DS:[ECX + displacement32]

  010   DS:[EDX + displacement32]

  011   DS:[EBX + displacement32]

  100 000 DS:[EAX + (scale*index) + displacement32]

  (use SIB) 001 DS:[ECX + (scale*index) + displacement32]

    010 DS:[EDX + (scale*index) + displacement32]

    011 DS:[EBX + (scale*index) + displacement32]

    100 SS:[ESP + (scale*index) + displacement32]

    101 SS:[EBP+ (scale*index) + displacement32]

    110 DS:[ESI + (scale*index) + displacement32]

    111 DS:[EDI + (scale*index) + displacement32]

    101 SS:[EBP + displacement32]

    110 DS:[ESI + displacement32]

    111 DS:[EDI + displacement32]

mod reg r/m operands

11 dest source source register, destination register

  operation dest destination register, immediate operand

Figure 9.5: 80x86 instruction encodings

It is time for some examples. The first example shows the kind of instruction seen frequently in this book.

     add ecx, value

Suppose that at execution time value references the memory doubleword at address 1B27D48C. From Fig. 4.5 or
Appendix D, this add instruction has opcode 03. The direct address consists only of the 32-bit displacement-there

is no index register or base register used. Therefore the components of the mod-reg-r/m byte are mod=00,
reg=001 (for ECX), and r/m=101 (for direct addressing), giving 00 001 101 or 0D after regrouping and converting
to hexadecimal. The final part of the instruction is the displacement, so the entire instruction is encoded as 03 0D
1B27D48C (where the bytes of the address will actually be stored backwards).

Now consider the instruction

     add ecx, eax

This instruction also has opcode 03. The mod field is 11 since there are two register operands. The reg field
specifies the destination register, 001 for ECX. The r/m field gives the source register, 000 for EAX. The mod-reg-
r/m byte of the instruction is therefore 11 001 000, or C8 in hex. The machine code for the instruction is 03 C8.

Next consider the instruction

     mov edx, [ebx]

Figure 4.3 or Appendix D gives the opcode as 8B. Since the operand [ebx] is indirect addressing using no

displacement, the mod field is 00. The reg field contains 010, the code for EDX. The fourth line of the mod=00
group shows address DS:[EBX], that is, register indirect addressing in the data segment using the address in EBX.
Therefore the r/m field is 011. Putting these fields together gives a mod-reg-r/m byte of 00 010 011 or 13, and the
entire instruction assembles to 8B 13.

Now look at

     xor ecx, [edx+2]



Figure 8.2 or Appendix D gives the opcode of this instruction as 33. The memory operand uses indirect addressing
and a displacement of 2, small enough to encode in a single byte 02. Therefore the mod field is 01. The reg field
contains 001 for ECX. Figure 9.5 gives the r/m field as 010. Putting this together gives a mod-reg-r/m byte of 01
001 010 or 4A, so this instruction has machine code 33 4A 02.

Next consider an instruction that uses scaling.

     add eax, [ebx + 4*ecx]

This type of instruction is useful to process an array almost as in a high level language. You can store the starting
address of the array in EBX, and the array index in ECX (assuming that indexing starts at 0). The index is
multiplied by the scaling factor 4 (the size of a doubleword), and added to the base address to get the address of
the array element. Figure 4.5 gives the opcode as 03. The mod-reg-r/m byte is 00 000 100 or 04 for no
displacement, destination register EAX, and SIB byte used. The SIB byte is required since the instruction includes
both base and index registers. Its fields are scale=10 for 4, index=001 for ECX, and base=011 for EBX, giving a
SIB byte of 10 001 011 or 8B. The object code is therefore 03 04 8B.

Next we look at

     sub ecx, value[ebx + 2*edi]

where value references an address in the data segment. The opcode for this sub instruction is 2B. This address is

treated as a 32-bit displacement, and there is both a base and an index register. Therefore mod=10, reg=001 (for
ECX), and r/m=100 (for SIB needed). The fields of the SIB byte are 01 (for scaling factor 2), 111 (for index register
EDI), and 011 (for base register EBX). The displacement doubleword will contain the run-time address of value.
The machine code is therefore 2B 8C 7B xxxxxxxx, where the x's represent the address of value.

If the second operand in the last example is changed to value[EBX+2*EDI+10], then the displacement/address

(represented above by xxxxxxxx) is simply 10 larger. That is, the assembler combines the displacement 10 and
the displacement corresponding to value.

You may have noticed that the first group in Fig. 9.5 does not show how to encode the operand [ebp]. It is
encoded as [ebp+0], using a byte-size displacement. For example

     mov eax, [ebp]

is encoded as 8B 45 00, opcode 8B, mod-reg-r/m byte 01 000 101 (1-byte displacement, destination EAX, base
register EBP), and displacement 00.

Figure 9.5 points out again that indirect addresses using ESP and EBP are in the stack segment, not the data
segment. One would rarely want to override this. However, you might want to reference data in, say, the extra
segment. To do this, you might code an instruction like

     cmp ax, WORD PTR es:[edx + 2*esi + 512]

This example has been chosen to involve almost all of the possible components of an 80x86 instruction. It uses
operand size prefix since word-size operands are being used. It uses a segment override prefix for ES. It uses
base and index registers and a 32-bit displacement. The code generated is 66 26 3B 84 72 00000200, operand
size prefix 66, segment override 26 (for ES), opcode 3B, mod-reg-r/m byte 84, SIB 72, and displacement
00000200. The possible segment override bytes are in Fig. 9.6.



Prefix Segment

2E CS

3E DS

26 ES

36 SS

64 FS

65 GS

Figure 9.6: Segment override prefixes

While it may seem that opcode assignments are completely random, there are actually several patterns. For
example, given a doubleword operand referenced by value, the opcode for the memory-to-register instruction mov
eax,value is A1 and the opcode for the register-to-memory instruction mov value,eax is A3. In binary, these

differ only in bit position 1, the next-to-last bit. Bit 1 often serves as a direction bit, having value 1 when the first
operand is in memory and 0 when the first operand is in a register.

Similarly, corresponding instructions with doubleword operands and byte-size operands often have opcodes that
differ only in bit position 0, the last bit. For example, given a byte referenced by bVal and a doubleword referenced
by dVal, then the opcode for cmp bVal,dl is 38 and for cmp dVal,edx is 39. Bit 0 often serves as a size bit,

having value 1 for doubleword (or word) operands and value 0 for byte operands.

Another set of patterns occurs in some single byte instructions where the same instruction is available for each of
the registers-the opcode ends in the appropriate register code. For instance, the inc instructions for register32

operands (Fig. 4.6) have opcodes 40 through 47, and the last three bits are 000 through 111, the register codes
for the registers to be incremented. Another way of looking at this is that the opcodes for this class of inc

instructions are obtained by adding 40 and the register code.

Exercises 9.2

Why can no 80x86 assembly language instruction specify two memory operands?1.

Find the machine code for each of the following instructions. Make the following assumptions:2.

dbl DWORD ?    ; run-time location 1122AABB
wrd WORD  ?    ; run-time location 3344CCDD
byt BYTE  ?    ; run-time location 5566EEFF

add dbl, ecxa.

add wrd, cxb.

add byt, clc.

add edx, ebxd.

add dx, bxe.

add dl, bhf.

push ebpg.

cmp ecx, dblh.

cmp al, byti .

inc ecxj.

inc cxk.

pop eaxl .

m.

n.



k.

l.

push dblm.

or al, 35n.

sub dbl, 2 (byte-size immediate operand)o.

and ebx, 0ff000000h (doubleword-size immediate operand)p.

xchg ebx, ecxq.

xchg eax, ecx (note accumulator operand)r.

cwds.

shl edx, 1t.

neg WORD PTR [EBX]u.

imul chv.

div dblw.

dec DWORD PTR [ebx+esi]x.

and ecx, [ebx+4*edi]y.

sub ebx, dbl[4*eax]z.

Programming Exercises 9.2

Assuming that arr[0..nbr] contains a collection of doublewords in increasing order. The following design
describes a binary search for keyValue, returning the index of keyValue if it is present in the array and -1 if
it is absent.

procedure binarySearch(arr : array, nbr: integer, keyValue : integer) : integer
topIndex := nbr;
bottomIndex := 0;
while (bottomIndex = topIndex) loop
  midIndex := (bottomIndex + topIndex) div 2;
  if (keyValue = arr[midIndex])
  then
       return midIndex;
  elseif (keyValue < arr[midIndex])
  then
       topIndex := midIndex--1;
  else
       bottomIndex := midIndex + 1;
     end if;
end loop;
return - 1;

Implement this design as an 80x86 NEAR32 procedure binarySearch with three parameters, (1) the address

of an array of doublewords, (2) a doubleword nbr, and (3) a doubleword keyValue. Return the appropriate
result in EAX. The procedure will change no register other than EAX, and it will be responsible for removing
parameters from the stack. Use scaled and indexed addressing appropriately to address array elements.
Write a short test driver program to test your procedure binarySearch.

1.

The first nbrElts values in an array a[1..maxIndex] can be sorted into increasing order using the selection
sort algorithm.

2.

procedure selectionSort(arr : array, nbr: integer)
for position := 1 to nbrElts-1 loop
  smallSpot := position;



  smallValue := a[position];
  for i := position+1 to nbrElts loop
       if a[i] < smallValue
       then
            smallSpot := i;
            smallValue := a[i];
       end if;
       end for;
       a[smallSpot] := a[position];
       a[position] := smallValue;
end for;

Implement this algorithm in a NEAR32 procedure selectionSort with two parameters: (1) the address of an
array a of doubleword integers, and (2) a doubleword nbrElts. The procedure will change no register and it
will be responsible for removing parameters from the stack. Use scaled and indexed addressing
appropriately to address array elements, noting that the algorithm as written starts with index 1, not index 0.
Write a short test driver program to test your procedure.

The quick sort algorithm sorts an array slice a[leftEnd..rightEnd] into increasing order by identifying a
middle value in the array and moving elements of the array so that all elements on the left are smaller than
the middle value and all on the right are larger than the middle value. Then the procedure is recursively
called to sort the left and right sides. The recursion terminates when the portion to be sorted has one or
fewer elements. Here is a design.

procedure quickSort(a:array, leftEnd:integer, rightEnd:integer)
if leftEnd < rightEnd
then
  left := leftEnd;
  right := rightEnd;

  while left < right loop
        while (left < right) and (a[left] < a[right]) loop
               add 1 to left;
        end while;
        swap a[left] and a[right];

        while (left < right) and (a[left] < a[right]) loop
               subtract 1 from right;
        end while;
               swap a[left] and a[right];
        end while;

        quickSort(a, leftEnd, left-1);
        quickSort(a, right+1, rightEnd);
end if;

Implement this algorithm in a NEAR32 procedure quickSort with three parameters: (1) the address of an

array a of doubleword integers, (2) a doubleword leftEnd, and (3) a doubleword nbrElts. The procedure will
change no register and it will be responsible for removing parameters from the stack. Use scaled and
indexed addressing appropriately to address array elements. Write a short test driver program to test your
procedure.

3.



9.3 Macro Definition and Expansion

A macro was defined in Chapter 3 as a statement that is shorthand for a sequence of other statements.
The assembler expands a macro to the statements it represents, and then assembles these new
statements. Many previous chapters have made extensive use of macros defined in the file IO.H. This
section explains how to write macro definitions and tells how MASM uses these definitions to expand
macros into other statements.

A macro definition resembles a procedure definition in a high-level language. The first line gives the
name of the macro being defined and a list of parameters; the main part of the definition consists of a
collection of statements that describe the action of the macro in terms of the parameters. A macro is
called much like a high-level language procedure, too; the name of the macro is followed by a list of
arguments.

These similarities are superficial. A procedure call in a high-level language is generally compiled into a
sequence of instructions to push parameters on the stack followed by a call instruction, whereas a

macro call actually expands into statements given in the macro, with the arguments substituted for the
parameters used in the macro definition. Code in a macro is repeated every time a macro is called, but
there is just one copy of the code for a procedure. Macros often execute more rapidly than procedure
calls since there is no overhead for passing parameters or for call and ret instructions, but this is

usually at the cost of more bytes of object code.

Every macro definition is bracketed by MACRO and ENDM directives. The format of a macro definition is

     name         MACRO list of parameters

             assembly language statements
             ENDM

The parameters in the MACRO directive are ordinary symbols, separated by commas. The assembly

language statements may use the parameters as well as registers, immediate operands, or symbols
defined outside the macro. These statements may even include macro calls.

A macro definition can appear anywhere in an assembly language source code file as long as the
definition comes before the first statement that calls the macro. It is good programming practice to
place macro definitions near the beginning of a source file.

The remainder of this section gives several examples of macro definitions and macro calls. Suppose
that a program design requires several pauses where the user is prompted to press the [Enter] key.
Rather than write this code every time or use a procedure, a macro pause can be defined. Figure 9.7
gives such a definition.

   pause   MACRO
   ; prompt user and wait for [Enter] to be pressed
            output pressMsg    ; "Press [Enter]"
            input  stringIn,5  ; input
            ENDM

Figure 9.7: pause macro

The pause macro has no parameter, so a call expands to almost exactly the same statements as are in
the definition. If the statement

     pause

is included in subsequent source code, then the assembler expands this macro call into the statements

     output pressMsg  ; "Press [Enter]"
     input stringIn,5 ; input



Of course, each of these statements is itself a macro call and will expand to additional statements.
Notice that the pause macro is not self-contained; it references two fields in the data segment:

     pressMsg BYTE "Press [Enter] to continue", 0
     stringIn BYTE 5 DUP (?)

Note again that the definition and expansion for the pause macro contain no ret statement. Although

macros look much like procedures, they generate in-line code when the macro call is expanded at
assembly time.

Figure 9.8 gives a definition of a macro add2 that finds the sum of two parameters, putting the result in
the EAX register. The parameters used to define the macro are nbr1 and nbr2. These labels are local
to the definition. The same names could be used for other purposes in the program, although some
human confusion might result.

   add2     MACRO  nbr1, nbr2
   ; put sum of two doubleword parameters in EAX
            mov     eax, nbr1
            add     eax, nbr2
            ENDM

Figure 9.8: Macro to add two integers

The statements to which add2 expands depends on the arguments used in a call. For example, the
macro call

     add2 value, 30 ; value + 30

expands to

     ; put sum of two doubleword parameters in EAX
     mov    eax, value
     add    eax, 30

The statement

     add2  value1, value2   ; value1 + value2

expands to

     ; put sum of two doubleword parameters in EAX
     mov    eax, value1
     add    eax, value2

The macro call

     add2 eax, ebx      ; sum of two values

expands to

     ; put sum of two doubleword parameters in EAX
     mov     eax, eax
     add     eax, ebx

The instruction mov eax,eax is legal, even if it accomplishes nothing.

In each of these examples, the first argument is substituted for the first parameter nbr1 and the second
argument is substituted for the second parameter nbr2. Each macro results in two mov instructions, but



since the types of arguments differ, the object code will vary.

If one of the parameters is missing the macro will still be expanded. For instance, the statement

     add2 value

expands to

     ; put sum of two doubleword parameters in EAX
            mov eax, value
            add eax,

The argument value replaces nbr1 and an empty string replaces nbr2. The assembler will report an
error, but it will be for the illegal add instruction that results from the macro expansion, not directly

because of the missing argument.

Similarly, the macro call

     add , value

expands to

     ; put sum of two doubleword parameters in EAX
     mov    eax,
     add    eax, value

The comma in the macro call separates the first missing argument from the second argument value. An
empty argument replaces the parameter nbr1. The assembler will again report an error, this time for the
illegal mov instruction.

Figure 9.9 shows the definition of a macro swap that will exchange the contents of two doublewords in
memory. It is very similar to the 80x86 xchg instruction that will not work with two memory operands.

  swap     MACRO  dword1, dword2
  ; exchange two doublewords in memory
           push    eax
           mov     eax, dword1
           xchg    eax, dword2
           mov     dword1, eax
           pop     eax
           ENDM

Figure 9.9: Macro to swap two memory words

As with the add2 macro, the code generated by calling the swap macro depends on the arguments
used. For example, the call

     swap  [ebx], [ebx+4]      ; swap adjacent words in array

expands to

     ; exchange two doublewords in memory
              push  eax
              mov   eax, [ebx]
              xchg  eax, [ebx+4]
              mov   [ebx], eax
              pop   eax



It might not be obvious to the user that the swap macro uses the EAX register, so the push and pop
instructions in the macro protect the user from accidentally losing the contents of this register.

Figure 9.10 gives a definition of a macro min2, which finds the minimum of two doubleword signed
integers, putting the smaller in the EAX register. The code for this macro must implement a design with
an i f statement, and this requires at least one assembly language statement with a label. If an ordinary
label were used, then it would appear every time a min2 macro call was expanded and the assembler
would produce error messages because of duplicate labels. The solution is to use a LOCAL directive to

define a symbol endIfMin that is local to the min2 macro.

  min2     MACRO  first, second
           LOCAL  endIfMin
  ; put smaller of two doublewords in the EAX register
           mov    eax, first
           cmp     eax, second
           jle    endIfMin
           mov     eax, second
  endIfMin:
           ENDM

Figure 9.10: Macro to find smaller of two memory words

The LOCAL directive is used only within a macro definition and must be the first statement after the
MACRO directive. (Not even a comment can separate the MACRO and LOCAL directives.) It lists one or

more symbols, separated by commas, which are used within the macro definition. Each time the macro
is expanded and one of these symbols is needed, it is replaced by a symbol starting with two question
marks and ending with four hexadecimal digits (??0000, ??0001, etc.) The same ??dddd symbol
replaces the local symbol each place the local symbol is used in one particular expansion of a macro
call. The same symbols may be listed in LOCAL directives in different macro definitions or may be used

as regular symbols in code outside of macro definitions.

The macro call

     min2  [ebx], ecx   ; find smaller of two values

might expand to the code

     LOCAL endIfMin
     ; put smaller of two doublewords in the EAX register
               mov   eax, [ebx]
               cmp   eax, ecx
               jle   ??000C
               mov   eax, ecx
     ??000C:

Here endIfMin has been replaced the two places it appears within the macro definition by ??000C in the
expansion. Another expansion of the same macro would use a different number after the question
marks.

The MASM assembler has several directives that control how macros and other statements are shown
in .LST files. The most useful are

.LIST that causes statements to be included in the listing file

.NOLIST that completely suppresses the listing of all statements, and

.NOLISTMACRO that selectively suppresses macro expansions while allowing the programmer’s

original statements to be listed

The file IO.H ends starts with a .NOLIST directive so that macro definitions do not clutter the listing.
Similarly IO.H ends with .NOLISTMACRO and .LIST directives so that macro expansion listings do not



obscure the programmer’s code, but original statements are listed.

Exercises 9.3

Using the macro definition for add2 given in Fig. 9.8, show the sequence of statements to which
each of the following macro calls expands.

add2 25, ebxa.

add2 ecx, edxb.

add2 ; no argumentc.

add2 value1, value2, value3d.

(Hint: the third argument is ignored since it has no matching parameter.)

1.

Using the macro definition for swap given in Fig. 9.9, show the sequence of statements to which
each of the following macro calls expands.

swap value1, value2a.

swap temp, [ebx]b.

swap valuec.

2.

Using the macro definition for min2 given in Fig. 9.10, show the sequence of statements to
which each of the following macro calls expands.

min2 value1, value2

(Assume the local symbol counter is at 000A)

a.

min2 cx, value

(Assume the local symbol counter is at 0019)

b.

3.

Programming Exercises 9.3

Write a definition of a macro add3 that has three doubleword integer parameters and puts the
sum of the three numbers in the EAX register.

1.

Write a definition of a macro max2 that has two doubleword integer parameters and puts the
maximum of the two numbers in the EAX register.

2.

Write a definition of a macro min3 that has three doubleword integer parameters and puts the
minimum of the three numbers in the EAX register.

3.

Write a definition of a macro toUpper with one parameter, the address of a byte in memory. The
code generated by the macro will examine the byte, and if it is the ASCII code for a lowercase
letter, will replace it by the ASCII code for the corresponding uppercase letter.

4.



9.4 Conditional Assembly

The Microsoft Macro Assembler can observe various conditions that can be tested at assembly time
and alter how the source code is assembled on the basis of these conditions. For instance, a block of
code may be assembled or skipped based on the definition of a constant. This ability to do conditional
assembly is especially useful in macro definitions. For example, two macros using the same mnemonic
may be expanded into different sequences of statements based on the number of operands present.
This section describes some of the ways that conditional assembly can be used.

Figure 9.11 shows a definition for a macro addAll that will add one to five doubleword integers, putting
the sum in the EAX register. It employs the conditional assembly directive IFNB ("if not blank"). This

directive is most often used in macro definitions, although it is legal in open code, that is, regular code
outside a macro. When an addAll macro call is expanded and one of its IFNB directives is

encountered, MASM examines the value of the macro parameter whose name is enclosed between <
and >. If that parameter has a corresponding argument passed to it, then it is "not blank" and the add

instruction for that argument is included in the expansion of the macro. If a parameter does not have a
corresponding argument, the add instruction is not assembled.

  addAll MACRO  nbr1, nbr2, nbr3, nbr4, nbr5
  ; add up to 5 doubleword integers, putting sum in EAX
         mov   eax, nbr1     ; first operand
         IFNB  <nbr2>
         add   eax, nbr2    ; second operand
         ENDIF
         IFNB  <nbr3>
         add   eax, nbr3     ; third operand
         ENDIF
         IFNB  <nbr4>
         add   eax, nbr4    ; fourth operand
         ENDIF
         IFNB  <nbr5>
         add   eax, nbr5     ; fifth operand
         ENDIF
         ENDM

Figure 9.11: addAll macro using conditional assembly

Given the macro call

     addAll ebx, ecx, edx, number, 1

each of the five macro parameters has a corresponding argument, so the macro expands to

     mov  eax, ebx     ; first operand
     add  eax, ecx     ; second operand
     add  eax, edx     ; third operand
     add  eax, number     ; fourth operand
     add  eax, 1     ; fifth operand

The macro call

     addAll ebx, ecx, 45      ; value1 + value2 + 45

has only three arguments. The argument ebx becomes the value for parameter nbr1, ecx is

substituted for nbr2, and 45 will be used for nbr3, but the parameters nbr4 and nbr5 will be blank.
Therefore the macro expands to the statements

     mov  eax, ebx ; first operand



     add  eax, ecx ; second operand
     add  eax, 45  ; third operand

Although it would be unusual to do so, arguments other than trailing ones can be omitted. For example,
the macro call

     addAll ebx, ,ecx

has ebx corresponding to nbr1 and ecx matched to nbr3, but all other parameters will be blank.

Therefore the macro expands to

     mov  eax, ebx ; first operand
     add  eax, ecx ; third operand

If the first argument is omitted in an addAll macro call, the macro will still be expanded. However, the
resulting statement sequence will contain a mov instruction with a missing operand, and this statement

will cause MASM to issue an error message. For example, the macro call

     addAll , value1, value2

expands to

     mov  eax,    ; first operand
     add  eax, value1 ; second operand
     add  eax, value2 ; third operand

An unusual use of the addAll macro is illustrated by the call

     addAll value, eax, eax, value, eax      ; 10 * value

that expands to

     mov  eax, value   ; first operand
     add  eax, eax   ; second operand
     add  eax, eax   ; third operand
     add  eax, value   ; fourth operand
     add  eax, eax   ; fifth operand

The comment "10 * value" explains the purpose of this call.

The Microsoft assembler provides several conditional assembly directives. The IFNB directive has a
companion IFB ("if blank") that checks if a macro parameter is blank.

The IF and IFE directives examine an expression whose value can be determined at assembly time.
For IF, MASM assembles conditional code if the value of the expression is not zero. For IFE, MASM

includes conditional code if the value is zero.

The IFDEF and IFNDEF are similar to IF and IFE. They examine a symbol and MASM assembles

conditional code depending on whether or not the symbol has previously been defined in the program.

Each conditional assembly block is terminated by the ENDIF directive. ELSEIF and ELSE directives are

available to provide alternative code. In general, blocks of conditional assembly code look like

     IF... [operands]

     statements
     ELSEIF ...

     statements
     ELSE

     statements



     ENDIF

Operands vary with the type of IF and are not used with all types. The ELSEIF directive and statements
following it are optional, as are the ELSE directive and statements following it. There can be more than
one ELSEIF directive, but at most one ELSE directive.

The above syntax strongly resembles what appears in many high-level languages. It is important to
realize, however, that these directives are used at assembly time, not at execution time. That is, they
control assembly of statements that are later executed, not the order of statement execution.

The EXITM directive can be used to make some macro definitions simpler to write and understand.

When MASM is processing a macro call and finds an EXITM directive, it immediately stops expanding
the macro, ignoring any statements following EXITM in the macro definition. The design

if condition
then
     process assembly language statements for condition;
else
     process statements for negation of condition;
end if;

and the alternative design

if condition
then
     process assembly language statements for condition;
     terminate expansion of macro;
end if;

process statements for negation of condition;

are equivalent, assuming that no macro definition statements follow those sketched in the designs.
These alternative designs can be implemented using

     IF... [operands]

     assembly language statements for condition
     ELSE

     assembly language statements for negation of condition
     ENDIF

and

     IF... [operands]

     assembly language statements for condition
     EXITM
     ENDIF

     assembly language statements for negation of condition

Notice that the EXITM directive is not needed when the ELSE directive is used. A macro definition using
EXITM appears in Fig. 9.12 on the next page.

   min2      MACRO  value1,value2,extra
             LOCAL  endIfLess
   ; put smaller of value1 and value2 in EAX

             IFB    <value1>
             .ERR  <first argument missing in min2 macro>



             EXITM
             ENDIF

             IFB    <value2>
             .ERR  <second argument missing in min2 macro>
             EXITM
             ENDIF

             IFNB    <extra>
             .ERR  <more than two arguments in min2 macro>
             EXITM
             ENDIF

             mov  eax, value1   ;; first value to EAX
             cmp  eax, value2   ;; value1 <= value2?
             jle  endIfLess     ;; done if so
             mov  eax, value2   ;; otherwise value2 smaller
   endIfLess:
             ENDM

Figure 9.12: Improved min2 macro

Examples in the previous section showed macro calls that expanded to illegal statements as a result of
missing arguments. Such illegal statements are detected by MASM during subsequent assembly rather
than as the macro is expanded. The designer of a macro definition may wish to include safeguards to
ensure that the correct number of arguments is included in a macro call, or that the call is valid in other
ways. Conditional assembly directives make this possible. If, however, assembly errors are eliminated
by avoiding generation of illegal statements, a user may not know when a macro call is faulty. It
requires additional effort to inform the user of an error. One way to do this is with the .ERR directive.

This directive generates a forced error at assembly time, resulting in a message to the console and a
message to the listing file, if any. It also ensures that no .obj file is produced for the assembly. The
.ERR directive is often followed by a string enclosed by < and >. This string is included in the error

message.

The min2 macro definition in Fig. 9.12 incorporates safeguards to ensure that the macro is called with
the correct number of parameters. The conditional block

     IFB   <value1>
     .ERR  <first argument missing in min2 macro>
     EXITM
     ENDIF

examines the first argument. If it is missing, then the .ERR directive displays the message "first
argument missing in min2 macro." Note that the conditional block ends with an EXITM directive, so that

if the first argument is missing, no further expansion of the macro is done. An alternative way to
suppress additional macro expansion would be to nest the rest of the macro definition between an
ELSE directive and the ENDIF directive for this first conditional block.

The conditional block

     IFB   <value2>
     .ERR  <second argument missing in min2 macro>
     EXITM
     ENDIF

examines the second argument, generating an error if it is missing. The conditional block

     IFNB   <extra>
     .ERR  <more than two arguments in min2 macro>
     EXITM



     ENDIF

tells MASM to check to see if a third argument was listed in the macro call that is being expanded.
Since there should be no third argument, an error is generated if the argument is not blank.

Exercises 9.4

Using the macro definition for min2 given in Fig. 9.12, show the sequence of statements to
which each of the following macro calls expands.

min2 nbr1, nbr2

(Assume the local symbol counter is at 0004.)

a.

min2 , value

(Assume the local symbol counter is at 0011.)

b.

min2 ecx

(Assume the local symbol counter is at 000B.)

c.

min2 nbr1, nbr2, nbr3

(Assume the local symbol counter is at 01D0.)

d.

1.

Programming Exercises 9.4

Rewrite the macro definition for swap from Fig. 9.9, so that a swap macro call must have exactly
two arguments; use .ERR with appropriate messages if there are missing or extra arguments.

1.

Write a definition of a macro min3 that has exactly three doubleword integer parameters and that
puts the minimum of the three numbers in the EAX register. Use .ERR with appropriate
messages if there are missing or extra arguments in a min3 call.

2.



9.5 Macros in IO.H

Macros in the file IO.H are designed to provide simple, safe access to standard input and output devices. Figure
9.13 shows the contents of IO.H and the remainder of the section discusses the directives and macros in the file.

; IO.H - header file for I/O macros
; 32-bit version for flat memory model
; R. Detmer   last revised 8/2000
.NOLIST     ; turn off listing
.386

            EXTRN itoaproc:near32, atoiproc:near32
            EXTRN dtoaproc:near32, atodproc:near32
            EXTRN inproc:near32, outproc:near32

itoa        MACRO dest,source,xtra      ;; convert integer to ASCII string

            IFB <source>
            .ERR <missing operand(s) in ITOA>
            EXITM
            ENDIF

            IFNB <xtra>
            .ERR <extra operand(s) in ITOA>
            EXITM
            ENDIF

            push   ebx                ;; save EBX
            mov    bx, source
            push   bx                 ;; source parameter
            lea    ebx,dest           ;; destination address
            push   ebx                ;; destination parameter
            call   itoaproc           ;; call itoaproc(source,dest)
            pop    ebx                ;; restore EBX
            ENDM

atoi        MACRO  source,xtra          ;; convert ASCII string to integer in AX
                                      ;; offset of terminating character in ESI

            IFB      <source>
            .ERR   <missing operand in ATOI>
            EXITM
            ENDIF

            IFNB     <xtra>
            .ERR   <extra operand(s) in ATOI>
            EXITM
            ENDIF
            push   ebx ;; save EBX
            lea    ebx,source         ;; source address to EBX
            push   ebx                ;; source parameter on stack
            call   atoiproc           ;; call atoiproc(source)
            pop    ebx                ;; parameter removed by ret
            ENDM

dtoa        MACRO  dest,source,xtra   ;; convert double to ASCII string

            IFB    <source>
            .ERR   <missing operand(s) in DTOA>
            EXITM
            ENDIF

            IFNB   <xtra>



            .ERR   <extra operand(s) in DTOA>
            EXITM
            ENDIF

            push   ebx                ;; save EBX
            mov    ebx, source
            push   ebx                ;; source parameter
            lea    ebx,dest           ;; destination address
            push   ebx                ;; destination parameter
            call   dtoaproc           ;; call dtoaproc(source,dest)
            pop    ebx                ;; restore EBX
            ENDM

atod        MACRO  source,xtra        ;; convert ASCII string to integer in EAX
                                    ;; offset of terminating character in ESI
            IFB    <source>
            .ERR <missing operand in ATOD>
            EXITM
            ENDIF

            IFNB   <xtra>
            .ERR <extra operand(s) in ATOD>
            EXITM
            ENDIF

            lea    eax,source         ;; source address to EAX
            push   eax                ;; source parameter on stack

            call   atodproc           ;; call atodproc(source)
                                      ;; parameter removed by ret
            ENDM

            output MACRO string,xtra  ;; display string
            IFB    <string>
            .ERR   <missing operand in OUTPUT>
            EXITM
            ENDIF
            IFNB   <xtra>
            .ERR <extra operand(s) in OUTPUT>
            EXITM
            ENDIF

            push   eax                ;; save EAX
            lea    eax,string         ;; string address
            push   eax                ;; string parameter on stack
            call   outproc            ;; call outproc(string)
            pop    eax                ;; restore EAX
            ENDM

input MACRO dest,length,xtra          ;; read string from keyboard

            IFB    <length>
            .ERR <missing operand(s) in INPUT>
            EXITM
            ENDIF

            IFNB   <xtra>
            .ERR <extra operand(s) in INPUT>
            EXITM
            ENDIF

            push   ebx                ;; save EBX
            lea    ebx,dest           ;; destination address
            push   ebx                ;; dest parameter on stack



            mov    ebx,length         ;; length of buffer
            push   ebx                ;; length parameter on stack
            call   inproc             ;; call inproc(dest,length)
            pop    ebx                ;; restore EBX
            ENDM

.NOLISTMACRO ; suppress macro expansion listings

.LIST        ; begin listing

Figure 9.13: IO.H

Most of the file IO.H consists of macro definitions that, when used, generate code to call external procedures.
However, the file does contain other directives. It begins with a .NOLIST directive; this suppresses the listing of

all source code, in particular the contents of IO.H. It then has EXTRN directives that identify the external
procedures called by the macros. The file ends with a .NOLISTMACRO directive to suppress listing of any macro
expansions and an .LIST directive so that the user's statements following the directive INCLUDE io.h will

again be shown in the listing file.

The bulk of the file IO.H consists of definitions for itoa, atoi, dtoa, atod, output, and input macros. These
definitions have similar structures. Each uses IFB and IFNB directives to check that a macro call has the correct
number of arguments. If not, .ERR directives are used to generate forced errors and appropriate messages.

Actually, the checks are not quite complete.

Assuming that its arguments are correct, an input/output macro call expands to a sequence of instructions that
call the appropriate external procedure, for instance itoaproc for the macro itoa. Parameters are passed on the
stack, but some code sequences use a register to temporarily contain a value, with push and pop instructions to

ensure that these registers are not changed following a macro call.

Exercises 9.5

Notice that itoa has only one error message that is used if either or both argument is missing. Rewrite the
definition of itoa to provide complete argument checking. That is, check separately for missing source and
dest arguments, generating specific messages for each missing argument. Allow for the possibility that
both are missing.

1.



Chapter Summary

This chapter has discussed the assembly process. A typical two-pass assembler scans an assembly
language program twice, using a location counter to construct a symbol table during the first pass, and
completing assembly during the second pass. The symbol table contains information about each
identifier used in the program, including its type, size, and location. Assembly can be done in a single
pass if the object code is "fixed up" when forward references are resolved.

A machine instruction may have one or more prefix bytes. However, the main byte of machine code for
each 80x86 instruction is its opcode. Some instructions are a single byte long, but most consist of
multiple bytes. The next byte often has the format mod reg r/m where reg indicates a source or
destination register, and the other two fields combine to describe the addressing mode. Other
instruction bytes contain additional addressing information, immediate data, or the address of a
memory operand.

Macros are defined using MACRO and ENDM directives. Macros may use parameters that are associated

with corresponding arguments in macro calls. A call is expanded at assembly time. The statements in
the expansion of a macro call appear in the macro definition, with arguments substituted for
parameters. A macro definition may declare local labels that MASM expands to different symbols for
different macro calls.

Conditional assembly may be used in regular code or in macro definitions to generate different
statements, based on conditions that can be checked at assembly time. The IFB and IFNB directives

are used in macros to check for the absence or presence of arguments. Several other conditional
assembly directives are also available, including IF, IFE, IFDEF, and IFNDEF. An ELSE directive may
be used to provide two alternative blocks of code, and the ENDIF directive ends a conditional assembly

block.

If the assembler encounters an EXITM directive when expanding a macro definition, it immediately
terminates expansion of the macro. The .ERR directive triggers a forced error so that MASM displays

an error message and produces no .OBJ file for the assembly.

The file IO.H contains definitions for a collection of input/output macros, and a few directives. These
macro definitions use conditional assembly to check for missing or extra arguments and generate code
that calls external procedures.



Chapter 10: Floating-Point Arithmetic

Overview

This book has concentrated on integer representations of numbers, primarily 2's complement since all
80x86 microprocessors have a variety of instructions to manipulate 2's complement numbers. Many
80x86 microprocessor systems-including all Pentium systems, systems with a 486DX, and other
systems equipped with a floating-point coprocessor-also have the capability to manipulate numbers
stored in floating-point format.

Section 1.5 described the IEEE format used to store floating-point values in 32 bits. The MASM
assembler has directives that accept decimal operands and initialize storage using the IEEE format.
There are two ways to do floating-point arithmetic with a PC. If you have a microprocessor with a
floating-point unit built in or a floating-point coprocessor, then you can simply use the floating-point
instructions. Otherwise, you can employ a collection of procedures that implement arithmetic operations
such as addition and multiplication.

Section 10.1 describes the 80x86 floating-point architecture. Section 10.2 describes how to convert
floating-point values to and from other formats, including ASCII. Section 10.3 shows floating-point
emulation routines of addition, subtraction, multiplication, division, negation, and comparison
operations-these routines are useful for floating-point operations on an 80x86 system without built-in
floating-point instructions. The procedures in this section serve as examples of assembly language
implementation of moderately complex, useful algorithms and also illustrate some techniques not
covered earlier in this book. Section 10.4 gives a brief introduction into using in-line assembly code in
C++ code, with C++ for input/output operations, and assembly language for floating-point operations.
In-line assembly code is not restricted to floating-point instructions, however.



10.1 80x86 Floating-Point Architecture

As stated above, some 80x86 microprocessors do not have built-in floating point capability, depending
instead on a floating-point coprocessor chip to execute floating-point instructions. Even with the ones
that do, the floating-point unit (FPU) of the chip is almost independent of the rest of the chip. It has its
own internal registers, completely separate from the familiar 80x86 registers. It executes instructions to
do floating-point arithmetic operations, including commonplace operations such as addition or
multiplication, and more complicated operations such as evaluation of some transcendental functions.
Not only can it transfer floating-point operands to or from memory, it can also transfer integer or BCD
operands to or from the coprocessor. Nonfloating formats are always converted to floating point when
moved to a floating-point register; a number in internal floating-point format can be converted to integer
or BCD format as it is moved to memory.

The FPU has eight data registers, each 80 bits long. A ten-byte floating-point format (also specified by
IEEE standards) is used for values stored in these registers. The registers are basically organized as a
stack; for example, when the fld (floating load) instruction is used to transfer a value from memory to

the floating point unit, the value is loaded into the register at the top of the stack, and data stored in the
stack top and other registers are pushed down one register. However, some instructions can access
any of the eight registers, so that the organization is not a "pure" stack.

The names of the eight floating-point registers are

ST, the stack top, also called ST(0),

ST(1), the register just below the stack top,

ST(2), the register just below ST(1),

ST(3), ST(4), ST(5), ST(6), and

ST(7), the register at the bottom of the stack.

In addition to the eight data registers, the floating-point unit has several 16-bit control registers. Some
of the status word bits are assigned values by floating-point comparison instructions, and these bits
must be examined in order for the 80x86 to execute conditional jump instructions based on floating-
point comparison. Bits in the FPU control word must sometimes be set to ensure certain modes of
rounding.

Before considering the floating-point instructions, a few notes are in order. Each floating-point
mnemonic starts with the letter F, a letter that is not used as the first character of any nonfloating
instruction. Most floating-point instructions act on the stack top ST and one other operand in another
floating-point register or in memory. No floating-point instruction can transfer data between an 80x86
general register (such as EAX) and a floating-point register—transfers must be made using a memory
location for intermediate storage. (There are, however, instructions to store the status word or the
control word in AX.)

The floating-point instructions will be examined in groups, starting with instructions to push operands
onto the stack. Figure 10.1 lists these mnemonics.



Mnemonic Operand Action

fld memory (real) real value from memory pushed onto stack

fild memory
(integer)

integer value from memory converted to floating point and
pushed onto stack

fbld memory (BCD) BCD value from memory converted to floating point and pushed
onto stack

fld st(num) contents of floating-point register pushed onto stack

fld1 (none) 1.0 pushed onto stack

fldz (none) 0.0 pushed onto stack

fldpi (none) p (pi) pushed onto stack

fldl2e (none) log2(e) pushed onto stack

fldl2t (none) log2(10) pushed onto stack

fldlg2 (none) log10(2) pushed onto stack

fldln2 (none) loge(2) pushed onto stack

Figure 10.1: Floating-point load instructions

Some examples illustrate how these instructions work. Suppose that the floating-point register stack
contains

with values shown in decimal rather than in IEEE floating-point format. If the data segment contains

     fpValue   REAL4  10.0
     intValue  DWORD  20
     bcdValue  TBYTE     30

then the values assembled will be 41200000 for fpValue, 00000014 for intValue, and
00000000000000000030 for bcdValue. If the instruction fld fpValue is executed, the register stack

will contain



The original values have all been pushed down one register position on the stack. Starting with these
values, if the instruction fld st(2) is executed, the register stack will contain

Notice that the value 2.0 from ST(2) has been pushed onto the top of the stack, but not removed from
the stack. Starting with these values, assume that the instruction fild intValue is executed. The

new contents of the register stack will be



What is not obvious here is that the 32-bit value 00000014 is converted to an 80-bit floating-point
value. An integer operand must be word length, doubleword length, or quadword length—byte length
integer operands are allowed. This chapter does not show opcodes for floating-point instructions.

If the instruction fbld bcdValue is now executed, the stack values will become

where the 80 bit BCD value is converted to the very different 80 bit floating-point format. Finally, if the
instruction fldz is executed, the register stack will contain



The stack is now full. No further value can be pushed onto the stack unless some value is popped from
the stack, or the stack is cleared. The instruction finit initializes the floating-point unit and clears the

contents of all eight registers. Often a program that uses the floating-point unit will include the
statement

     finit   ; initialize the math processor

near the beginning of the code. It may be desirable to reinitialize the floating-point unit at points in the
code, but normally this is not required since values will be popped from the stack, not allowed to
accumulate on the stack.

You can trace floating-point operations using Windbg. Figure 10.2 shows a screen dump following
execution of the code on the left pane. A floating-point window is shown in the right pane.

Figure 10.2: Windbg view of floating point execution

Figure 10.3 lists the floating-point instructions that are used to copy data from the stack top to memory
or to another floating-point register. These instructions are mostly paired: One instruction of each pair
simply copies ST to its destination while the other instruction is identical except that it copies ST to its
destination and also pops ST off the register stack.



Mnemonic Operand Action

fst st(num) replaces contents of ST(num) by copy of value from ST; only
ST(num) is affected

fstp st(num) replaces contents of ST(num) by copy of value from ST; ST
popped off the stack

fst memory (real) copy of ST stored as real value in memory; the stack is not
affected

fstp memory (real) copy of ST stored as real value in memory; ST popped off the
stack

fist memory
(integer)

copy of ST converted to integer and stored in memory

fistp memory
(integer)

copy of ST converted to integer and stored in memory; ST
popped off the stack

fbstp memory (BCD) copy of ST converted to BCD and stored in memory; ST
popped off the stack

Figure 10.3: Floating-point data store instructions

A few examples illustrate the actions of and the differences between these instructions. Assume that
the directive

     intValue  DWORD ?

is coded in the data segment. Suppose that the floating-point register stack contains

The left diagram below shows the resulting stack if fist intValue is executed and the right diagram
shows the resulting stack if fistp intValue is executed. In both cases, the contents of intValue will

be 0000000A, the doubleword length 2’s complement integer version of the floating-point number 10.0.



The situation is a bit more confusing when the destination is one of the floating-point registers.
Suppose that at execution time the floating register stack contains

The left diagram below shows the resulting stack if fst st(2) is executed and the right diagram
shows the resulting stack if fstp st(2) is executed. In the first case, a copy of ST has been stored in

ST(2). In the second case, the copy has been made, and then the stack has been popped.



In addition to the load and store instructions listed above, the floating-point unit has an fxch instruction

that will exchange the contents of two floating-point registers. With no operand,

     fxch        ; exchange ST and ST(1)

will exchange the contents of the stack top and ST(1) just below ST on the stack. With a single
operand, for example,

     fxch  st(3) ; exchange ST and ST(3)

will interchange ST with the specified register.

Figure 10.4 shows the floating-point addition instructions. There are versions for adding the contents of
ST to another register, contents of any register to ST, a real number from memory to ST, or an integer
number from memory to ST. No version uses a BCD number. The faddp instruction pops the stack top

after adding it to another register, so that both operands are destroyed.

Mnemonic Operand Action

fadd (none) pops both ST and ST(1); adds these values; pushes sum onto
the stack

fadd st(num), st adds ST(num) and ST; replaces ST(num) by the sum

fadd st,st(num) adds ST and ST(num); replaces ST by the sum

fadd memory (real) adds ST and real number from memory; replaces ST by the
sum

fiadd memory
(integer)

adds ST and integer from memory; replaces ST by the sum

faddp st(num),st adds ST(num) and ST; replaces ST(num) by the sum; pops ST
from stack

Figure 10.4: Floating-point addition instructions

A few examples illustrate how the floating-point addition instructions work. Suppose that the data
segment contains the directives



     fpValue   REAL4 5.0
     intValue  DWORD 1

and that the floating-point register stack contains

After the instruction

     fadd st,st(3)

is executed, the stack contains

Starting with these stack values, after the two instructions



     fadd   fpValue
     fiadd  intValue

are executed, the contents of the stack are

Finally, if the instruction

     faddp  st(2),st

is executed, the stack will contain

Subtraction instructions are displayed in Fig. 10.5. The first six instructions are very similar to the
corresponding addition instructions. The second six subtraction instructions are the same except that



the operands are subtracted in the opposite order. This is convenient since subtraction is not
commutative.

Mnemonic Operand Action

fsub (none) pops ST and ST(1); calculates ST(1) ST;
pushes difference onto the stack

fsub st(num), st calculates ST(num)
ST; replaces ST(num)

by the difference

fsub st,st(num) calculates ST
ST(num);

replaces ST by the difference

fsub memory (real) calculates ST - real number from memory;
replaces ST by the difference

fisub memory (integer) calculates ST - integer from memory; replaces
ST by the difference

fsubp st(num),st calculates ST(num) - ST; replaces ST(num) by
the difference; pops ST from the stack

fsubr (none) pops ST and ST(1); calculates ST - ST(1);
pushes difference onto the stack

fsubr st(num),st calculates ST - ST(num); replaces ST(num) by
the difference

fsubr st,st(num) calculates ST(num) - ST; replaces ST by the
difference

fsubr memory (real) calculates real number from memory - ST;
replaces ST by the difference

fisubr memory (integer) calculates integer from memory - ST; replaces
ST by the difference

fsubpr st(num),st calculates ST - ST(num); replaces ST(num) by
the difference; pops ST from the stack

Figure 10.5: Floating-point subtraction instructions

An example illustrates the difference between the parallel subtraction instructions. Suppose that the
floating-point register stack contains



The two diagrams below show the results after executing the instructions fsub st,st(3) and fsubr
st,st(3).

Multiplication and division instructions are listed in Figs. 10.6 and 10.7, respectively. Multiplication
instructions have the same forms as the addition instructions in Fig. 10.4. Division instructions have the
same forms as subtraction instructions in Fig. 10.5, that is, the R versions reverse the operands’
dividend and divisor roles.



Mnemonic Operand Action

fmul (none) pops ST and ST(1); multiplies these values; pushes product
onto the stack

fmul st (num), st multiplies ST(num) and ST; replaces ST(num) by the product

fmul st, st (num) multiplies ST and ST(num); replaces ST by the product

fmul memory (real) multiplies ST and real number from memory; replaces ST by the
product

fimul memory
(integer)

multiplies ST and integer from memory; replaces ST by the
product

fmulp st (num), st multiplies ST (num) and ST; replaces ST (num) by the product;
pops ST from stack

Figure 10.6: Floating-point multiplication instructions

Mnemonic Operand Action

fdiv (none) pops ST and ST(1); calculates ST(1) / ST; pushes quotient onto
the stack

fdiv st (num), st calculates ST(num) / ST; replaces ST(num) by the quotient

fdiv st, st (num) calculates ST / ST(num); replaces ST by the quotient

fdiv memory (real) calculates ST / real number from memory; replaces ST by the
quotient

fidiv memory
(integer)

calculates ST / integer from memory; replaces ST by the
quotient

fdivp st (num), st calculates ST (num) / ST; replaces ST (num) by the quotient;
pops ST from the stack

fdivr (none) pops ST and ST(1); calculates ST / ST(1); pushes quotient onto
the stack

fdivr st (num), st calculates ST / ST(num); replaces ST(num) by the quotient

fdivr st, st (num) calculates ST(num) / ST; replaces ST by the quotient

fdivr memory (real) calculates real number from memory / ST; replaces ST by the
quotient

fidivr memory
(integer)

calculates integer from memory / ST; replaces ST by the
quotient

fdivpr st (num), st calculates ST / ST (num); replaces ST (num) by the quotient;
pops ST from the stack

Figure 10.7: Floating-point division instructions

Figure 10.8 describes four additional floating-point instructions. Additional instructions that calculate
tangent, arctangent, exponent, and logarithm functions are not covered in this book.



Mnemonic Operand Action

fabs (none) ST := | ST | (absolute value)

fchs (none) ST := – ST (change sign)

frndint (none) rounds ST to an integer value

fsqrt (none) replace the contents of ST by its square root

Figure 10.8: Additional floating-point instructions

The floating-point unit provides a collection of instructions to compare the stack top ST to a second
operand. These are listed in Fig. 10.9. Recall that the floating point has a 16-bit control register called
the status word. The comparison instructions assign values to bits 14, 10, and 8 in the status word;
these "condition code" bits are named C3, C2, and C0, respectively. These flags are set as follows:

Mnemonic Operand Action

fcom (none) compares ST and ST(1)

fcom st(num) compares ST and ST(num)

fcom memory (real) compares ST and real number in memory

ficom memory (integer) compares ST and integer in memory

ftst (none) compares ST and 0.0

fcomp (none) compares ST and ST(1); then pops stack

fcomp st(num) compares ST and ST(num); then pops stack

fcomp memory (real) compares ST and real number in memory; then pops stack

ficomp memory(integer) comparesSTandintegerinmemory;then popsstack

fcompp (none) compares ST and ST(1); then pops stack twice

Figure 10.9: Floating-point comparison instructions

     result of comparison        C3   C2   C0
     ST > second operand    0    0    0
     ST < second operand    0    0    1
     ST = second operand    1    0    0

Another possibility is that the operands are not comparable. This can occur if one of the operands is
the IEEE representation for infinity or NaN (not a number). In this case, all three bits are set to 1.

If a comparison is made in order to determine program flow, simply setting flags in the status word is no
help. Conditional jump instructions look at bits in the flag register in the 80x86, not the status word in
the floating-point unit. Consequently, the status word must be copied to memory or to the AX register
before its bits can be examined by an 80x86 instruction, perhaps with a test instruction. The floating-

point unit has two instructions to store the status word; these are summarized in Fig. 10.10. This table
also shows the instructions for storing or setting the control word.



Mnemonic Operand Action

fstsw memory word copies status register to memory word

fstsw AX copies status register to AX

fstcw memory word copies control word register to memory word

fldcw memory word copies memory word to control word register

Figure 10.10: Miscellaneous floating-point instructions

The 80x86 floating-point and integer units can actually execute instructions concurrently. Under certain
circumstances this requires special care in assembly language programming. However, these
techniques are not discussed in this book.

Exercises 10.1

Suppose that a program’s data segment contains1.

     fpValue    REAL4  0.5
     intValue   DWORD  6

and that code executed so far by the program has not changed these values. Suppose also that
the floating-point register stack contains

Assume that these values are correct before each instruction below is executed; do not use the
"after" state of one problem as the "before" state of the next problem. Give the contents of the
floating-point register stack of fpValue and of intValue following execution of the instruction.

fld st(2)a.

fld fpValueb.

fild intValuec.

fldpid.

fst st(4)e.

fstp st(4)f.

fst fpValueg.

h.

i.



f.

g.

fistp intValueh.

fxch st(3)i .

faddj.

fadd st(3),stk.

fadd st,st(3)l .

faddp st(3),stm.

fsub fpValuen.

fisub intValueo.

fisubr intValuep.

fsubp st(3),stq.

fmul st, st(4)r.

fmuls.

fmul fpValuet.

fdivu.

fdivrv.

fidiv intValuew.

fdivp st(2),stx.

fchsy.

fsqrtz.

Suppose that a program’s data segment contains2.

fpValue    REAL4 1.5
intValue   DWORD 9

and that code executed so far by the program has not changed these values. Suppose also that
the floating-point register stack contains



Assume that these values are correct before each instruction below is executed. Give the
contents of the status word flags C3, C2, and C0 following execution of the instruction.

fcoma.

fcom st(3)b.

fcom fpValuec.

ficom intValue

For the next two parts, also give the contents of the stack following execution of the
instructions.

d.

fcompe.

fcomppf.



10.2 Programming with Floating-Point Instructions

This section gives three examples of coding with floating-point instructions. The first is a program that
calculates the square root of the sum of the squares of two numbers. Although we do not yet have any
procedures to facilitate input/output of floating-point values, FPU operations can be viewed through
Windbg. The second and third examples show procedure to facilitate input/output of floating-point
numbers.

Figure 10.11 has a listing of the first example. Floating-point values are assembled at value1 and
value2. The first instruction copies value1 from memory to ST. The second instruction copies it from ST
to ST, pushing down the first stack entry to ST(1). The third instruction gives value1*value1 in ST, with
"nothing" in ST(1). (Of course, there is always some value in each floating-point register.) The same
sequence of instructions is repeated for value2. Figure 10.12 shows Windbg’s view of the CPU just
before the second fmul is executed. At this point, there are copies of value2 in both ST and ST(1) and

value1*value1 in ST(2). After the result is calculated in ST, it is stored in sqrt and popped from the
stack, leaving the stack in its original state.

; find the sum of the squares of two floating-point numbers
; Author:  R. Detmer
; Date:    4/98

.386

.MODEL FLAT

.STACK  4096               ; reserve 4096-byte stack

.DATA                      ; reserve storage for data
value1  REAL4   0.5
value2  REAL4   1.2
sqrt    REAL4   ?
.CODE
_start:
        fld     value1     ; value1 in ST
        fld     st         ; value1 in ST and ST(1)
        fmul               ; value1*value1 in ST
        fld     value2     ; value2 in ST (value1*value1 in ST(1))
        fld     st         ; value2 in ST and ST(1)
        fmul               ; value2*value2 in ST
        fadd               ; sum of squares in ST
        fsqrt              ; square root of sum of squares in ST
        fstp    sqrt       ; store result

PUBLIC _start
END

Figure 10.11: Floating-point computations



Figure 10.12: Execution of floating-point example

Notice that the value 1.2 is shown in Fig. 10.12 as 1.2000000476837158e+0000. The reason that there
are nonzero digits after the decimal point is that 1.2 does not have an exact representation as a floating
point number. The approximation used by the 32-bit REAL4 directive translates back to the number
shown in 17-decimal-digit precision. You can get a better approximation by using a REAL8 or a
REAL10 directive, but at the cost of extra bytes of storage.

The second example is an implementation of a simple ASCII to floating-point conversion algorithm.
This algorithm, given in Fig. 10.13, is similar to the one used by the atoi and atod macros—it scans
memory at the address given by its parameter, interpreting the characters as a floating point.

   value := 0.0;
   divisor := 1.0;
   point := false;
   minus := false;

   point at first character of source string;
   if source character = '-'
   then
        minus := true;
        point at next character of source string;
   end if;

   while (source character is a digit or a decimal point) loop
        if source character = '.'
        then
             point := true;
        else
             convert ASCII digit to 2's complement digit;
             value := 10*value + float(digit);
             if point
             then
                   multiply divisor by 10;
                   end if;
        end if;
        point at next character of source string;
   end while;

   value := value/divisor;

   if minus
   then
        value := -- value;
   end if;

Figure 10.13: ASCII to floating-point algorithm



This algorithm is implemented in a NEAR32 procedure atofproc. This procedure has one

parameter—the address of the string. It returns the floating-point value in ST. No flags are set to
indicate illegal conditions, such as multiple minus signs or decimal points. The code appears in Fig.
10.14.

; ASCII to floating-point code
; author:   R. Detmer
; revised:  4/98

.386

.MODEL FLAT

PUBLIC atofproc

false     EQU  0
true      EQU  1

.DATA
ten       REAL4  10.0
point     BYTE   ?
minus     BYTE   ?
digit     WORD   ?

.CODE

atofproc PROC NEAR32 ; convert ASCII string to floating-point number
; Parameter passed on the stack: address of ASCII source string
; After an optional leading minus sign, only digits 0-9 and a decimal
; point are accepted - the scan terminates with any other character.
; The floating-point value is returned in SP.

          push ebp             ; establish stack frame
          mov  ebp, esp
          push eax             ; save registers
          push ebx
          push esi

          fld1                 ; divisor := 1.0
          fldz                 ; value := 0.0
          mov  point, false    ; no decimal point found yet
          mov  minus, false    ; no minus sign found yet
          mov  esi, [ebp+8]    ; address of first source character

          cmp  BYTE PTR [esi], '-' ; leading minus sign?
          jne  endifMinus      ; skip if not
          mov  minus, true     ; minus sign found
          inc  esi             ; point at next source character
endifMinus:

whileOK:  mov  bl, [esi]       ; get next character
          cmp  bl, '.'         ; decimal point?
          jne  endifPoint      ; skip if not
          mov  point, true     ; found decimal point
          jmp  nextChar
endifPoint:
          cmp  bl, '0'         ; character a digit?
          jl   endwhileOK      ; exit if lower than '0'
          cmp  bl, '9'
          jg   endwhileOK      ; exit if higher than '9'
          and  bx, 000fh       ; convert ASCII to integer value
          mov  digit, bx       ; put integer in memory
          fmul ten             ; value := value * 10



          fiadd digit          ; value := value + digit
          cmp  point, true     ; already found a decimal point?
          jne  endifDec        ; skip if not
          fxch                 ; put divisor in ST and value in ST(1)
          fmul ten             ; divisor := divisor * 10
          fxch                 ; value back to ST; divisor back to ST(1)
endifDec:
nextChar: inc esi              ; point at next source character
          jmp whileOK
endwhileOK:

fdivr ; value := value / divisor
          cmp minus, true      ; was there a minus sign?
          jne endifNeg
          fchs                 ; value := -value
endifNeg:
          pop esi              ; restore registers
          pop ebx
          pop eax
          pop ebp
          ret 4
atofproc  ENDP
          END

Figure 10.14: ASCII to floating-point conversion

This implementation of the ASCII to floating-point algorithm uses ST(1) for divisor and ST for value
except for one short segment where they are reversed in order to modify divisor. After the procedure
entry code, the instructions

     fld1      ; divisor := 1.0
     fldz      ; value := 0.0

initialize these two variables. Note that the value 1.0 for divisor ends up in ST(1) since it is pushed
down by the fldz instruction.

The design element

     value := 10*value + float(digit);

is implemented by the code

     fmul ten      ; value := value * 10
     fiadd digit   ; value := value + digit

Note that a word-length 2’s complement integer version of digit is stored in memory. The floating-point
unit takes care of converting it to floating point as part of the fiadd instruction.

To implement "multiply divisor by 10," the number to be multiplied must be in ST. The instructions

     fxch        ; put divisor in ST and value in ST(1)
     fmul ten    ; divisor := divisor * 10
     fxch        ; value back to ST; divisor back to ST(1)

take care of swapping divisor and value, carrying out the multiplication in ST, and then swapping back.

When it is time to execute "value := value / divisor" the instruction

     fdivr       ; value := value / divisor



pops value from ST and divisor from ST(1), computes the quotient, and pushes it back to ST. Notice
that the fdiv version of this instruction would incorrectly compute "divisor/value." After the division
instruction, ST(1) is no longer in use by this procedure. The instruction fchs changes the sign of value

if a leading minus sign was noted in the ASCII string.

You can test atofproc with a simple test driver program such as the one shown in Fig. 10.15. The
"output" of the procedure can be viewed using Windbg.

   ; test drive for atofproc
   ; Author:  R.   Detmer
   ; Date:    4/98

   .386
   .MODEL FLAT

   ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD
   EXTRN atofproc:NEAR32
   .STACK  4096             ; reserve 4096-byte stack

   .DATA                    ; reserve storage for data
   String      BYTE    "435.75", 0

   .CODE                           ; program code

   _start:
               pushd  NEAR32 PTR String
               call   atofproc
               INVOKE ExitProcess, 0
   PUBLIC _start
   END

Figure 10.15: Test driver for atofproc

Finally we come to a procedure to convert a floating-point parameter to "E notation." The procedure
generates a 12-byte long ASCII string consisting of

a leading minus sign or a blank

a digit

a decimal point

five digits

the letter E

a plus sign or a minus sign

two digits

This string represents the number in base 10 scientific notation. For example, for the decimal value
145.8798, the procedure would generate the string b1.45880E+02, where b represents a blank. Notice
that the ASCII string has a rounded value.

Figure 10.16 displays the design for the floating to ASCII procedure. After the leading space or minus
sign is generated, most of the work necessary to get the remaining characters is done before they are
actually produced. The value is repeatedly multiplied or divided by 10 until it is at least 1.0 but less than
10.0. Multiplication is used if the value is initially less than 1; the number of multiplications gives the
negative power of 10 required for scientific notation. Division is used if the value is initially 10.0 or more;
the number of divisions gives the positive power of 10 required for scientific notation.



point at first destination byte;

if value = 0
then
     put blank in destination string;
else
     put minus in destination string;
     value := -value;
end if;
point at next destination byte;

exponent := 0;
if value   0
then

     if value > 10
     then
          until value < 10 loop
               divide value by 10;
               add 1 to exponent;
          end until;
     else
          while value < 1 loop
               multiply value by 10;
               subtract 1 from exponent;
          end while;
     end if;
end if;
add 0.000005 to value;  { for rounding }
if value > 10
then
     divide value by 10;
     add 1 to exponent;
end if;

digit := int(value);      { truncate to integer }
convert digit to ASCII and store in destination string;
point at next destination byte;
store "." in destination string;
point at next destination byte;

for i:= 1 to 5 loop
     value := 10 * (value - float(digit));
     digit := int(value);
     convert digit to ASCII and store in destination string;
     point at next destination byte;
end for;

store E in destination string;
point at next destination byte;
if exponent = 0
then
     put + in destination string;
else
     put - in destination string;
     exponent := -exponent;
end if;
point at next destination byte;

convert exponent to two decimal digits;
convert two decimal digits of exponent to ASCII;
store characters of exponent in destination string;



Figure 10.16: Floating-point to ASCII conversion algorithm

Only five digits are going to be displayed after the decimal point. The value between 1.0 and 10.0 is
rounded by adding 0.000005; if the sixth digit after the decimal point is 5 or greater, this will be reflected
in the digits that are actually displayed. It is possible that this addition gives a sum of 10.0 or more; if
this happens, the value is divided by 10 again and the exponent is incremented.

With a value at least 1.0 but under 10.0, truncating to an integer gives the digit to go before the decimal
point. This digit and the decimal point are generated. Then the remaining five digits can be generated
by repeatedly subtracting the whole part from the value, multiplying the remaining fraction by 10, and
truncating the new value to an integer.

After the "fraction" of the ASCII string is generated, the letter E, a plus or minus sign for the exponent,
and the exponent digits are generated. The exponent will contain at most two digits—the single IEEE
notation provides for numbers as large as 2128, which is less than 1039.

Figure 10.17 shows this design implemented in a procedure named ftoaproc. The procedure has two
parameters: first, the floating-point value to be converted and second, the address of the destination
string.

; floating point to ASCII code
; author: R. Detmer
; revised: 4/98

.386

.MODEL FLAT

PUBLIC ftoaproc
C3 EQU 0100000000000000b
C2 EQU 0000010000000000b
C0 EQU 0000000100000000b

.DATA

value     REAL4  ?
ten       REAL4  10.0
one       REAL4  1.0
round     REAL4  0.000005
digit     WORD   ?
exponent  WORD   ?
controlWd WORD  ?
byteTen   BYTE  10

.CODE
ftoaproc PROC NEAR32 ; convert floating-point number to ASCII string
; Parameters passed on the stack:
;  (1) 32-bit floating point value
;  (2) address of ASCII destination string
; ASCII string with format [blank/-]d.dddddE[+/-]dd is generated.
; (The string is always 12 characters long.)
          push ebp                ; establish stack frame
          mov  ebp, esp
          push eax                ; save registers
          push ebx
          push ecx
          push edi

          fstcw controlWd         ; get control word
          push  controlWd         ; save control word
          or    controlWd, 0000110000000000b
          fldcw controlWd         ; set control to chop



          mov   edi, [ebp+8]      ; destination string address
          mov   eax, [ebp+12]     ; value to convert
          mov   exponent, 0       ; exponent := 0
          mov   value, eax        ; value to ST via memory
          fld   value
          ftst                    ; value >= 0?
          fstsw ax                ; status word to AX
          and   ax, C0            ; check C0
          jnz   elseNeg           ; skip if set (value negative)
          mov   BYTE PTR [edi], ' ' ; blank for positive
          jmp   endifNeg
elseNeg:  mov BYTE PTR [edi], '-' ; minus for negative
          fchs                    ; make number positive
endifNeg:
          inc edi                 ; point at next destination byte

          mov exponent, 0         ; exponent := 0
          ftst                    ; value = 0?
          fstsw ax                ; status word to AX
          and   ax, C3            ; check C3
          jne   endifZero         ; skip if zero
          fcom  ten               ; value > 10?
          fstsw ax                ; status word to AX
          and   ax, C3 or C2 or C0 ; check for all C3=C2=C0=0
          jnz   elseLess          ; skip if value not > 10
untilLess:
          fdiv  ten               ; value := value/10
          inc   exponent          ; add 1 to exponent
          fcom  ten               ; value < 10
          fstsw ax                ; status word to AX
          and   ax, C0            ; check C0
          jnz   untilLess         ; continue until value < 10
          jmp   endifBigger       ; exit if
elseLess:
whileLess:
          fcom  one                ; value < 1
          fstsw ax                 ; status word to AX
          and   ax, C0             ; check C0
          jz    endwhileLess       ; exit if not less
          fmul  ten                ; value := 10*value
          dec   exponent           ; subtract 1 from exponent
          jmp   whileLess          ; continue while value < 1

endwhileLess:
endifBigger:
endifZero:
          fadd  round              ; add rounding value
          fcom  ten                ; value > 10?
          fstsw ax                 ; status word to AX
          and   ax, C3 or C2 or C0 ; C3=C2=C0=0? (value > 10?)
          jnz   endifOver          ; skip if not
          fdiv  ten                ; value := value/10
          inc   exponent           ; add 1 to exponent
endifOver:

; at this point 1.0 <= value < 10.0
          fist digit               ; store integer part
          mov  bx, digit           ; copy integer to BX
          or   bx, 30h             ; convert digit to character
          mov  BYTE PTR [edi], bl  ; store character in destination
          inc  edi                 ; point at next destination byte



          mov  BYTE PTR [edi], '.' ; decimal point
          inc  edi                 ; point at next destination byte
          mov  ecx, 5              ; count of remaining digits
forDigit: fisub digit              ; subtract integer part
          fmul ten                 ; multiply by 10
          fist digit               ; store integer part
          mov  bx, digit           ; copy integer to BX
          or   bx, 30h             ; convert digit to character
          mov  BYTE PTR [edi], bl  ; store character in destination
          inc  edi                 ; point at next destination byte
          loop forDigit            ; repeat 5 times
          mov  BYTE PTR [edi], 'E' ; exponent indicator
          inc  edi                 ; point at next destination byte
          mov  ax, exponent        ; get exponent
          cmp  ax, 0               ; exponent >= 0 ?
          jnge NegExp
          mov  BYTE PTR [edi], '+' ; non-negative exponent
          jmp  endifNegExp
          NegExp: mov BYTE PTR [edi], '-' ; negative exponent
          neg  ax                  ; change exponent to positive

endifNegExp:
          inc  edi                 ; point at next destination byte
          div  byteTen             ; convert exponent to 2 digits
          or   ax, 3030h           ; convert both digits to ASCII
          mov  BYTE PTR [edi+1], ah ; store characters in destination
          mov  BYTE PTR [edi], al
          pop  controlWd ; restore control word
          fldcw controlWd
          pop  edi                 ; restore registers
          pop  ecx
          pop  ebx
          pop  eax
          pop  ebp
          ret  8
ftoaproc  ENDP
          END

Figure 10.17: Floating point to ASCII conversion procedure

The program opens with directives that make it easy to refer to the control bits by name. The 1’s for C3,
C2, and C0 are in positions 14, 10, and 8 respectively.

     C3 EQU 0100000000000000b
     C2 EQU 0000010000000000b
     C0 EQU 0000000100000000b

After normal procedure entry code, the FPU control word is copied to memory and then pushed on the
stack so that it can be restored at the end of the procedure. Bits 10 and 11 of the control word are used
for rounding control. The next two instructions set them to 11 so that a floating point to integer store will
result in chopping of the fractional part of the number.

     fstcw controlWd   ; get control word
     push controlWd    ; save control word
     or   controlWd, 0000110000000000b
     fldcw controlWd   ; set control to chop

Most of the code in the procedure is a straightforward implementation of the design. However, the
floating-point comparisons need some explanation. The first sequence is



     ftst           ; value >= 0?
     fstsw ax       ; status word to AX
     and ax, C0     ; check C0
     jnz elseNeg    ; skip if set (value negative)

The ftst instruction compares value to 0, setting the flags in the status word. To test these bits, the
status word is copied to AX. The C0 flag is set only when ST < 0. The and instruction masks all bits but
the one corresponding to C0, and the jnz instruction branches if the remaining bit is nonzero, that is,

the value is negative.

A similar but more complicated check comes when "value > 10" is implemented with

     fcom ten                ; value > 10?
     fstsw ax                ; status word to AX
     and ax, C3 or C2 or C0  ; check for all C3=C2=C0=0
     jnz elseLess            ; skip if value not > 10

Since ST > operand results in all C3 = C2 = C0 = 0, all three control bits must be zero. The program
masks with C3 or C2 or C0, a descriptive way of writing 0100010100000000. This or operation

combines operands at assembly time, not at execution time.

Conversion of the exponent to two ASCII characters uses a slightly new technique. The exponent in AX
is non-negative and less than 40 when the following code is executed.

     div  byteTen             ; convert exponent to 2 digits
     or   ax, 3030h           ; convert both digits to ASCII
     mov  BYTE PTR [edi+1],    ah  ; store characters in destination
     mov  BYTE PTR [edi], al

Dividing by 10 puts the quotient (the high-order base ten digit) in AL and the remainder (the low-order
digit) in AH. These are simultaneously converted to ASCII by the or instruction, and are then stored in

the destination string.

Programming Exercises 10.2

Write a complete program that will prompt for and input a decimal value for the radius of a circle
and will calculate and display (appropriately labeled) the circumference and the area of the
circle. Use the input and output macros to input and output character strings, the atofproc and
ftoaoproc procedures to convert between floating point and ASCII, and FPU instructions for
floating-point operations.

1.

Write a NEAR32 procedure ftoaproc1 that will convert a floating-point number to an ASCII string

in fixed point format. Specifically, the procedure must have four parameters pushed on the
stack:

a 32-bit floating point value

the address of the destination string

a word containing the total number n of characters in the string to be generated

a word containing the number of digits d to be generated after the decimal point

The output string will consist of a leading blank or minus sign, the integer part of the value in n-
d–2 positions (with leading blanks as needed), a decimal point, and the fractional part of the
value rounded to d positions. The procedure will preserve all registers and will remove
parameters from the stack.

2.

The following algorithm approximates the cube root of a real number x3.

root := 1.0;
until (|root -- oldRoot| < smallValue) loop



3.

     oldRoot := root;
     root := (2.0*root + x/(root*root)) / 3.0;
end until;

Implement this design in a NEAR32 procedure cuberoot, using 0.001 for smallValue. Assume

there is one parameter passed on the stack, the value of x. Return the result in ST. The
procedure will preserve all registers and will remove parameters from the stack.

Write a short test driver for your procedure, viewing the results with WinDbg.



10.3 Floating-Point Emulation

Some 80x86 computer systems have no floating-point unit. Such a system can still do floating-point arithmetic.
However, floating-point operations must be performed by software routines using memory and the general
purpose registers, rather than by a floating-point unit. This section describes procedures for multiplication and
for addition of floating-point numbers. These could be useful for floating-point emulation, and they also provide
a better understanding of the floating-point representation.

The procedures in this section manipulate floating-point values in the IEEE single format. Recall from Section
1.5 that this scheme includes the pieces that describe a number in "base two scientific notation":

a leading sign bit for the entire number, 0 for positive and 1 for negative

an 8-bit biased exponent (or characteristic). This is the actual exponent plus a bias of 12710

23 bits that are the fraction (or mantissa) expressed with the leading 1 removed

This is the format produced by the REAL4 directive.

Each procedure combines the components of its parameters to yield a result in the structure fp3. Often this
result is not normalized; that is, there are not exactly 24 significant fraction bits. The NEAR procedure normalize
adjusts the fraction and exponent to recover the standard format.

Notice that there is a problem representing the number 0.0 using the normal IEEE scheme. There is no "binary
scientific notation" zero with a 1 bit preceding the binary point of the fraction. The best that can be done is 1.0 2
127, which is small, but nonzero. According to the rules given previously, this value would have an IEEE
representation consisting of 32 zero bits. However, the two bit patterns that end with 31 zeros are considered
special cases, and each is interpreted as 0.0 instead of plus or minus 1.0 - 2 - 127. These special cases will be
considered in the following multiplication and addition code.

In addition to a special bit pattern to represent 0.0, the IEEE standard describes three other distinctive
situations. The pattern

     s 11111111 00000000000000000000000

(sign bit s, biased exponent 255, and fraction 0) represents plus or minus infinity. These values are used, for
example, as quotients when a nonzero number is divided by zero. Another special case is called NaN (not a
number) and is represented by any bit pattern with a biased exponent of 255 and a nonzero fraction. The
quotient 0/0 should result in NaN, for example. The final special case is a denormalized number; when the
biased exponent is zero and the fraction is nonzero, then no leading 1 is assumed for the fraction. This allows
for representation of extra small numbers. Code in this section’s floating-point procedures looks for the special
zero representations wherever needed. However, other special number forms are ignored.

We will frequently need to extract the sign, exponent, and fraction of a floating-point number. For this purpose
we will use a macro expand. This macro will have four parameters

a 32-bit floating point number1.

a byte to hold the sign (0 for positive, 1 for negative)2.

a word to hold the unbiased (actual) exponent3.

a doubleword to hold the fraction, including the leading 1 for a nonzero number.4.

Code for the macro expand appears in Fig. 10.18.

   expand    MACRO  source, sign, exponent, fraction
   LOCAL  addOne, endAddOne
   ; take the 32-bit floating-point value source and expand it into
   ; separate pieces:
   ;   sign: byte
   ;   exponent: word (bias removed)



   ;    fraction: doubleword (with leading 1)
             push eax              ; save EAX
             mov  eax, source      ; get source
             rol  eax, 1           ; sign to bit 0
             mov  sign, 0          ; clear sign
             mov  sign, al         ; get byte with sign bit
             and  sign, 1          ; mask all but sign bit
             rol  eax, 8           ; shift exponent to bits 0--7
             mov  exponent,ax      ;get word with biased exponent
             and  exponent, 0ffh   ; mask all but exponent
             sub  exponent, 127    ; subtract bias
             shr  eax, 9           ; shift fraction to right
             test eax, eax         ; is fraction zero?
             jnz  addOne           ; add leading 1 bit if nonzero
             cmp  exponent, --127  ; was original exponent 0?
             je   endAddOne        ;if so,leave fraction at zero
   AddOne:   or   eax, 800000h     ; add leading 1 bit
   endAddOne:
             mov  fraction, eax    ; store fraction
             pop  eax              ; restore EAX
             ENDM

Figure 10.18: expand macro

The expand macro code illustrates how useful the bit manipulation operations can be. The sign bit is isolated by
rotating it left to bit position 0, saving the byte containing it, and then masking by 1 (=00000001b) to zero all bits
except the sign bit. Then the additional eight exponent bits are rotated to the right end of EAX and saved as a
word before the leading bits are masked off. The bias of 127 is subtracted to get the true signed exponent.
Finally the fraction is shifted back to the right of EAX. Before it is saved, a check for the IEEE 0.0 representation
is made. If the original number was not 0.0, then the leading 1 bit of the scientific notation is inserted with the
or operation.

The plan is to take floating-point numbers apart into their sign-fraction-exponent forms, implement an operation
by manipulating the parts, and then combine the resulting sign-fraction-exponent pieces back into a floating-
point result. The combine operation will also be done with a macro, called combine. Code for this macro
appears in Fig. 10.19.

   combine  MACRO  destination, sign, exponent, fraction
   LOCAL  endZero
   ; take the separate pieces:
   ;   sign: byte
   ;   exponent: word (bias removed)
   ;    fraction: doubleword (with leading 1)
   ; of a floating-point value and combine them into a 32-bit
   ; IEEE result at destination
             push eax              ; save EAX
             push ebx              ;   and EBX
             mov  eax, 0           ; zero result
             cmp  fraction, 0      ; zero value?
             je   endZero          ; skip if so
             mov  al, sign         ; get sign
             ror  eax, 1           ; rotate sign into position
             mov  bx, exponent     ; get exponent
             add  bx, 127          ; add bias
             shl  ebx, 23          ; shift to exponent position
             or   eax, ebx         ; combine with sign
             mov  ebx, fraction    ; get fraction
             and  ebx, 7fffffh     ; remove leading 1 bit
             or   eax, ebx         ; combine with sign and exponent



   endZero:
             mov  destination, eax  ;store result
             pop  ebx              ; restore registers
             pop  eax
             ENDM

Figure 10.19: combine macro

The design for the combine macro assumes that each of the pieces of representing a floating-point value is
legal, with a zero fraction the only special case considered. With these assumptions, the fraction will be
normalized; that is, bit 24 will be the one and no bit to the left will be one. The operations that we will do with
floating-point representations may leave a non-normalized result. We need a third macro, this one to normalize
a floating-point representation. The code is in Fig. 10.20. It implements the following design:

   normalize          MACRO  sign,   exponent, fraction
   LOCAL     endZero,    while1,    while2,    endWhile1, endWhile2
   ;    Normalize    floating-point   number    represented by separate pieces:
   ;    sign:    byte
   ;    exponent:   word     (bias   removed)
   ;    fraction:   doubleword   (with   leading 1)
        push    eax                   ; save EAX
        cmp     fraction, 0           ; zero fraction?
        je      endZero               ; exit if so
   while 1:     mov   eax, fraction   ; copy fraction
        and     eax, 0ff000000h       ; nonzero leading byte?
        jz      endWhile1             ; exit if zero
        shr     fraction, 1           ; shift fraction bits right
        inc     exponent              ; subtract 1 from exponent
        jmp     while1                ; repeat
    endWhile1:
   while    2:  mov  eax, fraction    ; copy fracton
        and  eax, 800000h             ; check bit 23
        jnz  endWhile2                ; exit if 1
        shl  fraction, 1              ; shift fraction bits left
        dec  exponent                 ; subtract 1 from exponent
        jmp  while2                   ; repeat
     endWhile2:
     end   Zero:
     pop   eax                        ; restore EAX
        ENDM

Figure 10.20: normalize macro

if the fraction is zero then exit; end if;
while there is a non-zero bit in the left-hand byte of the fraction loop
     shift fraction bits one position to the right;
     add 1 to exponent;
end loop;
while bit 23 is not 1 loop
     shift fraction bits one position to the left;
     subtract one from exponent;
end loop;

Multiplication is the easiest floating-point operation to implement. It is based on the usual method of multiplying
numbers in scientific notation:

multiply the fractions to get the fraction of the result



add the exponents to get the exponent of the result

follow customary rules of signs to get the sign of the result

This method is implemented in the code displayed in Fig. 10.21. The procedure fMult-Proc has three
parameters pushed on the stack—the two operands and the address for the result. The sign is computed with
using an exclusive or of the operands’ signs. Addition of the exponents is straightforward. Multiplication of the
fractions is followed by shifting off the low-order 23 bits; recall that each fraction is logically a 1, followed by a
binary point, followed by 23 binary fraction bits. Multiplying two such fractions gives 46 fraction bits, and the
extra 23 must be discarded.

; procedure fMultProc(Operand1, Operand2 : float;
;                     Result : address of float)
; parameters are passed in doublewords on the stack
; parameters are removed by the procedure
; author: R. Detmer 4/98

.DATA
sign1        BYTE  ?
exponent1    WORD  ?
fraction1    DWORD ?
sign2        BYTE  ?
exponent2    WORD  ?
fraction2    DWORD ?
sign3        BYTE  ?
exponent3    WORD  ?
fraction3 DWORD    ?

.CODE
fMultProc    PROC  NEAR32
             push     ebp                ; save base pointer
             mov      ebp,esp            ; copy stack pointer
             push     eax                ; save registers
             push     edx

             expand   [ebp+16], sign1, exponent1, fraction1
             expand   [ebp+12], sign2, exponent2, fraction2
             mov      al, sign1          ; combine signs
             xor      al, sign2
             mov      sign3, al          ; and save
             mov      ax, exponent1      ; add exponents
             add      ax, exponent2
             mov      exponent3, ax      ; and save
             mov      eax, fraction1     ; multiply fractions
             mul      fraction2
             shrd     eax, edx, 23       ; discard extra bits
             mov      fraction3, eax     ; and save
             normalize sign3, exponent3, fraction3
             mov      edx, [ebp+8]       ; address for result
             combine  [edx], sign3, exponent3, fraction3

             pop      edx                ; restore registers
             pop      eax
             pop      ebp                ; restore base pointer
             ret      12                 ; return, removing parameters
fMultProc    ENDP

Figure 10.21: fMultProc procedure

The macros used by fMultProc are shown in previous figures. Although macros are convenient here, note that



there are some dangers. You could not, for instance, use the statements

     mov     eax, [ebp+8]   ; address for result
     combine [eax], sign3, exponent3, fraction3

to combine the result pieces. The reason is that the combine macro uses the EAX register internally. It would
have been safer to implement each of expand, combine, and normalize as procedures rather than macros.

Next we implement an algorithm for floating-point addition. This is somewhat more difficult than multiplication,
but again follows the same sort of procedure that you would use to add two numbers in scientific notation,
namely to adjust them to have the same exponent, and then add the fractions. One additional complication is
that for a negative number, the fraction must be negated prior to adding it to the other fraction. The following
algorithm is implemented in the code in Fig. 10.22.

; procedure fAddProc(Operand1, Operand2 : float;
;                    Result : address of float)
; parameters are passed in doublewords on the stack
; parameters are removed by the procedure
; author: R. Detmer 4/98

.DATA
sign1        BYTE  ?
exponent1    WORD  ?
fraction1    DWORD ?
sign2        BYTE  ?
exponent2    WORD  ?
fraction2    DWORD ?
sign3        BYTE  ?
exponent3    WORD  ?
fraction3    DWORD ?

.CODE
fAddProc     PROC NEAR32
             push     ebp                ; save base pointer
             mov      ebp,esp            ; copy stack pointer
             push     eax                ; save registers
             push     edx
             expand   [ebp+16], sign1, exponent1, fraction1
             expand   [ebp+12], sign2, exponent2, fraction2
             mov      ax, exponent1      ; copy exponent1
while1:      cmp      ax, exponent2      ; exponent1 < exponent2?
             jnl      endWhile1          ; exit if not
             inc      ax                 ; add 1 to exponent1
             shr      fraction1,1        ; shift fraction1 1 bit right
             jmp      while1             ; repeat
endWhile1:   mov      exponent1, ax      ; put fraction1 back in memory
             mov      ax, exponent2      ; copy exponent2
             while2:  cmp ax, exponent1  ; exponent2 < exponent1?
             jnl      endWhile2          ; exit if not
             inc      ax                 ; add 1 to exponent1
             shr      fraction2,1        ; shift fraction2 1 bit right
             jmp      while2             ; repeat
endWhile2:   mov      exponent2, ax      ; put fraction2 back in memory
             mov      exponent3, ax      ; save common exponent
             cmp      sign1, 1           ; sign1 = minus?
             jne      notNeg1            ; skip if not
             neg      fraction1          ; negate fraction1
notNeg1:
             cmp      sign2, 1           ; sign1 = minus?
             jne      notNeg2            ; skip if not



             neg      fraction2          ; negate fraction2
notNeg2:
             mov      eax, fraction1     ; add fractions
             add      eax, fraction2
             mov      fraction3, eax     ; and save
             mov      sign3, 0           ; plus
             cmp      eax, 0             ; fraction3 < 0?
             jnl      notNegResult       ; skip if not
             mov      sign3, 1           ; minus
             neg      fraction3          ; make fraction3 positive
notNegResult:
             normalize sign3, exponent3, fraction3
             mov      edx, [ebp+8]       ; address for result
             combine  [edx], sign3, exponent3, fraction3
             pop      edx                ; restore registers
             pop      eax
             pop      ebp                ; restore base pointer
             ret      12                 ; return, removing parameters
fAddProc     ENDP

Figure 10.22: fAddProc procedure

expand each number into sign, exponent, and fraction components;

while exponent1 < exponent2 loop
     add 1 to exponent1;
     shift fraction1 one bit right;
end while;
while exponent2 < exponent1 loop
     add 1 to exponent2;
     shift fraction2 one bit right;
end while;
exponent3 := exponent1;
{the exponents are equal}
if sign1 = minus then negate fraction1; end if;
if sign2 = minus then negate fraction2; end if;
fraction3 := fraction1 + fraction2;
sign3 := plus;
if fraction3 < 0
then
     sign3 := minus;
     negate fraction3;
end if;
normalize sign3, exponent3, fraction3;
combine sign3, exponent3, fraction3 into result;

Programming Exercises 10.3

Each of the exercises below are to be programmed without using floating-point instructions.

Write a NEAR32 procedure fDivProc that has three parameters, Operand1, Operand2, and Result. Each

of the operands is a 32-bit floating point value and Result gives the address for a 32-bit floating-point
result. If Operand2   0.0, put the value of Operand1/Operand2 in the address given by Result. If the
second operand is zero, then use the IEEE representation for plus or minus infinity as the result (plus or
minus will depend on the sign of Operand1). The procedure will remove parameters from the stack and
will change no register.

1.

Write a NEAR32 procedure fSubProc that has three parameters, Operand1, Operand2, and Result. Each

of the operands is a 32-bit floating-point value and Result gives the address for a 32-bit floating-point

2.



result. Put the value of Operand1—Operand2 in the address given by Result. The procedure will remove
parameters from the stack and will change no register. (Although you could do this by calling fAddProc,
write a complete procedure instead.)

2.

Write a NEAR32 procedure fNegProc that has two parameters, Operand and Result. Operand is a 32-bit

floating-point value and Result gives the address for a 32-bit floating-point result. Put the value of
Operand1 in the address given by Result. The procedure will remove parameters from the stack and will
change no register.

3.

Write a NEAR32 procedure fCmpProc that has two parameters, Operand1 and Operand2. Each of the

operands is a 32-bit floating-point value. This procedure will compare the values of Operand1 and
Operand2 and will return 0 in EAX if they are equal, 1 if Operand1 < Operand2, and +1 if Operand1 >
Operand2. The procedure will remove parameters from the stack and will change no register other than
EAX.

4.



10.4 Floating-Point and In-line Assembly

High-level language compilers sometimes have the ability to translate a program that includes in-line
assembly code. This permits most of a program to be written in the high-level language, while a few
parts are written in assembly language. These parts may need critical optimization or may implement
low-level algorithms that would be difficult or impossible to code in the high-level language.

This section contains a single example of a program that compiles using Microsoft Visual C++. It
performs the same computations as does the code in Fig. 10.11, namely to find the square root of the
sum of the squares of two floating-point values, However, this version provides for input of the values
and output of the results, with the input and output done in C++. The code is shown in Fig. 10.23.

// square root of sum of squares of two values
#include <iostream.h>
void main()
{
  float value1;
  float value2;
  float sum;

  cout << "First value? ";
  cin >> value1;
  cout << "Second value? ";
  cin >> value2;

  __asm
  {
    fld   value1
    fld   st
    fmul
    fld value2
    fld st
    fmul
    fadd
    fsqrt
    fstp sum
  }
    cout << "The sum is " << sum << endl;
}

Figure 10.23: In-line assembly code

Notice that for this compiler the in-line assembly language code is preceded by the __asm keyword that

begins with two underscores, and that braces surround the assembly language statements. Notice also
that the assembly language statements can reference variables declared in C++ statements. Finally,
although these assembly language statements are floating-point instructions, almost any statements
can appear in in-line assembly language, including those with labels.

Programming Exercises 10.4

Write a complete program that will prompt for and input a decimal value for the radius of a circle
and will calculate and display (appropriately labeled) the circumference and the area of the
circle. Do the input and output with C++ and the floating-point calculations with floating-point
instructions in in-line assembly.

1.

The following algorithm approximates the cube root of a real number x2.

root := 1.0;
until (|root -- oldRoot| < smallValue) loop
  oldRoot := root;



  root := (2.0*root + x/(root*root)) / 3.0;
end until;

Write a C++ program to declare variables, input a value for x, and display root. Implement the
cube root algorithm with in-line assembly code, using 0.001 for smallValue.



Chapter Summary

The Intel 80x86 floating-point unit (FPU) contains eight data 80-bit data registers, organized as a stack.
It executes a variety of instructions from load and store to arithmetic to complex transcendental
functions. Comparison instructions set bits in a FPU status register; this status word must be copied to
AX or to memory to check the outcome of a comparison.

Conversion between floating point and ASCII representations is similar to that previously done for
integers. The easiest ASCII format to scan is a simple decimal format. The simplest ASCII format to
produce is E-notation.

Floating-point instructions can be emulated without a floating-point unit. The basic techniques involve
separating floating-point representations into sign, exponent, and fraction components, manipulating
these components, and then combining the resulting components back into a floating-point
representation.

Some high-level language compilers translate in-line assembly code. One application of this is with
floating-point instructions, doing input/output in a language like C++ and computations in assembly
language. However, in-line assembly is also useful in other critical or difficult to-implement applications.



Chapter 11: Decimal Arithmetic

Section 1.5 contained a brief introduction to the integer representation systems known as binary coded
decimal (BCD). BCD representations are especially useful for storing integers with many digits, such as
might be needed for financial records. BCD values are easier than 2's complement values to convert to
or from ASCII format, but only a few 80x86 instructions are available to facilitate arithmetic with BCD
numbers.

Chapter 11 describes BCD representation schemes and the 80x86 instructions that are used with BCD
numbers. It includes code to convert BCD representations for numbers to and from corresponding
ASCII representations and some procedures for BCD arithmetic.

11.1 Packed BCD Representations

The two major classifications of BCD schemes are packed and unpacked, and many variations with
respect to the number of bytes used and how the sign of a value is represented. This section and
Section 11.2 discuss packed BCD numbers. Section 11.3 tells about unpacked BCD numbers.

Packed BCD representations store two decimal digits per byte, one in the high-order four bits and one
in the low-order four bits. For example, the bit pattern 01101001 represents the decimal number 69,
using 0110 for 6 and 1001 for 9. One confusing thing about packed BCD is that this same bit pattern is
written 69 in hexadecimal; however, this just means that if 01101001 is thought of as a BCD number, it
represents the decimal value 69, but if it is viewed as a signed or unsigned binary integer, the
corresponding decimal value is 105. This again makes the point that a given pattern of bits can have
multiple numeric interpretations, as well as nonnumeric meanings.

If single bytes were used for packed BCD representations, then decimal numbers from 0 to 99 could be
stored. This would not be very useful, so typically several bytes are used to store a single number.
Many schemes are possible; some use a fixed number of bytes and some have variable length,
incorporating a field for length as part of the representation. The bit pattern for a number often includes
one or more bits to indicate the sign of the number.

As mentioned in Chapter 10, the Microsoft Macro Assembler provides a DT directive that can be used

to define a 10 byte packed decimal number. Although other representation systems are equally valid,
this book concentrates on this scheme. The directive

     DT 123456789

reserves ten bytes of storage with initial values (in hex)

     89 67 45 23 01 00 00 00 00 00

Notice that the bytes are stored backward, low order to high order, but within each byte the individual
decimal digits are stored forward. This is consistent with the way that high-order and low-order bytes
are reversed in 2's complement integers. The tenth byte in this representation is used to indicate the
sign of the entire number. This byte is 00 for a positive number and 80 for a negative number.
Therefore the DT directive

     DT -1469

produces

     69 14 00 00 00 00 00 00 00 80

Notice that only the sign indicator changes for a negative number; other digits of the representation are
the same as they would be for the corresponding positive number.

Since an entire byte is used for the sign indicator, only nine bytes remain to store decimal digits.
Therefore the packed BCD scheme used by the DT directive stores a signed number up to decimal 18



digits long. With MASM 6.11, extra digits are truncated without warning.

Although DT directives can be used to initialize packed BCD numbers in an assembly language
program and arithmetic can be done on these numbers with the aid of the instructions covered in the
next section, packed BCD numbers are of little service unless they can be displayed for human use.
Figure 11.1 gives the source code for a procedure ptoaProc that converts a packed BCD number to the
corresponding ASCII string. This procedure does the same job for packed BCD numbers as itoaProc
and dtoaProc do for 2's complement integers.

   ptoaProc  PROC NEAR
   ; convert 10-byte BCD number to a 19-byte-long ASCII string
   ; parameter 1:  address of BCD number
   ; parameter 2:  destination address
   ; author:  R. Detmer     revised: 5/98
             push ebp       ; establish stack frame
             mov  ebp, esp
             push esi       ; save registers
             push edi
             push eax
             push ecx
             mov  esi, [ebp+12]  ; source address
             mov  edi, [ebp+8]   ; destination address
             add  edi, 18    ; point to last byte of destination
             mov  ecx, 9     ; count of bytes to process
   for1:      mov  al, [esi] ; byte with two bcd digits
             mov  ah, al     ; copy to high-order byte of AX
             and  al, 00001111b       ; mask out higher-order digit
             or   al, 30h    ; convert to ASCII character
             mov  [edi], al  ; save lower-order digit
             dec  edi        ; point at next destination byte to left
             shr  ah, 4      ; shift out lower-order digit
             or   ah, 30h    ; convert to ASCII
             mov  [edi], ah  ; save higher-order digit
             dec  edi        ; point at next destination byte to left
             inc  esi        ; point at next source byte
             loop for1       ; continue for 9 bytes

             mov  BYTE PTR [edi], ' '  ; space for positive number
             and  BYTE PTR [esi], 80h  ; check sign byte
             jz   nonNeg               ; skip if not negative
             mov  BYTE PTR [edi], '-'  ; minus sign
   nonNeg:
             pop ecx         ; restore registers
             pop eax
             pop esi
             pop edi
             pop ebp
             ret 8           ; return, removing parameters
   ptoaProc  ENDP

Figure 11.1: Packed BCD to ASCII conversion

The procedure ptoaProc has two parameters: a 10-byte-long packed BCD source and a 19-byte-long
ASCII destination string, each passed by location. The destination is 19 bytes long to allow for a sign
and 18 digits. The sign will be a space for a positive number and a minus sign for a negative number.
For the digits, leading zeros rather than spaces are produced. The procedure implements the following
design:

copy source address to ESI;



copy destination address to EDI;
add 18 to EDI to point at last byte of destination string;

for count := 9 down to 1 loop { process byte containing two digits }
      copy next source byte to AL;
      duplicate source byte in AH;
      mask out high-order digit in AL;
      convert low-order digit in AL to ASCII code;
      store ASCII code for low-order digit in destination string;
      decrement EDI to point at next destination byte to left;
      shift AH 4 bits to right to get only high-order digit;
      convert high-order digit in AH to ASCII code;
      store ASCII code for high-order digit in destination string;
      decrement EDI to point at next destination byte to left;

     increment ESI to point at next source digit to right;
end for;
move space to first byte of destination string;
if source number is negative
then
     move minus sign to first byte of destination string;
end if;

The most interesting part of the design and code is the portion that splits a single source byte into two
destination bytes. Two copies of the source byte are made, one in AL and one in AH. The byte in AL is
converted to the ASCII code for the low-order digit using an and instruction to mask the left four bits
and an or instruction to put 0011 (hex 3) in their place. The high-order digit is processed similarly. A
shr instruction discards the low-order digit in AH, moves the high-order digit to the right four bits and
zeros the left four bits. Another or instruction produces the ASCII code for the high-order digit.

Once a packed BCD number is converted to an ASCII string it can be displayed using the output macro
or by some other means. Since BCD numbers are often used for financial calculations, some other
ASCII representation may be more desirable than that generated by ptoaProc. Some exercises at the
end of this section specify alternatives.

Sometimes it is necessary to convert an ASCII string to a corresponding packed BCD value. Figure
11.2 shows a procedure atopProc that accomplishes this task in a restricted setting. The procedure has
two parameters, the addresses of an ASCII source string and a 10 byte BCD destination string. The
ASCII source string is very limited. It can consist only of ASCII codes for digits terminated by a null
byte; no sign, no space, nor any other character code is permitted.

atopProc PROC NEAR32
; Convert ASCII string at to 10-byte BCD number
; parameter 1: ASCII string address parameter 2: BCD number address
; null-terminated source string consists only of ASCII codes for digits,
; author:  R. Detmer      revised: 5/98
          push ebp        ; establish stack frame
          mov  ebp, esp
          push esi                 ; save registers
          push edi
          push eax
          push ecx
          mov  esi, [ebp+12]        ; source address
          mov  edi, [ebp+8]         ; destination address
          mov  DWORD PTR [edi], 0   ; zero BCD destination
          mov  DWORD PTR [edi+4], 0
          mov  WORD PTR [edi+8], 0
; find length of source string and move ESI to trailing null
          mov  ecx, 0               ; count := 0



while1:   cmp  BYTE PTR [esi], 0    ; while not end of string (null)
          jz   endwhile1
          inc  ecx                  ; add 1 to count of characters
          inc  esi                  ; point at next character
          jmp  while1               ; check again
endwhile1:
; process source characters a pair at a time
while2:   cmp  ecx, 0               ; while count > 0
          jz   endwhile2
          dec  esi                  ; point at next ASCII byte from right
          mov  al, BYTE PTR [esi]   ; get byte
          and  al, 00001111b        ; convert to BCD digit
          mov  BYTE PTR [edi], al   ; save BCD digit
          dec  ecx                  ; decrement count
          jz   endwhile2            ; exit loop if out of source digits
          dec  esi                  ; point at next ASCII byte from right
          mov  al, BYTE PTR [esi]   ; get byte
          shl  al, 4                ; shift to left and convert to digit
          or   BYTE PTR [edi], al   ; combine with other BCD digit
          dec  ecx                  ; decrement count
          inc  edi                  ; point at next destination byte
          jmp  while2               ; repeat for all source characters
endwhile2:
          pop  ecx                  ; restore registers
          pop  eax
          pop  esi
          pop  edi
          pop  ebp
          ret 8                     ; return, removing parameters
atopProc ENDP

Figure 11.2: ASCII to packed BCD conversion

The design of procedure atopProc is quite different from atodProc (Fig. 8.9) that produces a
doubleword integer from an ASCII string. The ASCII-to-doubleword routine scans source characters left
to right one at a time, but the ASCII-to-packed BCD procedure scans the source string right to left, two
characters at a time, in order to pack two decimal digits into one byte. The procedure must begin by
locating the right end of the string. If there is an odd number of source characters, then only one
character will contribute to the last BCD byte. The design for atopProc appears below.

copy source address to ESI;
copy destination address to EDI;
initialize all 10 bytes of destination, each to 00;
counter := 0;
while ESI is not pointing at trailing null byte of ASCII source loop
     add 1 to counter;
     increment ESI to point at next byte of source string;
end while;
while counter > 0 loop
      decrement ESI to point at next source byte from right;
      copy source byte to AL;
      convert ASCII code to digit by zeroing leftmost 4 bits;
      save low-order digit in destination string;
      subtract 1 from counter;
      if counter = 0
      then
           exit loop;
      end if;
      decrement ESI to point at next source byte from right;
      copy source byte to AL;



      shift AL 4 bits left to get digit in high order 4 bits;
      or AL with destination byte to combine with low-order digit;
      subtract 1 from counter;
      increment EDI to point at next destination byte;
end while;

The first while loop in the design simply scans the source string left to right, counting digits preceding
the trailing null byte. Although this design allows only ASCII codes for digits, an extra loop could be
included to skip leading blanks and a leading minus or plus (-  or +) could be noted. (These and other
enhancements are specified in programming exercises.)

The second while loop processes the ASCII codes for digits that have been counted in the first loop.
Two digits, if available, must be packed into a single destination byte. At least one source byte is there
each time through the loop, so the first is loaded into AL, changed from an ASCII code to a digit, and
stored in the destination string. (An alternative way to convert the ASCII code to a digit would be to
subtract 3016.) If source characters are exhausted, then the while loop is exited. Otherwise a second
ASCII character is loaded into AL, a left shift instruction converts it to a digit in the left four bits of AL,
and an or combines it with the right digit already stored in memory in the destination string.

The atopProc procedure could be used to convert a string obtained from the input macro. If some other
method were used, one would have to ensure that the string has a trailing null byte.

Exercises 11.1

Find the initial values that MASM will generate for each DT directive below:

DT 123456a.

DT -123456b.

DT 345c.

DT -345d.

DT 102030405060708090e.

DT -102030405060708090f.

1.

Explain how you could use floating-point instructions to convert a number stored as a 2's
complement doubleword integer to a 10-byte packed decimal equivalent value. From packed
BCD to doubleword integer?

2.

Define a macro ptoa similar to the itoa macro described in Section 9.5. Use two parameters,
dest and source, dest referencing a 19-byte-long ASCII string and source referencing a 10-byte
packed BCD string in memory. Include safeguards to ensure that the correct number of
arguments is used in a call. Code in the macro will call ptoaProc.

3.

Programming Exercises 11.1

Modify the code for the ptoaProc procedure so that it produces leading spaces instead of zeros,
and so that the minus sign, if any, is placed to the immediate left of the first nonzero digit. If the
value of the entire number is zero, the units-position (rightmost) zero is not replaced by a space.
The total string length will remain 19 characters. The procedure will remove parameters from the
stack.

1.

Modify the code for the ptoaProc procedure so that it produces a 22-byte-long ASCII string
giving a monetary representation of the source value. Use leading spaces instead of leading
zeros (if any) in the first 16 positions. Character 17 is always a decimal point. Characters 18 and
19 are always digits, even if they have value zero. Character 20 is a space. Characters 21 and
22 are ASCII codes for "CR" if the value is positive and "DB" if the value is negative. The
procedure will remove parameters from the stack.

2.

a.

3.



Modify the code for the atopProc procedure so that it will skip leading spaces in the
source string, accept a leading plus or minus (+ or - ) immediately before the first digit,
and terminate scanning when any nondigit (rather than only a null byte) is encountered in
the string. If a minus sign is encountered, the sign byte of the BCD representation is set
to 8016. The procedure will remove parameters from the stack.

a.

Define a macro atop similar to the atoi macro described in Section 9.5. Use two
parameters, dest and source, dest referencing a 10-byte packed BCD string in memory
and source referencing a 19-byte-long ASCII string. Include safeguards to ensure that the
correct number of arguments is used in a call. Code in the macro will call the modified
atopProc from part (a).

b.

3.

Write a procedure editProc that has two parameters, (1) the address of a pattern string and (2)
the address of a 10-byte packed BCD value. The procedure selectively replaces some
characters in the pattern string by spaces or by ASCII codes for digits extracted from the BCD
value. Except for a terminating null byte, the only allowable characters in a pattern string are a
pound sign (#), a comma (,) and a period (.). A period is always unchanged. Each # is replaced
by a digit. There will be at most 18 pound signs and if there are fewer than 18, then lower-order
digits from the BCD value are used. Leading zeros in the resulting string are changed to spaces
unless they follow a period, in which case they remain zeros. A comma is unchanged unless it is
adjacent to a space; such a comma is changed to a space. The following examples (with b
indicating a space) illustrate how editProc works. Note that the original pattern is destroyed by
the procedure. The procedure will remove parameters from the stack.

Before pattern BCD value After pattern

##,###.## 123456 b1,234.56

##,###.## 12345 bbb123.45

##,###.## 1 bbbbbb.01

4.



11.2 Packed BCD Instructions

Addition and subtraction operations for packed BCD numbers are similar to those for multicomponent
2's complement numbers (Section 4.5). Corresponding bytes of the two operands are added, and the
carry-from-one addition is added to the next pair of bytes. BCD operands have no special addition
instruction; the regular add and adc instructions are used. However, these instructions are designed

for binary values, not BCD values, so for many operands they give the wrong sums.

The 80x86 architecture includes a daa (decimal adjust after addition) instruction used after an addition
instruction to correct the sum. This section explains the operation of the daa instruction and its
counterpart das for subtraction. Procedures for addition and subtraction of non-negative 10-byte

packed BCD numbers are developed; then a general addition procedure is given.

A few examples illustrate the problem with using binary addition for BCD operands. The AF column
gives the value of the auxiliary carry flag, the significance of which is discussed below.

Before After add al,bl

AL BL AL AF CF

34 25 59 0 0

37 25 5C 0 0

93 25 B8 0 0

28 39 61 1 0

79 99 12 1 1

Although each answer is correct as the sum of two unsigned binary integers, only the first result is
correct as a BCD value. The second and third sums contain bit patterns that are not used in BCD
representations, C16 in the second example and B16 in the third. The last two sums contain no invalid
digit-they are simply wrong as decimal sums.

The daa instruction is used after an addition instruction to convert a binary sum into a packed BCD
sum. The instruction has no operand; the sum to be converted must be in the AL register. A daa

instruction examines and sets both the carry flag CF and the auxiliary carry flag AF (bit 4 of the
EFLAGS register). Recall that the carry flag is set to 1 during addition of two eight bit numbers if there
is a carry out of the leftmost position. The AF flag similarly is set to 1 by add or adc instructions if there

is a carry resulting from addition of the low-order four bits of the two operands. One way of thinking of
this is that the sum of the two low-order hex digits is greater than F16.

A daa instruction first examines the right hex digit of the binary sum in AL. If this digit is over 9 (that is,

A through F), then 6 is added to the entire sum and AF is set to 1. Notice that this would correct the
result in the second example above since 5C + 6 = 62, the correct packed BCD sum of 37 and 25. The
same correction is applied if AF=1 when the daa instruction is executed. Thus in the fourth example,

61 + 6 = 67.

After correcting the right digit, daa examines the left digit in AL. The action is similar: If the left digit is

over 9 or CF=1, then 6016 is added to the entire sum. The carry flag CF is set to 1 if this correction is
applied. In the third example, B8 + 60 = 18 with a carry of 1.

Both digits must be corrected in the last example, 12 + 6 = 18 and 18 + 60 = 78 (since CF=1). The
chart below completes the above examples, assuming that both of the following instructions are
executed.

add al, bl
daa



Before After add After
daa

AL: 34 AL: 59 AL: 59

BL: 25 AF: 0 CF: 0 AF: 0
CF: 0

AL: 37 AL: 5C AL: 62

BL: 25 AF: 0 CF: 0 AF: 1
CF: 0

AL: 93 AL: B8 AL: 18

BL: 25 AF: 0 CF: 0 AF: 0
CF: 1

AL: 28 AL: 61 AL: 67

BL: 39 AF: 1 CF: 0 AF: 1
CF: 0

AL: 79 AL: 12 AL: 78

BL: 99 AF: 1 CF: 1 AF: 1
CF: 1

The das instruction (decimal adjust after subtraction) is used after a sub or sbb instruction. It acts like
the daa except that 6 or 6016 is subtracted from rather than added to the value in AL. The following
examples show how das works following sub al,bl. In the first example, both CF and AF are set to 1

since the subtraction requires borrows in both digit positions. When 6 and 6016 are subtracted from BC,
the result is 56, and both CF and AF remain set to 1. This is the correct answer since 25 - 69 = 56
(borrowing 1 to change 25 into 125.)

Before After sub After
das

AL: 25 AL: BC AL: 56

BL: 69 AF: 1 CF: 1 AF: 1
CF: 1

AL: 37 AL: 12 AL: 12

BL: 25 AF: 0 CF: 0 AF: 0
CF: 0

AL: 93 AL: 6E AL: 68

BL: 25 AF: 1 CF: 0 AF: 1
CF: 1

AL: 92 AL: 59 AL: 53

BL: 39 AF: 1 CF: 0 AF: 1
CF: 0

AL: 79 AL: E4 AL: 84

BL: 95 AF: 0 CF: 1 AF: 0
CF: 1

Each of the daa and das instructions encodes in a single byte. The daa instruction has opcode 27 and
the das instruction has opcode 2F. Each requires three clock cycles to execute on a Pentium. In
addition to modifying AF and CF, the SF, ZF and PF flags are set or reset by daa or das instructions to

correspond to the final value in AL. The overflow flag OF is undefined and other flags are not affected.

The first BCD arithmetic procedure in this section adds two non-negative 10-byte numbers. This
procedure will have two parameters, addresses of destination and source values, respectively. Each
will serve as an operand, and the destination will be replaced by the sum, consistent with the way that
ordinary addition instructions use the destination operand. We will not be concerned about setting
flags; the exercises specify a more complete procedure that assigns appropriate values to SF, ZF, and



CF. A design for the procedure is given below. This design is implemented in the procedure addBcd1
(see Fig. 11.3).

   addBcd1   PROC NEAR32
   ; add two non-negative 10 byte packed BCD numbers
   ; parameter1:  address of operand1 (and destination)
   ; parameter2:  address of operand2
   ; author:  R. Detmer     revised: 5/98
             push ebp             ; establish stack frame
             mov  ebp, esp
             push esi             ; save registers
             push edi
             push ecx
             push eax
             mov  edi, [ebp+12]   ; destination address
             mov  esi, [ebp+8]    ; source address

             clc                  ; clear carry flag for first add
             mov  ecx, 9          ; count of bytes to process
   forAdd:   mov  al, [edi]       ; get one operand byte
             adc  al, [esi]       ; add other operand byte
             daa                  ; adjust to BCD
             mov  [edi], al       ; save sum
             inc  edi             ; point at next operand bytes
             inc  esi
             loop forAdd          ; repeat for all 9 bytes

             pop  eax             ; restore registers
             pop  ecx
             pop  edi
             pop  esi
             pop  ebp
             ret  8               ; return to caller

   addBcd1   ENDP

Figure 11.3: Addition of non-negative packed BCD numbers

point at first source and destination bytes;
for count := 1 to 9 loop
      copy destination byte to AL;
      add source byte to AL;
      use daa to convert sum to BCD;
      save AL in destination;
      point at next source and destination bytes;
end for;

A subtraction procedure for 10-byte packed BCD numbers is more difficult. Even with the operands
restricted to non-negative values, subtracting the source value (address in parameter 2) from the
destination (address in parameter 1) will produce a negative result if the source is larger than the
destination. A design for the procedure is below.

point at first source and destination bytes;
for count := 1 to 9 loop
     copy destination byte to AL;
     subtract source byte from AL;
     use das to convert difference to BCD;



     save AL in destination string;
     point at next source and destination bytes;
end for;

if source > destination
then
     point at first destination byte;
     for count := 1 to 9 loop
           put 0 in AL;
           subtract destination byte from AL;
           use das to convert difference to BCD;
           save AL in destination string;
           increment DI;
     end for;
     move sign byte 80 to destination string;
end if;

The first part of this design is almost the same as the design for addition. The condition (source >
destination) is true if the carry flag is set after the first loop, and the difference is corrected by
subtracting it from zero. If this were not done, then, for example, 3 - 7 would produce
999999999999999996 instead of - 4. This design is implemented as procedure subBcd1 in Fig. 11.4.

   subBcd1   PROC NEAR32
   ; subtract 2 non-negative 10 byte packed BCD numbers
   ; parameter1:  address of operand1 (and destination)
   ; parameter2:  address of operand2
   ; operand1 -- operand2  stored at destination
   ; author:  R. Detmer     revised: 5/98
             push ebp             ; establish stack frame
             mov  ebp, esp
             push esi             ; save registers
             push edi
             push ecx
             push eax
             mov  edi, [ebp+12]   ; destination address (operand 1)
             mov  esi, [ebp+8]    ; source address (operand 2)
             clc                  ; clear carry flag
             mov  ecx, 9          ; count of bytes to process
   forSub:   mov  al, [edi]       ; get one operand byte
             sbb  al, [esi]       ; subtract other operand byte
             das                  ; adjust to BCD
             mov  [edi], al       ; save difference
             inc  edi             ; point at next operand bytes
             inc  esi
             loop forSub          ; repeat for all 9 bytes

             jnc  endIfBigger     ; done if destination >= source
             sub  edi, 9          ; point at beginning of destination
             mov  ecx, 9          ; count of bytes to process
   forSub1:  mov  al,0            ;subtract destination from zero
             sbb  al, [edi]
             das
             mov  [edi], al
             inc  edi             ; next byte
             loop forSub1
             mov  BYTE PTR [edi], 80h    ; negative result
   endIfBigger:
             pop  eax             ; restore registers
             pop  ecx



             pop  edi
             pop  esi
             pop  ebp
             ret  8               ; return to caller
   subBcd1   ENDP

Figure 11.4: Subtraction of non-negative packed BCD numbers

Once you have the addBcd1 and subBcd1 procedures that combine non-negative operands, it is not
too difficult to construct the general packed BCD addition and subtraction procedures. The design for
addition is

if operand1 = 0
then
     if operand2 = 0
     then
          addBcd1(operand1, operand2);
     else
          subBcd1(operand1, operand2);
     end if;
else {operand1 < 0}
     if (operand2 < 0)
     then
          addBcd1(operand1, operand2);
     else
          change sign byte of operand1;
          subBcd1(operand1, operand2);
          change sign byte of operand1;
     end if;
end if;

The design for negative operand1 is a little tricky. When operand2 is also negative, the result will be
negative. Since addBcd1 does not affect the sign byte of the destination (operand1), the result after
adding operand2 will be negative with no special adjustment required. Adding a non-negative operand2
can result in either a positive or negative result. The reader should verify that this design and
corresponding code produces the correct sign for the result. This design is implemented in procedure
addBcd, shown in Fig. 11.5. A general procedure for subtraction is left as an exercise.

   addBcd    PROC NEAR32
   ; add two arbitrary 10 byte packed BCD numbers
   ; parameter1:  address of operand1 (and destination)
   ; parameter2:  address of operand2
   ; author:  R. Detmer     revised: 5/98
             push ebp            ; establish stack frame
             mov  ebp, esp
             push esi            ; save registers
             push edi
             mov  edi, [ebp+12]  ; destination address
             mov  esi, [ebp+8]   ; source address
             push edi            ; parameter1 for next call
             push esi            ; parameter2 for next call
             cmp  BYTE PTR [edi+9], 80h    ; operand1 >= 0?
             je   op1Neg
             cmp  BYTE PTR [esi+9], 80h    ; operand2 >= 0?
             je   op2Neg
             call addBcd1        ; add (>=0, >=0)
             jmp  endIfOp2Pos
   op2Neg:   call subBcd1        ; sub (>=0, <0)



   endIfOp2Pos:
             jmp  endIfOp1Pos    ; done
   op1Neg:   cmp  BYTE PTR [esi+9], 80h    ; operand2 < 0 ?
             jne  op2Pos
             call addBcd1        ; add (<0, <0)
             jmp  endIfOp2Neg
   op2Pos:   xor  BYTE PTR [edi+9], 80h  ; change sign byte
             call subBcd1         ; sub (<0, >=0)
             xor  BYTE PTR [edi+9], 80h  ; change sign byte
   endIfOp2Neg:
   endIfOp1Pos:
             pop  edi            ; restore registers
             pop  esi
             pop  ebp
             ret  8              ; return to caller

   addBcd    ENDP

Figure 11.5: General BCD addition procedure

Exercises 11.2

In each part below, assume that the instructions1.

add  al,  bl
daa

are executed. Give the values in the AL register, carry flag CF, and auxiliary flag AF: (1) after the
add and before the daa and (2) after the daa.

AL: 35 BL: 42a.

AL: 27 BL: 61b.

AL: 35 BL: 48c.

AL: 47 BL: 61d.

AL: 35 BL: 92e.

AL: 27 BL: 69f.

AL: 75 BL: 46g.

AL: 00 BL: 61h.

AL: 85 BL: 82i.

AL: 89 BL: 98j.

AL: 76 BL: 89k.

AL: 27 BL: 00l.

Repeat the parts of Exercise 1 for the instructions2.

sub al, bl
das

Programming Exercises 11.2

Modify the addBcd procedure to set SF, ZF, and CF. The sign flag will be set according to the
sign of the sum, and ZF will be set for a zero result. The carry flag CF will be set if there are

1.

2.



more than 18 digits in the sum.

1.

Design and code a general subtraction procedure subBcd with two parameters: (1) the address
of operand1 and (2) the address of operand2. The difference operand1-operand2 will be stored
at the address of operand1. The procedure will remove parameters from the stack.

2.



11.3 Unpacked BCD Representations and Instructions

Unpacked BCD numbers differ from packed representations by storing one decimal digit per byte
instead of two. The bit pattern in the left half of each byte is 0000. This section describes how to define
unpacked BCD numbers, how to convert this representation to and from ASCII, and how to use 80x86
instructions to do some arithmetic operations with unpacked BCD numbers.

Unpacked BCD representations have no standard length. In this book each value will be stored in eight
bytes, with high-order digits on the left and low-order digits on the right (opposite to the way a DT
directive stores packed BCD numbers). No sign byte will be used, so only non-negative numbers will be
represented. An ordinary BYTE directive can be used to initialize an unpacked BCD value. For
example, the statement

     BYTE 0,0,0,5,4,3,2,8

reserves eight bytes of storage containing 00 00 00 05 04 03 02 08, the unpacked BCD representation
for 54328. The directive

     BYTE 8 DUP (?)

establishes an eight-byte-long area that can be used to store an unpacked BCD value.

It is simple to convert an unpacked BCD value to or from ASCII. Suppose that the data segment of a
program includes the directives

     ascii     DB 8 DUP (?)
     unpacked  DB 8 DUP (?)

If unpacked already contains an unpacked BCD value, the following code fragment will produce the
corresponding ASCII representation at ascii.

           lea  edi, ascii          ; destination
           lea  esi, unpacked       ; source
           mov  ecx, 8              ; bytes to process
     for8: mov  al, [esi]           ; get digit
           or   al, 30h             ; convert to ASCII
           mov  [edi], al           ; store ASCII character
           inc  edi                 ; increment pointers
           inc  esi
           loop for8                ; repeat for all bytes

Converting from an ASCII string to an unpacked BCD representation is equally easy. The same loop
structure can be used with the roles of EDI and ESI reversed, and with the or instruction replaced by

     and al, 0fh      ; convert ASCII to unpacked BCD

to mask the high-order four bits. Conversions between ASCII and unpacked BCD are even simpler if
they are done "in place" (see Exercise 3).

The 80x86 architecture includes four instructions to facilitate arithmetic with unpacked BCD
representations. Each mnemonic begins with "aa" for "ASCII adjust"— Intel uses the word ASCII to
describe unpacked BCD representations, even though the ASCII representation for a digit has 0011 in
the left half byte and the unpacked representation has 0000. The four instructions are aaa, aas, aam,
and aad. Information about these instructions is given in Fig. 11.6.



Instruction Mnemonic Number of
bytes

Opcode Clocks
(Pentium)

ASCII adjust after addition aaa 1 37 3

ASCII adjust for subtraction aas 1 3F 3

ASCII adjust after
multiplication

aam 2 D4 0A 18

ASCII adjust before division aad 2 D5 0A 10

Figure 11.6: Unpacked BCD instructions

The aaa and aas instructions are similar to their packed BCD counterparts daa and das. For addition,
bytes containing unpacked BCD operands are combined using an add or adc instruction, yielding a
sum in the AL register. An aaa instruction then corrects the value in AL if necessary. An aaa
instruction sets flags and may also affect AH; recall that a daa affects only AL and flags. The following
algorithm describes how aaa works.

if (right digit in AL > 9) or (AF=1)
then
     add 6 to AL;
     increment AH;
     AF := 1;
end if;

CF := AF;
left digit in AL := 0;

The action of an aas instruction is similar. The first two operations inside the i f are replaced by

     subtract 6 from AL;
     decrement AH;

The OF, PF, SF, and ZF flags are left undefined by aaa and aas instructions.

Here are some examples of showing how add and aaa work together. In each example, assume that

the following pair of instructions is executed.

     add al, ch
     aaa



Before After add After
aaa

AX: 00
04

AX: 00 07 AX: 00
07

CH: 03 AF: 0 AF: 0
CF: 0

AX: 00
04

AX: 00 0B AX: 01
01

CH: 07 AF: 0 AF: 1
CF: 1

AX: 00
08

AX: 00 11 AX: 01
07

CH: 09 AF: 1 AF: 1
CF: 1

AX: 05
05

AX: 05 0C AX: 06
02

CH: 07 AF: 0 AF: 1
CF: 1

Another set of examples illustrates how sub and aas find differences of single byte unpacked BCD

operands. This time assume that the following instructions are executed.

     sub  al,  dl
     aas

Before After sub After
aas

AX: 00
08

AX: 00 05 AX: 00
05

DL: 03 AF: 0 AF: 0
CF: 0

AX: 00
03

AX: 00 FC AX: FF
06

DL: 07 AF: 1 AF: 1
CF: 1

AX: 05
02

AX: 05 F9 AX: 04
03

DL: 09 AF: 1 AF: 1
CF: 1

Figure 11.7 displays a procedure addUnp that adds two eight-byte unpacked BCD numbers whose
addresses are passed as parameters. This procedure is simpler than the similar addBcd1 procedure in
Fig. 11.3. No effort is made to produce significant flag values. Since low-order digits are stored to the
right, the bytes are processed right to left. (Programming Exercise 1 specifies the corresponding
procedure for subtraction.)

   addUnp    PROC NEAR32
   ; add two 8-byte unpacked BCD numbers
   ; parameter 1:  operand1 and destination address
   ; parameter 2:  operand2 address
   ; author:  R. Detmer   revised:  5/98
             push ebp             ; establish stack frame
             mov  ebp, esp



             push esi             ; save registers
             push edi
             push eax
             push ecx
             mov  edi, [ebp+12]   ; destination address
             mov  esi, [ebp+8]    ; source address
             add  esi, 8          ; point at byte after source
             add  edi, 8          ; byte after destination
             clc                  ; clear carry flag
             mov  ecx, 8          ; count of bytes to process
   forAdd:   dec  edi             ; point at operand bytes to left
             dec  esi
             mov  al, [edi]       ; get one operand byte
             adc  al, [esi]       ; add other operand byte
             aaa                  ; adjust to unpacked BCD
             mov  [edi], al       ; save sum
             loop forAdd          ; repeat for all 8 bytes
             pop  ecx             ; restore registers
             pop  eax
             pop  edi
             pop  esi
             pop  ebp
             ret  8         ; return, discarding paramters
   addUnp    ENDP

Figure 11.7: Addition of two 8-byte unpacked BCD numbers

One interesting feature of the procedure addUnp is that it will give the correct unpacked BCD sum of
eight byte ASCII (not unpacked BCD) numbers—Intel’s use of "ASCII" in the unpacked BCD
mnemonics is not as unreasonable as it first seems. The procedure is successful for ASCII strings
since the action of the aaa instruction depends only on what add does with low-order digits, and aaa

always sets the high-order digit in AL to zero. However, even if the operands are true ASCII character
strings, the sum is not ASCII; it is unpacked BCD.

Two single byte unpacked BCD operands are multiplied using an ordinary mul instruction, resulting in a

product in the AX register. Of course, this product will be correct as a binary number, not usually as a
BCD value. The aam instruction converts the product in AX to two unpacked BCD digits in AH and AL.
In effect, an aam instruction divides the number in AL by 10, putting the quotient in AH and the

remainder in AL. The following examples assume that the instructions

     mul bh
     aam

are executed.

Before After mul After
aam

AX: 00
09

AX: 00 51 AX: 08
01

BH: 06    

AX: 00
05

AX: 00 1E AX: 03
00

BH: 06    

AX: 00
06

AX: 00 2A AX: 04
02

BH: 07    



Some flags are affected by an aam instruction. The PF, SF, and ZF flags are given values

corresponding to the final value in AX; the AF, CF, and OF flags are undefined.

Multiplication of single-digit numbers is not very useful. Figure 11.8 gives a procedure mulUnp1 to
multiply an eight-byte unpacked BCD number by a single-digit unpacked BCD number. The procedure
has three parameters: (1) the destination address, (2) the address of the BCD source, and (3) a word
containing the single-digit unpacked BCD number as its low-order byte.

   mulUnp1   PROC NEAR32
   ; multiply 8 byte and 1 byte unpacked BCD numbers
   ; parameter 1:  destination address
   ; parameter 2:  address of 8 byte unpacked BCD number
   ; parameter 3:  word w/ low-order byte containing 1-digit BCD nbr
             push ebp            ; establish stack frame
             mov  ebp, esp
             push esi            ; save registers
             push edi
             push eax
             push ebx
             push ecx
             mov  edi, [ebp+14]  ; destination address
             mov  esi, [ebp+10]  ; source address
             mov  bx, [ebp+8]    ; multiplier
             add  esi, 8         ; point at byte after source
             add  edi, 8         ; byte after destination
             mov  bh, 0          ; lastCarry := 0
             mov  ecx, 8         ; count of bytes to process
   forMul:   dec  esi            ; point at operand byte to left
             dec  edi            ; and at destination byte
             mov  al, [esi]      ; digit from 8 byte number
             mul  bl             ; multiply by single byte
             aam                 ; adjust to unpacked BCD
             add  al, bh         ; add lastCarry
             aaa                 ; adjust to unpacked BCD
             mov  [edi], al      ; store units digit
             mov  bh, ah         ; store lastCarry
             loop forMul         ; repeat for all 8 bytes
             pop  ecx            ; restore registers
             pop  ebx
             pop  eax
             pop  edi
             pop  esi
             pop  ebp
             ret  10             ; return, discarding paramters
   mulUnp1   ENDP

Figure 11.8: Multiplication of unpacked BCD numbers

The algorithm implemented is essentially the same one as used by grade school children. The single
digit is multiplied times the low-order digit of the multi-digit number, the units digit is stored, and the
tens digit is recorded as a carry to add to the next product. All eight products can be treated the same
by initializing a last-Carry variable to zero prior to beginning a loop. Here is the design that is actually
implemented.

{ multiply X7X6X5X4X3X2X1X0 times Y giving Z7Z6Z5Z4Z3Z2Z1Z0}
lastCarry := 0;
for i := 0 to 7 loop
     multiply Xi times Y;
     add lastCarry;



     Zi := units digit;
     lastCarry := tens digit;
end for;

In the code for mulUnp1, the value for lastCarry is stored in the BH register. After a digit from the eight-
byte BCD value is multiplied by the single digit in BL, the product is adjusted to unpacked BCD and
lastCarry is added. It is then necessary to adjust the sum to unpacked BCD.

The aad instruction essentially reverses the action of the aam instruction. It combines a two-digit

unpacked BCD value in AH and AL into a single binary value in AX, multiplying the digit in AH by 10
and adding the digit in AL. The AH register is always cleared to 00. The PF, SF, and ZF flags are given
values corresponding to the result; AF, CF, and OF are undefined.

The aad instruction is used before a div instruction, contrary to the other ASCII adjust instructions

that are used after the corresponding arithmetic instructions. The examples below assume that the
instructions

     aad
     div dh

are executed.

Before After aad After
div

AX: 07
05

AX: 00 4B AX: 03
09

DH: 08 DH: 08  

AX: 06
02

AX: 00 3E AX: 02
0F

DH: 04 DH: 04  

AX: 09
03

AX: 00 5D AX: 01
2E

DH: 02 DH: 02  

In the first example, the quotient and remainder are in BCD format in AL and AH, respectively, following
the div instruction. However, the second and third examples show that this is not always the case. The

remainder is correct in AH because it is a binary remainder following division by a number 9 or smaller.
The remainder must be 0 through 8, and for numbers in this range a single byte binary value agrees
with the unpacked BCD representation. The quotient in AL is obviously a binary number, not a BCD
representation. To convert it to unpacked BCD, an aam instruction needs to follow the div. In the

second example, this would change AX to 01 05, the correct quotient for 62 ÷ 4. In the third example,
aam would yield 0406 in AX, again the correct quotient. Notice that the remainder from the division is
lost, so if it is needed, it must be copied from AH before aam is executed.

Notice that the problems illustrated by the previous examples cannot occur when the original digit in AH
is smaller than the divisor in DH. The elementary school algorithm for dividing a single digit into a
multidigit number works left to right through the dividend, dividing a two digit number by the divisor. The
first of the two digits is the remainder from the previous division, which must be smaller than the divisor.
The following design formalizes the grade school algorithm.

{ divide X7X6X5X4X3X2X1X0 by Y giving Z7Z6Z5Z4Z3Z2Z1Z0 }
lastRemainder := 0;
for i := 7 downto 0 loop
       dividend := 10*lastRemainder + Xi;
       divide dividend by Y getting quotient & lastRemainder;
       Zi := quotient;
end for;



Code that implements this design is given in Fig. 11.9. The AH register is ideally suited to store
lastRemainder since that is where the remainder ends up following division of a 16-bit binary number by
an 8-bit number.

   divUnp1   PROC NEAR32
   ; parameter 1: destination address
   ; parameter 2: address of 8 byte unpacked BCD number
   ; parameter 3: word w/ 1-digit BCD number as low-order byte
   ; author:  R. Detmer    revised:  5/98
             push ebp             ; establish stack frame
             mov  ebp, esp
             push esi             ; save registers
             push edi
             push eax
             push ebx
             push ecx
             mov  edi, [ebp+14]   ; destination address
             mov  esi, [ebp+10]   ; source address
             mov  bx, [ebp+8]     ; divisor
             mov  ah, 0           ; lastRemainder := 0
             mov  ecx, 8          ; count of bytes to process
   forDiv:   mov  al, [esi]       ; digit from 8 byte number
             aad                  ; adjust to binary
             div  bl              ; divide by single byte
             mov  [edi], al       ; store quotient
             inc  esi             ; point at next digit of dividend
             inc  edi             ; and at next destination byte
             loop forDiv          ; repeat for all 8 bytes
             pop  ecx             ; restore registers
             pop  ebx
             pop  eax
             pop  edi
             pop  esi
             pop  ebp
             ret  10               ; return, discarding paramters
   divUnp1   ENDP

Figure 11.9: Division of unpacked BCD numbers

Exercises 11.3

In each part below, assume that the instructions1.

add al, bl
aaa

are executed. Give the values in the AX register, carry flag CF, and auxiliary flag AF: (1) after the
add and before the aaa and (2) after the aaa.

AX: 00 05 BL: 02a.

AX: 02 06 BL: 03b.

AX: 03 05 BL: 08c.

AX: 00 07 BL: 06d.

AX: 00 09 BL: 08e.

AX: 02 07 BL: 09f.

g.

h.



e.

f.

AX: 04 01 BL: 09g.

AX: 00 00 BL: 01h.

Repeat the parts of Exercise 1 for the instructions2.

sub al, bl
aas

Both parts of this problem assume the definition3.

value BYTE 8 DUP(?)

Assume that value contains ASCII codes for digits 0 through 9. Write a code fragment to
replace these bytes "in place" (without copying bytes to another location) by the
corresponding unpacked BCD values.

a.

Assume that value contains an eight-byte-long unpacked BCD value. Write a code
fragment to replace these bytes in place by the corresponding ASCII codes for digits 0
through 9.

b.

In each part below, assume that the instructions4.

mul ch
aam

are executed. Give the values in the AX register: (1) after the mul and before the aam and (2)
after the aam.

AL: 05 CH: 02a.

AL: 06 CH: 03b.

AL: 03 CH: 08c.

AL: 07 CH: 06d.

AL: 09 CH: 08e.

AL: 07 CH: 09f.

AL: 04 CH: 09g.

AL: 08 CH: 01h.

In each part below, assume that the instructions5.

aad
div dl
aam

are executed. Give the values in the AX register: (1) after the aad and before the div, (2) after
the div and before the aam, and (3) after the aam.

AX: 07 05 DL: 08a.

AX: 05 06 DL: 09b.

AX: 02 07 DL: 08c.

AX: 04 07 DL: 06d.

AX: 05 09 DL: 06e.

AX: 03 07 DL: 07f.

g.

h.



e.

f.

AX: 07 04 DL: 03g.

AX: 05 00 DL: 04h.

Programming Exercises 11.3

Write a procedure subUnp to find the difference of two eight-byte unpacked BCD numbers. The
procedure will have two parameters: (1) the address of operand1 and destination and (2) the
address of operand2. The value of operand1 operand2 will be stored at destination. The
procedure will set CF to 1 if the source is larger than the destination and clear it to 0 otherwise.
Other flag values will not be changed. The procedure will remove parameters from the stack.

1.

Here is one possible variable-length representation for multibyte unpacked BCD numbers. An
unsigned binary value in the first byte tells how many decimal digits are in the number. Then
digits are stored right to left (low order to high order). For example, the decimal number
1234567890 could be stored 0A 00 09 08 07 06 05 04 03 02 01. This system allows for decimal
numbers up to 255 digits long to be stored.

Write a procedure addVar that adds two unpacked BCD numbers stored in this variable length
format. The procedure will have two parameters: (1) the address of operand1 and destination
and (2) the address of operand2. The value of operand1 + operand2 will be stored at
destination. The two numbers are not necessarily the same length. The sum may be the same
length as the longer operand, or one byte longer. Assume that sufficient space has been
reserved in the destination field for the sum, even if operand1 is the shorter operand. The
procedure will remove parameters from the stack.

2.



11.4 Other Architectures: VAX Packed Decimal Instructions

Since the 80x86 architecture provides very limited support for packed decimal operations, a large
procedure library is necessary to use packed decimal types. Some other architectures provide
extensive hardware support for packed decimal. This section briefly examines packed decimal
instructions defined in the VAX architecture, although not necessarily implemented in all VAX
machines.

The VAX architecture defines a packed decimal string by its length and starting address. The length
gives the number of decimal digits stored in the string, not the number of bytes. The last four bits (half
byte) are always a sign indicator, normally C16 for positive and D16 for negative. Since decimal digits
are packed two per byte, the length (in bytes) of a packed decimal string is approximately half the
number of digits. More precisely, for n decimal digits it is (n + 1)/2 if n is odd and (n + 2)/2 if n is even.

The VAX architecture includes a complete set of instructions for performing packed decimal arithmetic:
ADDP (add packed), DIVP (divide packed), MULP (multiply packed), and SUBP (subtract packed).
Each of these has at least four operands to specify the length and address of each of the packed
decimal strings involved. When just two strings are specified, one serves both as a source and the
destination. All also have six-operand formats where the sources are specified separately from the
destination. (MULP and DIVP have only the six-operand formats.) The MOVP (move packed)
instruction copies a packed decimal string from one address to another. The CMPP (compare packed)
instruction compares two packed decimal strings, setting condition codes (flags).

Recall the difficulty of converting packed decimal to or from other formats. The VAX architecture
provides six different instructions for this purpose. There are functions to convert between packed
decimal strings and 32-bit 2's complement integers, and others to convert between packed decimal and
numeric strings (including ASCII). There is also an EDIT instruction that converts a packed decimal
string to a character string, performing many possible editing operations during the conversions.
(Programming Exercises 11.1, #4, describes a similar, but much simpler, editing job.)

The COBOL language directly supports packed decimal types and operations. If you were writing a
COBOL compiler for a VAX, then the packed decimal instructions would greatly simplify the job. The
resulting compiler would yield much more compact and efficient code than if each packed decimal
operation were emulated by a software procedure.



Chapter Summary

Integers may be stored in a computer in binary coded decimal form instead of unsigned or 2’s
complement binary form. There are two basic BCD systems, packed and unpacked. Packed BCD
values store two decimal digits per byte, and unpacked BCD values store a single decimal digit per
byte.

Binary representations are much more compact than BCD representations and the 80x86 processor
has more instructions for doing arithmetic with binary numbers. However, BCD representations can
easily store very large integers and are simple to convert to or from ASCII.

BCD systems may use a variable or a fixed number of bytes and may or may not store a sign indicator.
The MASM assembler provides a DT directive that can produce a ten byte signed, packed BCD
number. Unpacked BCD numbers can be initialized using BYTE directives.

Arithmetic is done with BCD numbers by combining pairs of bytes from two operands using ordinary
binary arithmetic instructions. The binary results are then adjusted to BCD. Packed decimal
representations use daa (decimal adjust for addition) and das (decimal adjust for subtraction)

instructions. Using these instructions along with binary arithmetic instructions, arithmetic procedures for
packed BCD numbers can be developed.

Four instructions are used for unpacked BCD arithmetic: aaa (ASCII adjust for addition), aas (ASCII
adjust for subtraction), aam (ASCII adjust for multiplication), and aad (ASCII adjust for division). The
aad instruction is different from the others in that it is applied to a BCD result to convert it to binary
before applying a div instruction.

Some other architectures provide a much more complete set of packed decimal instructions. In
particular, the VAX architecture includes arithmetic, data movement, comparison, and conversion
instructions.



Chapter 12: Input/Output

Programs in previous chapters have used the input macro to input data from the PC console keyboard
and the output macro to output data to the console display. Input and output from an assembly
language program have been limited to the keyboard and the monitor. This chapter examines the
underlying operating system calls that are used by the input and output macros. It then examines
similar operating system calls that make it possible to read and write sequential files to secondary
storage. Next it looks at the 80x86 instructions that actually do input and output and discusses
alternative I/O schemes, including memory-mapped and interrupt-driven I/O.

12.1 Console I/O Using the Kernel32 Library

Figure 12.1 shows a simple example illustrating how kernel32 functions can write a simple message.
This example is similar to many of those seen previously in the book in its overall structure. However, it
is missing the "standard" directive INCLUDE io.h. In addition to the familiar prototype for the

ExitProcess function, it contains two new function prototypes. These functions are needed to write to
the console.

; Program to display a simple message
; Author:  R. Detmer
; Date:    6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

GetStdHandle PROTO NEAR32 stdcall,
    nStdHandle:DWORD

WriteFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,
    lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_OUTPUT EQU -11

cr      EQU     0dh     ; carriage return character
Lf      EQU     0ah     ; line feed

.STACK

.DATA

OldProg BYTE    ''Old programmers never die.'', cr, lf
        BYTE    ''They just lose their byte.'', cr, lf
msgLng  DWORD   56    ; number of characters in above message
written DWORD   ?
hStdOut DWORD   ?

.CODE
_start:
        INVOKE GetStdHandle,    ; get handle for console output
          STD_OUTPUT
        mov hStdOut, eax

        INVOKE WriteFile,
          hStdOut,              ; file handle for screen
          NEAR32 PTR OldProg,   ; address of string
          msgLng,               ; length of string
          NEAR32 PTR written,   ; bytes written
          0                     ; overlapped mode

        INVOKE  ExitProcess, 0  ; exit with return code 0



PUBLIC _start
END

Figure 12.1: Console output using kernel32 functions

The Windows 95/98/NT operating systems are similar to many others in that they treat input/output
devices and disk files in a uniform manner. Note that in Fig. 12.1, a WriteFile call is used to display a
message on the console. This same function can be used to write to a disk file. The device or file used
for I/O is identified by its handle, a doubleword value in an assembly language program. The handle
value must be obtained before the WriteFile call is made. There is more than one way to do this for a
console file; GetStandardHandle provides an easy method.

Any GetStdHandle call has a single parameter; a numeric value, distinct from the handle, indicates the
particular device. There are three standard devices: one for input, one for output, and one to report
errors (normally the same as the standard output device). Each device number is usually equated to a
symbol, and these symbols are used in code. We will only use the input and output devices; their
numbers and names appear in Fig. 12.2. GetStdHandle is a function, returning in EAX a handle for the
standard I/O device. The handle value is usually stored in memory to be available later. In the sample
program, the returned value is immediately copied to the doubleword referenced by hStdOut.

Mnemonic Equated Value

STD_INPUT –10

STD_OUTPUT –11

Figure 12.2: Standard device numbers

With five parameters, a WriteFile call is more complicated. The first is the handle that identifies the
file—this handle is returned by GetStdHandle, not the device number. The second parameter is the
address of the string—note the use of the NEAR32 PTR operator in the example to tell the assembler to

use the address of OldProg rather than the value stored there. The third parameter is a doubleword
containing the number of bytes to be displayed. The next parameter is used to return a value to the
calling program. This value indicates how many bytes were actually written. In the case of output to the
console, this will be the length of the message unless an error occurs. The fifth and final parameter will
always be 0 in this book's examples. It can be used to indicate non-sequential access to some files, but
we are going to deal only with sequential access.

Console input is almost as easy as output. Figure 12.3 shows a program that inputs a string of
characters, converts each uppercase letter to lowercase, and displays the resulting string.

; Program to input a message and echo it in lowercase
; Author:  R. Detmer
; Date:    6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

GetStdHandle PROTO NEAR32 stdcall,
    nStdHandle:DWORD
ReadFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,
    lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,



    lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_INPUT EQU -10
STD_OUTPUT EQU -11

.STACK

.DATA

prompt  BYTE    ''String to convert? ''
CrLf    BYTE    0ah, 0dh
StrIn   BYTE    80 DUP (?)
read    DWORD   ?
written DWORD   ?
hStdIn  DWORD   ?
hStdOut DWORD   ?

.CODE
_start:
        INVOKE GetStdHandle,    ; get handle for console output
          STD_OUTPUT
        mov    hStdOut, eax

        INVOKE WriteFile,
          hStdOut,              ; file handle for screen
          NEAR32 PTR prompt,    ; address of prompt
          19,                   ; length of prompt
          NEAR32 PTR written,   ; bytes written
          0                     ; overlapped mode

        INVOKE GetStdHandle,    ; get handle for console input
          STD_INPUT
        mov hStdIn, eax

        INVOKE ReadFile,
          hStdIn,               ; file handle for keyboard
          NEAR32 PTR StrIn,     ; address of string
          80,                   ; maximum number to read
          NEAR32 PTR read,      ; bytes read
          0                     ; overlapped mode

        mov    ecx, read        ; set up loop to convert
        lea    ebx, StrIn       ; starting address
forCh:  cmp    BYTE PTR [ebx], 'A' ; char < 'A' ?
        jl     endIfUpper       ; skip if so
        cmp    BYTE PTR [ebx], 'Z' ; char > 'Z' ?
        jg     endIfUpper       ; skip if so
        add    BYTE PTR [ebx], 'a' - 'A'  ; convert to lower
endIfUpper:
        inc    ebx              ; point at next character
        loop   forCh            ; repeat

        mov    ecx, read        ; get length to write
        add    ecx, 2           ; for leading CR and LF

        INVOKE WriteFile,
          hStdOut,              ; file handle for screen
          NEAR32 PTR crLf,      ; start with
          ecx,                  ; length of output
          NEAR32 PTR written,   ; bytes written
          0                     ; overlapped mode

        INVOKE ExitProcess, 0   ; exit with return code 0

PUBLIC _start
END



Figure 12.3: Console I/O using kernel32 functions

The new function in this example is Readfile. It is very similar to WriteFile except that the second
parameter has the address of an input buffer, the third parameter gives the maximum number of
characters to read, and the fourth parameter returns the number of characters actually read.

The number of characters read will normally be smaller than the size of the buffer to receive the
characters. If it is larger, values in memory following the input buffer may be destroyed. An additional
consideration with console input is that carriage return and linefeed characters are added to the
characters that you key in. That is, if you type six characters and then press Enter, eight characters will
actually be stored in the input buffer—the six characters plus the carriage return and linefeed.

In the program from Fig. 12.3, there is a blank line of output before the line of lowercase characters,
which is because of the CR/LF that is in memory before the input buffer. The starting address for output
includes these two additional characters and the character count has been increased by two to include
these characters. Because the original character count includes the CR/LF at the end of the characters
read in, there will also be a skip to a new line after the characters are displayed.

The input and output macros that you have used in most of this book expand into procedure calls that
use the kernel32 console input/output functions. The relevant portion of the file IO.ASM is shown in Fig.
12.4.

STD_OUTPUT EQU -11
STD_INPUT EQU -10

GetStdHandle PROTO NEAR32 stdcall,
    nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,
    lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,
    lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

.DATA

written    DWORD ?
read       DWORD ?
strAddr    DWORD ?
strLength  DWORD ?
hStdOut    DWORD ?
hStdIn     DWORD ?

.CODE

; outproc(source)
; Procedure to display null-terminated string
; No registers are changed; flags are not affected.

outproc    PROC   NEAR32
           push   ebp                  ; save base pointer
           mov    ebp, esp             ; establish stack frame
           pushad
           pushfd                      ; save flags

           mov    esi,[ebp+8]          ; source address
           mov    strAddr, esi
; find string length
           mov    strLength, 0         ; initialize string length
WhileChar: cmp    BYTE PTR [esi], 0    ; character = null?



           jz     EndWhileChar         ; exit if so
           inc    strLength            ; increment character count
           inc    esi                  ; point at next character
           jmp    WhileChar
EndWhileChar:

           INVOKE GetStdHandle,        ; get handle for console output
             STD_OUTPUT
           mov    hStdOut, eax

           INVOKE WriteFile,
             hStdOut,                  ; file handle for screen
             strAddr,                  ; address of string
             strLength,                ; length of string
             NEAR32 PTR written,       ; bytes written
             0                         ; overlapped mode

           popfd                       ; restore flags
           popad                       ; restore registers
           pop    ebp
           ret    4                    ;exit, discarding parameter
outproc    ENDP

; inproc(dest,length)
; Procedure to input a string from keyboard.
; The string will be stored at the address given by dest.
; The length parameter gives the size of the user's buffer. It is
; assumed that there will be room for the string and a null byte.
; The string will be terminated by a null character (00h).
; Flags are unchanged.

inproc     PROC   NEAR32
           push   ebp                  ; save base pointer
           mov    ebp, esp             ; establish stack frame
           pushad                      ; save all registers
           pushfd                      ; save flags

           INVOKE GetStdHandle,        ; get handle for console
             STD_INPUT
           mov    hStdIn, eax
           mov    ecx, [ebp+8]         ; string length
           mov    strLength, ecx

           mov    esi, [ebp+12]        ; source address
           mov    strAddr, esi

           INVOKE ReadFile,
             hStdIn,                   ; file handle for keyboard
             strAddr,                   ; address of string
             strLength,                 ; length of string
             NEAR32 PTR read,           ; bytes read
             0                          ; overlapped mode

           mov    ecx, read           ; number of bytes read
           mov    BYTE PTR [esi+ecx-2],0 ; replace CR/LF by trailing null

           popfd                      ; restore flags
           popad                      ; restore registers
           pop    ebp
           ret    8                   ; exit, discarding parameters
inproc     ENDP

Figure 12.4: Input/output procedures in IO.ASM



At this point there is nothing surprising in the input/output code in IO.ASM. It starts with the same
directives that appeared in the previous two examples. The data area does not include an input buffer
since this will be in the user's calling program. It does have the variable strAddr to locally store the input
or output buffer address that is passed as a parameter. The output procedure outproc expects this to
be the address of a null-terminated string. After standard procedure entry code, it computes the length
of that string. It then gets the handle for the console and writes to the console, exactly as in the earlier
example in Fig. 12.1.

The input procedure inproc is also simple. After standard procedure entry code, it gets the handle for
the console and copies the two parameters (length and string address) to local variables. A ReadFile
call does the actual input. The only complication is that the inproc procedure promises a null-terminated
string, and the string read by ReadFile is terminated by the CR/LF. The code

        mov    ecx, read
        mov    BYTE PTR [esi+ecx-2],0

places a null byte at the end of the string, actually replacing the carriage return character by a null. It
works because the starting address of the string is in ESI, so that when the character count is put in
ECX, ESI+ECX–2 points to the address of the next-to-last character in the input buffer.

This is an appropriate time to repeat the warning from Section 6.1: some Microsoft operating system
functions may require that the stack be doubleword-aligned. When these functions are used in
procedures, you must only push doubleword values onto the stack. This is, for instance, why the code
in Fig. 12.4 contains a pushfd instruction even though a pushf would save all the flag values that are

meaningful to most programs.

Programming Exercises 12.1

Using only functions from kernel32—and without using the book's I/O package—write a program
that will prompt for and input a name from the console in the form last, first (that is, last name,
comma, first name) and display it with an appropriate label in the format first last (that is, first
name, space, last name).

1.

Using only functions from kernel32—and without using the book's I/O package—write a program
that will prompt for and input a phrase from the console and will report whether or not it is a
palindrome (that is, exactly the same string when reversed).

2.



12.2 Sequential File I/O Using the Kernel32 Library

File processing applications generally involve opening the file, reading from or writing to the file, and
finally closing the file. At the level of the kernel32 library, opening the file means to obtain a handle for
it. Closing the file that has been read may be important to free it up for access by another user. Closing
a file that has been written may be necessary to force the operating systems to save the final
characters. In this section we investigate how to do some of these operations for sequential disk files.
File operations like these are usually more appropriately done using a high-level language, so the
primary purpose of this section is to give you a sense of what is "under the hood" of a high-level
language.

Figure 12.5 shows a program that prompts for inputs the name of a file and then displays the contents
of the file on the console. It includes two new kernel32 function prototypes, CreateFileA and
CloseHandle. In spite of its name, CreateFileA is used both to open an existing file or to create a new
file. CloseHandle is used to close a file.

; Read sequential file and display on console
; Author:  R. Detmer
; Date:  6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

STD_OUTPUT    EQU -11
STD_INPUT     EQU -10
GENERIC_READ  EQU 80000000h
OPEN_EXISTING EQU 3

GetStdHandle PROTO NEAR32 stdcall,
    nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,
    lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,
    lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

CreateFileA PROTO NEAR32 stdcall,
    lpFileName:NEAR32, access:DWORD, shareMode:DWORD,
    lpSecurity:NEAR32, creation:DWORD, attributes:DWORD, copyHandle:DWORD

CloseHandle PROTO NEAR32 stdcall,
    fHandle:DWORD

.DATA
written    DWORD ?
read       DWORD ?
fileName   BYTE  60 DUP (?)
hStdOut    DWORD ?
hStdIn     DWORD ?
hFile      DWORD ?
buffer     BYTE  64 DUP (?)
prompt     BYTE  ''File name? ''

.CODE
_start:

           INVOKE GetStdHandle,      ; handle for console output
             STD_OUTPUT



           mov hStdOut, eax

           INVOKE GetStdHandle,      ; handle for console input
             STD_INPUT
           mov    hStdIn, eax

           INVOKE WriteFile,
             hStdOut,                ; file handle for screen
             NEAR32 PTR prompt,      ; address of prompt
             12,                     ; length of prmpt
             NEAR32 PTR written,     ; bytes written
             0                       ; overlapped mode

           INVOKE ReadFile,
             hStdIn,                 ; file handle for keyboard
             NEAR32 PTR fileName,    ; address for name
             60,                     ; maximum length
             NEAR32 PTR read,        ; bytes read
             0                       ; overlapped mode

           mov   ecx, read           ; number of bytes read
           mov   BYTE PTR fileName[ecx-2],0 ; add trailing null

           INVOKE CreateFileA,       ; open file
             NEAR32 PTR fileName,    ; file name
             GENERIC_READ,           ; access
             0,                      ; no sharing
             0,                      ; no predefined security
             OPEN_EXISTING,          ; open only if file exists
             0,                      ; no special attributes
             0                       ; no copied handle
           mov   hFile, eax          ; handle for file

readLoop: INVOKE ReadFile,
            hFile,                   ; file handle
            NEAR32 PTR buffer,       ; address for input
            64,                      ; buffer length
            NEAR32 PTR read,         ; bytes read
            0                        ; overlapped mode

          INVOKE WriteFile,
            hStdOut,                 ; file handle for screen
            NEAR32 PTR buffer,       ; address for output
            read,                    ; write same number as read
            NEAR32 PTR written,      ; bytes written
            0                        ; overlapped mode

          cmp    read, 64            ; were 64 characters read?
          jnl    readLoop            ; continue if so

          INVOKE CloseHandle,        ; close file handle
            hfile

          INVOKE ExitProcess, 0      ; exit with return code 0

PUBLIC _start                        ; make entry point public
END                                  ; end of source code

Figure 12.5: Sequential file input using kernel32 functions

CreateFileA returns the handle of a file that it opens or creates, or returns 1 (FFFFFFFF16) if the
operation fails. It has seven parameters

The address of a null-terminated string giving the name of the file1.

2.



1.

A doubleword giving the desired access. We will only use GENERIC_READ (8000000016) and
GENERIC_WRITE (4000000016).

2.

A doubleword indicating how the file can be shared. We will use 0 to indicate that it cannot be
shared.

3.

This parameter is used to indicate whether this file can be used by child processes. We will use
0 to indicate that it cannot.

4.

A doubleword containing flags indicating what to do if the file does not exist. We will use
OPEN_EXISTING (3) when opening an existing file; the CreateFileA function will fail if the file
does not exist. We will use CREATE_NEW (1) when creating a new file; the CreateFileA
function will fail if the file already exists. In other applications, CREATE_ALWAYS (2) may be
appropriate; this creates a new file if one does not exist and overwrites an existing file if it does
exist.

5.

This parameter is used to set various file attributes. We will use a value of 0 to indicate no
special attributes.

6.

The final parameter can be used to indicate the handle of a template file whose attributes will be
used for the newly created file. We will always use 0 to indicate no template.

7.

As we will use CreateFileA, we will specify parameters 1, 2 and 5, and supply zeros for the other four.

The CloseHandle function is very simple. It has a single parameter, the handle of the file to be closed.

The main read loop in Fig. 12.5 uses ReadFile to read 64 characters at a time from the source file. End
of file is detected by comparing the number of characters actually read to 64. If it is smaller, then the
end of the file has been reached. However, note that the characters read are displayed first, so that you
don't lose the last partial buffer.

In this example, there is nothing special about the number 64 except that it is a power of two. Most
operating systems maintain their own buffers for disk file access, and since the size of such a buffer is
almost always a power of two, it makes sense to have the program's buffer a size that is comparable.

Figure 12.6 shows a program that will create a disk file from console input. It first prompts for and inputs
the name of the file. It creates that file, fails if it already exists, and copies lines from the console
keyboard to the file until the user begins a line with %%, a character combination chosen to be unlikely
to appear at the beginning of a line in ordinary text.

; Create sequential file from console input
; Author:  R. Detmer
; Date:  6/98

.386

.MODEL FLAT

ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

STD_OUTPUT    EQU -11
STD_INPUT     EQU -10
GENERIC_WRITE EQU 40000000h
CREATE_NEW    EQU 1

GetStdHandle PROTO NEAR32 stdcall,
    nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToRead:DWORD,
    lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,
    hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,
    lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32



CreateFileA PROTO NEAR32 stdcall,
    lpFileName:NEAR32, access:DWORD, shareMode:DWORD,
    lpSecurity:NEAR32, creation:DWORD, attributes:DWORD,
copyHandle:DWORD

CloseHandle PROTO NEAR32 stdcall,
    fHandle:DWORD

.DATA

written    DWORD ?
read       DWORD ?
fileName   BYTE  60 DUP (?)
hStdOut    DWORD ?
hStdIn     DWORD ?
hFile      DWORD ?
buffer     BYTE  128 DUP (?)
prompt1    BYTE  ''File name? ''
prompt2    BYTE  ''Enter text. Start a line with %% to stop'', 0dh, 0ah

.CODE
_start:

           INVOKE GetStdHandle,      ; handle for console output
             STD_OUTPUT
           mov    hStdOut, eax

           INVOKE GetStdHandle,      ; handle for console input
             STD_INPUT
           mov    hStdIn, eax

           INVOKE WriteFile,
             hStdOut,                ; file handle for screen
             NEAR32 PTR prompt1,     ; address of prompt
             12,                     ; length of prompt
             NEAR32 PTR written,     ; bytes written
             0                       ; overlapped mode

           INVOKE ReadFile,
             hStdIn,                 ; file handle for keyboard
             NEAR32 PTR fileName,    ; address for name
             60,                     ; maximum length
             NEAR32 PTR read,        ; bytes read
             0                       ; overlapped mode

           mov    ecx, read          ; number of bytes read
           mov    BYTE PTR fileName[ecx-2],0 ; add trailing null

           INVOKE CreateFileA,       ; open file
             NEAR32 PTR fileName,    ; file name
             GENERIC_WRITE,          ; access
             0,                      ; no sharing
             0,                      ; no predefined security
             CREATE_NEW,             ; open if file doesn't exist
             0,                      ; no special attributes
             0                       ; no copied handle
           mov hFile, eax            ; handle for file
           INVOKE WriteFile,
             hStdOut,                ; file handle for screen
             NEAR32 PTR prompt2,     ; address of prompt
             43,                     ; length of prompt
             NEAR32 PTR written,     ; bytes written
             0                       ; overlapped mode



readLoop: INVOKE ReadFile,
            hStdIn,                  ; read from console
            NEAR32 PTR buffer,       ; address for input
            128,                     ; buffer length
            NEAR32 PTR read,         ; bytes read
            0                        ; overlapped mode

          cmp    buffer, ''%''       ; first character %?
          jne    continue            ; continue if not
          cmp    buffer+1, ''%''     ; second character %?
          je     endRead             ; quit if so
continue:
          INVOKE WriteFile,
            hfile,                   ; file handle
            NEAR32 PTR buffer,       ; address for output
            read,                    ; write same number as read
            NEAR32 PTR written,      ; bytes written
            0                        ; overlapped mode
          jmp    readLoop            ; continue if so
endRead:

          INVOKE CloseHandle,        ; close file handle
            hfile

          INVOKE ExitProcess, 0      ; exit with return code 0

PUBLIC _start                        ; make entry point public
END                                  ; end of source code

Figure 12.6: Create a file from console input

There is very little new in this example. The call to CreateFileA uses GENERIC_WRITE and
CREATE_NEW for creation of a new file. The main loop reads a string of up to 128 characters from the
keyboard and writes the string to the file. Loop control is accomplished by checking the first two
characters of the string before writing it to the file.

Exercises 12.2

The examples in this section do not check to be sure that the file open is successful. Why does
the code in Fig. 12.5 "work" even if the file is not successfully opened? How do you modify the
code in Fig. 12.5 to display a warning message and exit if the file is not opened?

1.

The examples in this section do not check to be sure that the file open is successful. What
happens when you run the program in Fig. 12.6, specifying an output file that already exists?
How do you modify the code in Fig. 12.6 to display a warning message and exit if the file is not
opened?

2.

Programming Exercises 12.2

A file dump program displays each byte of a file as a two-character hexadecimal code and the
corresponding printable character, if any. Using only the kernel32 library (not IO.ASM), write a
file dump program that will input the name of a file and then dump it to the console display using
the following format:

Show 16 characters per line, first in hex with a space after each hex pair so that this takes a total
of 48 positions, then as ordinary characters, substituting a period for a nonprintable character,
with no spaces between. A typical line will look like

50 72 6F 67 72 61 6D 6D 69 6E 67 20 0D 0A 69 73 Programming ..is

After 20 lines are displayed on the console, prompt the user with "m[ore] or q[uit]?" and either
continue with the next 20 lines or exit the program based on the response.

1.

2.



Write a program to copy a source file to a destination file. Specifically, the program must prompt
for the source file name, attempt to open the source file and exit with an error message if it
cannot do so. If the source file is opened successfully, then the user will be prompted for the
destination file name. If the destination file exists, which can be determined by attempting to
open it with CREATE_NEW, the user should be asked if the old file is to be destroyed with
CREATE_ALWAYS, and the program should terminate if the answer is negative. If the
destination file does not exist, no warning is needed before making the file copy. Use only
input/output functions from the kernel32 library, not macros from IO.H.

2.

Write a program that will copy a source file to a destination file, changing all uppercase letters to
lowercase letters, leaving other characters unchanged. The program must prompt for both file
names. It is not necessary to warn the user if the destination file exists before wiping it out with
the copy. Use only input/output functions from the kernel32 library, not macros from IO.H.

3.

Write a program that will process a collection of fixed format records from the file
RECORDS.DAT. Each line of the file will consist of ASCII data with

a person's name in columns 1-20

an integer right-justified in columns 21-25

Each line of the file will be terminated by a carriage return and a linefeed character so that the
total line length is 27 characters. Such a file can be produced by a standard text editor. The
program must echo the lines of data and then report

the number of records

the sum of the numbers

the person with the largest number

Use only input/output functions from the kernel32 library, not macros from IO.H. The atod and
dtoa macros from IO.H may be used.

4.



12.3 Lower-Level Input/Output

Earlier in this book input and output have been done using macros in IO.H. In this chapter, input and
output have been done using function calls from the kernel32 library, a somewhat lower-level approach.
You have probably also done higher-level I/O using high-level programming languages. This section
discusses I/O at a level lower than that offered by the kernel32 library, covering the Intel 80x86 and
other architectures. Since low-level I/O is increasingly restricted to the operating system, this section
does not show actual code.

As discussed in Chapter 2, the Intel 80x86 architecture has memory addresses from 0000000016 to
FFFFFFFF16. It also has a separate I/O address space, with port addresses ranging from 000016 to
FFFF16. Memory addresses have been used by many of the instructions covered in this book.
However, port addresses are used by only a few instructions, the most common of which are the in
and out instructions that move data from the addressed port to or from the accumulator (e.g., AL, AX,
or EAX). In this sense, they are like limited mov instructions.

In an IBM-compatible PC, common I/O devices normally have standard port assignments. For example,
the parallel printer port known as LPT1 uses three port addresses: 0378, 0379, and 037A. The first of
these ports is used to send characters to a printer, the second to determine its status, and the third to
send control information to the printer. Serial ports are usually controlled by a serial input/output (SIO)
chip, which will also require several port addresses.

One of the options in the 80x86 architecture is to use memory-mapped I/O. With memory-mapped I/O,
some of the ordinary memory addresses are assigned for input/output purposes and regular data
movement instructions are used to transfer data to or from external devices. The hardware designer
chooses whether to use memory-mapped I/O or the separate I/O address space when building the
system. Other architectures, for example the Motorola 680x0 designs, use only memory-mapped I/O.

Regardless of how I/O devices are addressed, there is the separate issue of how to know when the
device has a character ready for the program, or conversely, how to ensure that the device is ready to
receive a character from the program. We will look at the situation of sending a character to an old-
fashioned, slow, mechanical printer. Obviously the computer can generate characters to be printed
much more rapidly than the printer can print them. One technique is to use polling-that is, the program
repeatedly checks a status port on the device until it gets a report that the device is able to accept a
character, then it transmits the character. The design looks like

forever
     get status from status port;
     if clear to send character, then exit loop;
end loop;
transmit character to data port;

The loop in this design is called a busy-waiting loop for obvious reasons. Unless the computer is
otherwise set up for multitasking, it can do no useful work while waiting for the device to accept the
character.

Interrupt-driven I/O relies on hardware interrupts to inform the CPU of a device's change in status. An
interrupt is a hardware signal generated by the device and received by the CPU. When the CPU
receives such a signal, it normally finishes executing the current instruction, and then transfers control
to an interrupt procedure. This is very similar to a regular procedure call.

An Intel 80x86 system provides for up to 256 different interrupts. The address for an interrupt
procedure comes from a table of addresses in the very bottom of memory. Memory locations 0 to
102410 contain 256 addresses corresponding to interrupt levels 0 through 255. In general, for interrupt
type t, the interrupt procedure's address is stored at address 4*t.

A computer system may be designed to generate an interrupt when a key on the keyboard is pressed.
The associated interrupt procedure would capture the character and store it in a buffer for later
processing before returning, allowing the computer to go back to whatever it was doing.

The 80x86 architecture includes an int instruction that enables a program to invoke an interrupt



procedure. Not all interrupt types are used by hardware devices, and some operating systems, notably
Microsoft DOS, use int instructions to call operating system functions.

80x86 interrupts 0 and 4 are always preassigned. Interrupt type 0 is automatically called by the 80x86
CPU when division by zero is attempted. A simple program containing the instruction int 0 also calls

the divide by zero interrupt handler, showing how a particular 80x86 system is set up to handle division
errors without actually doing a division.

The handler for interrupt type 4 also has an assigned purpose, namely to handle overflow conditions
that result from instructions. This interrupt handler is not called automatically by the 80x86. It can be
called using int 4 but is more commonly invoked by the into (interrupt on overflow) instruction. This

is a conditional call: The overflow interrupt handler is called if the overflow flag OF is set, but otherwise
execution continues with the next instruction. Typically an into instruction would follow an instruction

that might cause overflow to occur.

Exercises 12.3

What are the advantages of memory-mapped I/O? What are the advantages of using a separate
address space for I/O?

1.

What address contains the interrupt procedure address for interrupt 1510 in an 80x86 system?2.



Chapter Summary

Input and output can be done at many levels, from high-level language procedures down to in and
out instructions. The kernel32 library illustrates the operating-system level example of I/O. This library

has functions for getting a file or device handle, reading from a file or device, writing to a file or device,
and releasing the file or device.

At the hardware level, I/O may either use separate port addresses for external devices or it may use
memory-mapped I/O, with a portion of the regular memory space assigned to external devices rather
than memory.

Devices may be accessed by polling or-more efficiently-by using interrupt-driven I/O. The 80x86
architecture provides for up to 256 different interrupts, although these are often assigned other uses
than servicing I/O requests.



Appendix A: Hexadecimal/ASCII conversion

00 NUL (null) 20 space

01 SOH   21 !

02 STX   22 "

03 ETX   23 #

04 EOT   24 $

05 ENQ   25 %

06 ACK   26 &

07 BEL (bell) 27 '

08 BS (backspace) 28 (

09 HT (tab) 29 )

0A LF (line feed) 2A *

0B VT   2B +

0C FF (form feed) 2C ,

0D CR (return) 2D -

0E SO   2E .

0F SI   2F /

10 DLE   30 0

11 DC1   31 1

12 DC2   32 2

13 DC3   33 3

14 DC4   34 4

15 NAK   35 5

16 SYN   36 6

17 ETB   37 7

18 CAN   38 8

19 EM   39 9

1A SUB   3A :

1B ESC ("escape") 3B ;

1C FS   3C <

1D GS   3D =

1E RS   3E >

1F US   3F ?

40 @   60 ‘

41 A   61 a

42 B   62 b

43 C   63 c

44 D   64 d

45 E   65 e

46 F   66 f

47 G   67 g

48 H   68 h

49 I   69 i



4A J   6A j

4B K   6B k

4C L   6C l

4D M   6D m

4E N   6E n

4F O   6F o

50 P   70 p

51 Q   71 q

52 R   72 r

53 S   73 s

54 T   74 t

55 U   75 u

56 V   76 v

57 W   77 w

58 X   78 x

59 Y   79 y

5A Z   7A z

5B [   7B {

5C \   7C |

5D ]   7D }

5E ^   7E ~

5F _   7F DEL



Appendix B: Useful MS-DOS Commands

MS-DOS (and Windows) uses a hierarchical file structure like Unix. In MS-DOS files are identified by a
drive (C:, A:, etc.), followed by a path that identifies directories (folders) and finally a file name itself. An
example of a complete file name is A:\asm\project1\example.asm. The symbol \ is used as the
separator between path components and as the name of the root (top-level) directory. Most MS-DOS
systems are set up to display the current drive and path as part of the prompt (e.g., C:\WINDOWS>).

Default refers to the drive or directory that is used if you don't specify a drive or directory in a path. To
change the default (current) drive, simply type the new drive letter and a colon.

To change the default (current) directory, use the CD command. The symbol .. is shorthand for the
parent of the current directory. For example, if the current directory is \WINDOWS\Desktop, then CD ..
will change the current directory to \WINDOWS. (Note: MS-DOS is not case-sensitive – cd works just
as well.)

The MD command creates a new directory. To create a new directory in the current directory, use MD
directoryName.

The DIR command displays a directory of files in the current folder. Alternatively, you can give the path
of the directory in which you want, like DIR C:\projects. You can use * as a wildcard character. For
example DIR s*.* finds all file names beginning with the letter s.

The COPY command copies a file from one directory to another. The format is COPY source
destination. If you don't specify a name for the destination file, then the name of the original file will be
used. You can use the COPY command to create a duplicate of a file in the same directory, but with a
different name. The COPY command allows use of the wildcard character * to copy a group of files.

The EDIT command is used to create or modify a text file. EDIT filename invokes a simple text editor
opening filename if it exists or creating it if it doesn't. EDIT has its own help system with more
information than you need about this editor.

The REN command is used to rename files. Its format is REN oldName new Name.

The DOSKEY command loads an extension to the command processor that allows you to use the up-
arrow key to recall a previous command, which then can be executed again or edited.

You can get more information about most commands by typing command /?

Note Just because you are doing some work in MS-DOS doesn't mean that you can't use other
Windows tools. It is fine to use My Computer or Explorer to create directories, copy files,
rename files, etc. You can use Notepad to edit files, but be careful since Notepad likes to put
a TXT extension on every file name. (You can end up with crazy names like
program.asm.txt.) In general you should avoid using a word processor to edit text files such
as assembly language source code files.



Appendix C: MASM 6.11 Reserved Words

AAA BTR COMM DUP

AAD BTS COMMENT DWORD

AAM BX COMMON DX

AAS BYTE CONST EAX

ABS CALL .CONTINUE EBP

ADC CARRY? @Cpu EBX

ADD CASEMAP .CREF ECHO

AH CATSTR CS ECX

AL @CatStr @CurSeg EDI

ALIGN CBW CWD EDX

.ALPHA CDQ CWDE ELSE

AND CH CX ELSEIF

AND CL DAA ELSEIFDIF

ARPL CLC DAS ELSEIFIDN

ASSUME CLD .DATA EMULATOR

AT CLI @data END

AX CLTS .DATA? ENDIF

BH CMC @DataSize .ENDIF

BL CMP @Date ENDM

BOUND CMPS DEC ENDP

BP CMPSB DH ENDS

.BREAK CMPSD DI ENDW

BSF CMPSW DIV ENTER

BSR CMPXCHG DL @Environment

BSWAP .CODE .DOSSEG EPILOGUE

BT @code DOTNAME EQ

BTC @CodeSize DS EQU

ERR FDECSTP FMULP FSTENVD

.ERRB FDISI FNCLEX FSTENVW

ERRDEF FDIV FNDISI FSTP

.ERRDIF FDIVP FNENI FSTSW

.ERRE FDIVR FNINIT FSUB

.ERRIDN FDIVRP FNOP FSUBP

.ERRNB FENI FNSAVE FSUBR

ERRNDEF FFREE FNSAVED FSUBRP

.ERRNZ FIADD FNSAVEW FTST

ESI FICOM FNSTCW FUCOM

ES FICOMP FNSTENV FUCOMP

ESP FIDIV FNSTENVD FUCOMPP

EVEN FIDIVR FNSTENVW FWAIT

.EXIT FILD FNSTSW FWORD

EXITM @FileCur FOR FXAM



EXPORT @FileName FORC FXCH

EXPR16 FIMUL FORCEFRAME FXTRACT

EXPR32 FINCSTP FPATAN FYL2X

EXTERN FINIT FPREM FYL2XP1

EXTERNDEF FIST FPREM1 GE

@F FISTP FPTAN GOTO

F2XM1 FISUB FRNDINT GROUP

FABS FISUBR FRSTOR GS

FADD FLAT FRSTORD GT

FADDP FLD FRSTORW HIGH

FARDATA FLD1 FS HIGHWORD

@fardata FLDCW FSAVE HLT

FARDATA? FLDENV FSAVED IDIV

@fardata? FLDENVD FSAVEW IF

FBLD FLDENVW FSCALE .IF

FBSTP FLDL2E FSETPM IFB

FCHS FLDL2T FSIN IFDEF

FCLEX FLDLG2 FSINCOS IFDIF

FCOM FLDLN2 FSQRT IFDIFI

FCOMP FLDPI FST IFE

FCOMPP FLDZ FSTCW IFIDN

FCOS FMUL FSTENV IFIDNI

IFNB JNC LLDT .NOCREF

IFNDEF JNE LMSW NODOTNAME

IMUL JNG LOADDS NOKEYWORD

IN JNGE LOCAL .NOLIST

INC JNL LOCK .NOLISTIF

INCLUDE JNLE LODS .NOLISTMACRO

INCLUDELIB JNO LODSB NOLJMP

INS JNP LODSD NOM510

INSB JNS LODSW NOP

INSD JNZ LOOP NOREADONLY

INSTR JO LOOPD NOSCOPED

@InStr JP LOOPW NOSIGNEXTEND

INSW JPE LOW NOT

INT JPO LOWWORD OFFSET

INTO JS LROFFSET OPTION

INVD JZ LSL OR

INVLPG LABEL LSS ORG

INVOKE LAHF LT OUT

IRET LANGUAGE LTR OUTS

IRETD LAR M510 OUTSB

JA LDS MACRO OUTSD

JAE LE MASK OUTSW



JB LEA MEMORY OVERFLOW?

JBE LEAVE MOD PAGE

JC LENGTHOF .MODEL PARA

JCXZ LES @Model PARITY?

JE LFS MOV POP

JECXZ LGDT MOVS POPA

JG LGS MOVSB POPAD

JGE LIDT MOVSD POPCONTEXT

JL @Line MOVSW POPF

JLE .LIST MOVSX POPFD

JMP .LISTALL MOVZX PRIVATE

JNA .LISTIF MUL PROC

JNAE .LISTMACRO NE PROLOGUE

JNB .LISTMACROALL NEG PROTO

JNBE LJMP .NO87 PTR

PUBLIC ROL SIGN? TEST

PURGE ROR SIZEOF TEXTEQU

PUSH SAHF SIZESTR .TFCOND

PUSHA SAL @SizeStr THIS

PUSHAD SAR SLDT @Time

PUSHCONTEXT SBB SMSW TITLE

PUSHD SBYTE SP TYPE

PUSHF SCAS SS TYPEDEF

PUSHFD SCASB .STACK UNION

PUSHW SCASD @stack .UNTIL

QWORD SCASW .STARTUP USE16

.RADIX SCOPED STC USE32

RCL SDWORD STD USES

RCR SEG STDCALL VERR

READONLY SEGMENT STI @Version

REAL10 .SEQ STOS VERW

REAL4 SET STOSB WAIT

REAL8 .SETIF2 STOSD WBINVD

RECORD SGDT STOSW WHILE

REP SHL STR .WHILE

REPE SHL STRUCT WIDTH

REPEAT SHLD SUB WORD

REPNE SHORT SUBSTR @WordSize

REPNZ SHR @SubStr XADD

REPZ SHR SUBTITLE XCHG

RET SHRD SWORD XLAT

RETF SI SYSCALL XOR

RETN SIDT TBYTE ZERO?



Appendix D: 80x86 Instructions (by Mnemonic)

Mnemonic Operand(s) Flags affected Opcode Number
of
Bytes

Timing
386

Timing
486

Timing
Pentium

aaa none AF,CF SF,ZF,OF,PF
?

37 1 4 3 3

aad none SF,ZF,PF OF,AF,CF
?

D5 0A 2 19 14 10

aam none SF,ZF,PF OF,AF,CF
?

D4 0A 2 17 15 18

aas none AF,CF SF,ZF,OF,PF
?

3F 1 4 3 3

adc AL,imm8 SF,ZF,OF,CF,PF,AF 14 2 2 1 1

adc AX,imm16
EAX,imm32

SF,ZF,OF,CF,PF,AF 15 3
5

2 1 1

adc reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

adc reg16,imm16
reg32,imm32

SF,ZF,OF,CF,PF,AF 81 4
6

2 1 1

adc reg16,imm8
reg32,imm8

SF,ZF,OF,CF,PF,AF 83 3 2 1 1

adc mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

adc mem16,imm16
mem32,imm32

SF,ZF,OF,CF,PF,AF 81 4+
6+

7 3 3

adc mem16,imm8
mem32,imm8

SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

adc reg8,reg8 SF,ZF,OF,CF,PF,AF 12 2 2 1 1

adc reg16,reg16 SF,ZF,OF,CF,PF,AF 13 2 2 1 1

  reg32,reg32            

adc reg8,mem8 SF,ZF,OF,CF,PF,AF 12 2+ 6 2 2

adc reg16,mem16 SF,ZF,OF,CF,PF,AF 13 2+ 6 2 2

  reg32,mem32            

adc mem8,reg8 SF,ZF,OF,CF,PF,AF 10 2+ 7 3 3

adc mem16,reg16 SF,ZF,OF,CF,PF,AF 11 2+ 7 3 3

  mem32,reg32            

add AL,imm8 SF,ZF,OF,CF,PF,AF 04 2 2 1 1

add AX,imm16 SF,ZF,OF,CF,PF,AF 05 3 2 1 1

  EAX,imm32     5      

add reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

add reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

  reg32,imm32     6      

add reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

  reg32,imm8            

add mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

add mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3



  mem32,imm32     6+      

add mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

  mem32,imm8            

add reg8,reg8 SF,ZF,OF,CF,PF,AF 02 2 2 1 1

add reg16,reg16 SF,ZF,OF,CF,PF,AF 03 2 2 1 1

  reg32,reg32            

add reg8,mem8 SF,ZF,OF,CF,PF,AF 02 2+ 6 2 2

add reg16,mem16 SF,ZF,OF,CF,PF,AF 03 2+ 6 2 2

  reg32,mem32            

add mem8,reg8 SF,ZF,OF,CF,PF,AF 00 2+ 7 3 3

add mem16,reg16 SF,ZF,OF,CF,PF,AF 01 2+ 7 3 3

  mem32,reg32            

and AL,imm8 SF,ZF,OF,CF,PF,AF 24 2 2 1 1

and AX,imm16 SF,ZF,OF,CF,PF,AF 25 3 2 1 1

  EAX,imm32       5    

and reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

and reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

  reg32,imm32       6    

and reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

  reg32,imm8            

and mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

and mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

  mem32,imm32       6+    

and mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

  mem32,imm8            

and reg8,reg8 SF,ZF,OF,CF,PF,AF 22 2 2 1 1

and reg16,reg16 SF,ZF,OF,CF,PF,AF 23 2 2 1 1

  reg32,reg32            

and reg8,mem8 SF,ZF,OF,CF,PF,AF 22 2+ 6 2 2

and reg16,mem16 SF,ZF,OF,CF,PF,AF 23 2+ 6 2 2

  reg32,mem32            

and mem8,reg8 SF,ZF,OF,CF,PF,AF 20 2+ 7 3 3

and mem16,reg16 SF,ZF,OF,CF,PF,AF 21 2+ 7 3 3

  mem32,reg32            

call rel32 none E8 5 7+ 3 1

call reg32 none FF 2 7+ 5 2

  (near indirect)            

call mem32 none FF 2+ 10+ 5 2

  (near indirect)            

call far direct none 9A 7 17+ 18 4

call far indirect none FF 6 22+ 17 5

cbw none none 98 1 3 3 3

cdq none none 99 1 2 3 2

clc none CF F8 1 2 2 2



cld none DF FC 1 2 2 2

cmc none CF F5 1 2 2 2

cmp AL,imm8 SF,ZF,OF,CF,PF,AF 3C 2 2 1 1

cmp AX,imm16 SF,ZF,OF,CF,PF,AF 3D 3 2 1 1

  EAX,imm32     5      

cmp reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

cmp reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

  reg32,imm32     6      

cmp reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

  reg32,imm8            

cmp mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 5 2 2

cmp mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 5 2 2

  mem32,imm32     6+      

cmp mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 5 2 2

  mem32,imm8            

cmp reg8,reg8 SF,ZF,OF,CF,PF,AF 38 2 2 1 1

cmp reg16,reg16 SF,ZF,OF,CF,PF,AF 3B 2 2 1 1

  reg32,reg32            

cmp reg8,mem8 SF,ZF,OF,CF,PF,AF 3A 2+ 6 2 2

cmp reg16,mem16 SF,ZF,OF,CF,PF,AF 3B 2+ 6 2 2

  reg32,mem32            

cmp mem8,reg8 SF,ZF,OF,CF,PF,AF 38 2+ 5 2 2

cmp mem16,reg16 SF,ZF,OF,CF,PF,AF 39 2+ 5 2 2

  mem32,reg32            

cmpsb none none A6 1 10 8 5

cmpsw none none A7 1 10 8 5

cmpsd              

cwd none none 99 1 2 3 2

cwde none none 98 1 3 3 3

daa none SF,ZF,PF,AF 27 1 4 2 3

    OF ?          

das none SF,ZF,PF,AF 2F 1 4 2 3

    OF ?          

dec reg8   FE 2 2 1 1

dec AX SF,ZF,OF,PF,AF 48 1 2 1 1

  EAX            

dec CX SF,ZF,OF,PF,AF 49 1 2 1 1

  ECX            

dec DX SF,ZF,OF,PF,AF 4A 1 2 1 1

  EDX            

dec BX SF,ZF,OF,PF,AF 4B 1 2 1 1

  EBX            

dec SP SF,ZF,OF,PF,AF 4C 1 2 1 1

  ESP            



dec BP SF,ZF,OF,PF,AF 4D 1 2 1 1

  EBP            

dec SI SF,ZF,OF,PF,AF 4E 1 2 1 1

  ESI            

dec DI SF,ZF,OF,PF,AF 4F 1 2 1 1

  EDI            

dec mem8 SF,ZF,OF,PF,AF FE 2+ 6 3 3

dec mem16 SF,ZF,OF,PF,AF FF 2+ 6 3 3

  mem32            

div reg8 SF,ZF,OF,PF,AF ? F6 2 14 16 17

div reg16 SF,ZF,OF,PF,AF ? F7 2 22 24 25

  reg32       38 40 41

div mem8 SF,ZF,OF,PF,AF ? F6 2+ 17 16 17

div mem16 SF,ZF,OF,PF,AF ? F7 2+ 25 24 25

  mem32       41 40 41

idiv reg8 SF,ZF,OF,PF,AF ? F6 2 19 19 22

idiv reg16 SF,ZF,OF,PF,AF ? F7 2 27 27 30

  reg32       43 43 48

idiv mem8 SF,ZF,OF,PF,AF ? F6 2+ 22 20 22

idiv mem16 SF,ZF,OF,PF,AF ? F7 2+ 30 28 30

  mem32       46 44 48

imul reg8 OF,CF F6 2 9-14 13-18 11

    SF,ZF, PF,AF ?          

imul reg16 OF,CF F7 2 9-22 13-26 11

  reg32 SF,ZF, PF,AF ?     9-38 13-42 10

imul mem8 OF,CF F6 2+ 12-17 13-18 11

    SF,ZF, PF,AF ?          

imul mem16 OF,CF F7 2+ 12-25 13-26 11

  mem32 SF,ZF, PF,AF ?     12-41 13-42 10

imul reg16,reg16 OF,CF 0F AF 3 9-22 13-26 11

  reg32,reg32 SF,ZF, PF,AF ?     9-38 13-42 10

imul reg16,mem16 OF,CF 0F AF 3+ 12-25 13-26 11

  reg32,mem32 SF,ZF, PF,AF ?     12-41 13-42 10

imul reg16,imm8 OF,CF 6B 3 9-14 13-18 10

  reg32,imm8 SF,ZF, PF,AF ?          

imul mem16 OF,CF F7 4 9-22 13-26 11

  mem32 SF,ZF, PF,AF ?   6 9-38 13-42 10

imul reg16,reg16,imm8 OF,CF 6B 3 9-14 13-18 10

  reg32,reg32,imm8 SF,ZF, PF,AF ?          

imul reg16,reg16,imm16 OF,CF 69 4 9-22 13-26 10

  reg32,reg32,imm32 SF,ZF, PF,AF ?   6 9-38 13-42 10

imul reg16,mem16,imm8 OF,CF 6B 3+ 9-17 13-18 10

  reg32,mem32,imm8 SF,ZF, PF,AF ?          

imul reg16,mem16,imm16 OF,CF 69 4+ 12-25 13-26 10



  reg32,mem32,imm32 SF,ZF, PF,AF ?   6+ 12-41 13-42 10

inc reg8 SF,ZF,OF,PF,AF FE 2 2 1 1

inc AX SF,ZF,OF,PF,AF 40 1 2 1 1

  EAX            

inc CX SF,ZF,OF,PF,AF 41 1 2 1 1

  ECX            

inc DX SF,ZF,OF,PF,AF 42 1 2 1 1

  EDX            

inc BX SF,ZF,OF,PF,AF 43 1 2 1 1

  EBX            

inc SP SF,ZF,OF,PF,AF 44 1 2 1 1

  ESP            

inc BP SF,ZF,OF,PF,AF 45 1 2 1 1

  EBP            

inc SI SF,ZF,OF,PF,AF 47 1 2 1 1

  ESI            

inc DI SF,ZF,OF,PF,AF 48 1 2 1 1

  EDI            

inc mem8 SF,ZF,OF,PF,AF FE 2+ 6 3 3

inc mem16 SF,ZF,OF,PF,AF FF 2+ 6 3 3

  mem32            

ja rel8 none 77 7+,3 3,1 1 2

jnbe              

ja rel32 none 0F 87 7+,3 3,1 1 6

jnbe              

jae rel8 none 73 7+,3 3,1 1 2

jnb              

jae rel32 none 0F 83 7+,3 3,1 1 6

jnb              

jb rel8 none 72 7+,3 3,1 1 2

jnae              

jb rel32 none 0F 82 7+,3 3,1 1 6

jnae              

jbe rel8 none 76 7+,3 3,1 1 2

jna              

jbe rel32 none 0F 86 7+,3 3,1 1 6

jna              

jc rel8 none 72 7+,3 3,1 1 2

jc rel32 none 0F 82 7+,3 3,1 1 6

je rel8 none 74 7+,3 3,1 1 2

jz              

je rel32 none 0F 84 7+,3 3,1 1 6

jz              

jecxz rel8 none E3     6,5 2



jg rel8 none 7F 7+,3 3,1 1 2

jnle              

jg rel32 none 0F 8F 7+,3 3,1 1 6

jnle              

jge rel8 none 7D 7+,3 3,1 1 2

jnl              

jge rel32 none 0F 8D 7+,3 3,1 1 6

jnl              

jl rel8 none 7C 7+,3 3,1 1 2

jnge              

jl rel32 none 0F 8C 7+,3 3,1 1 6

jnge              

jle rel8 none 7E 7+,3 3,1 1 2

jng              

jle rel32 none 0F 8E 7+,3 3,1 1 6

jng              

jmp rel8 none EB 2 7+ 3 1

jmp rel32 none E9 5 7+ 3 1

jmp reg32 none FF 2 10+ 5 2

jmp mem32 none FF 2+ 10+ 5 2

jnc rel8 none 73 7+,3 3,1 1 2

jnc rel32 none 0F 83 7+,3 3,1 1 6

jne rel8 none 75 7+,3 3,1 1 2

jnz              

jne rel32 none 0F 85 7+,3 3,1 1 6

jnz              

jno rel8 none 71 7+,3 3,1 1 2

jno rel32 none 0F 81 7+,3 3,1 1 6

jnp rel8 none 7B 7+,3 3,1 1 2

jpo              

jnp rel32 none 0F 8B 7+,3 3,1 1 6

jpo              

jns rel8 none 79 7+,3 3,1 1 2

jns rel32 none 0F 89 7+,3 3,1 1 6

jo rel8 none 70 7+,3 3,1 1 2

jo rel32 none 0F 80 7+,3 3,1 1 6

jp rel8 none 7A 7+,3 3,1 1 2

jpe              

jp rel32 none 0F 8A 7+,3 3,1 1 6

jpe              

js rel8 none 78 7+,3 3,1 1 2

js rel32 none 0F 88 7+,3 3,1 1 6

lea reg32,mem32 none 8D 2+ 2 1 1

lodsb none none AC 1 5 5 2



lodsw none none AD 1 5 5 2

  lodsd            

loop none none E2 11+ 6,7 5,6 2

loope none none E1 11+ 6,9 7,8 2

loopz              

loopne none none E0 11+ 6,9 7,8 2

loopnz              

mov AL, imm8 none B0 2 2 1 1

mov CL, imm8 none B1 2 2 1 1

mov DL, imm8 none B2 2 2 1 1

mov BL, imm8 none B3 2 2 1 1

mov AH, imm8 none B4 2 2 1 1

mov CH, imm8 none B5 2 2 1 1

mov DH, imm8 none B6 2 2 1 1

mov BH, imm8 none B7 2 2 1 1

mov AX, imm16 none B8 3 2 1 1

  EAX, imm32     5      

mov CX, imm16 none B9 3 2 1 1

  ECX, imm32     5      

mov DX, imm16 none BA 3 2 1 1

  EDX, imm32     5      

mov BX, imm16 none BB 3 2 1 1

  EBX, imm32     5      

mov SP, imm16 none BC 3 2 1 1

  ESP, imm32     5      

mov BP, imm16 none BD 3 2 1 1

  EPB, imm32     5      

mov SI, imm16 none BE 3 2 1 1

  ESI, imm32     5      

mov DI, imm16 none BF 3 2 1 1

  EDI, imm32     5      

mov mem8, imm8 none C6 3+ 2 1 1

mov mem16,imm16 none C7 4+ 2 1 1

  mem32,imm32     6+      

mov reg8,reg8 none 8A 2 2 1 1

mov reg16,reg16 none 8B 2 2 1 1

  reg32,reg32            

mov AL, direct none A0 5 4 1 1

mov AX, direct none A1 5 4 1 1

  EAX, direct            

mov reg8,mem8 none 8A 2+ 4 1 1

mov reg16,mem16 none 8B 2+ 4 1 1

  reg32,mem32            

mov mem8,reg8 none 88 2+ 2 1 1



mov mem16,reg16 none 89 2+ 2 1 1

  mem32,reg32            

mov direct ,AL none A2 5 2 1 1

mov direct, AX none A3 5 2 1 1

  direct, EAX            

mov sreg, reg16 none 8E 2 2 3 1

mov reg16, sreg none 8C 2 2 3 1

mov sreg,mem16 none 8E 2+ 2 3[*] 2[*]

mov mem16,sreg none 8C 2+ 2 3 1

movsb none none A4 1 7 7 4

movsw none none A5 1 7 7 4

movsd              

movsx reg16,reg8 none 0F BE 3 3 3 3

  reg32,reg8            

movsx reg16,mem8 none 0F BE 3+ 6 3 3

  reg32,mem8            

movsx reg32,reg16 none 0F BF 3 3 3 3

movsx reg32,mem16 none 0F BF 3+ 6 3 3

movzx reg16,reg8 none 0F B6 3 3 3 3

  reg32,reg8            

movzx reg16,mem8 none 0F B6 3+ 6 3 3

  reg32,mem8            

movzx reg32,reg16 none 0F B7 3 3 3 3

movzx reg32,mem16 none 0F B7 3+ 6 3 3

mul reg8 OF,CF F6 2 9-14 13-18 11

    SF,ZF, PF,AF ?          

mul reg16 OF,CF F7 2 9-22 13-26 11

  reg32 SF,ZF, PF,AF ?     9-38 13-42 10

mul mem8 OF,CF F6 2+ 12-17 13-18 11

    SF,ZF, PF,AF ?          

mul mem16 OF,CF F7 2+ 12-25 13-26 11

  mem32 SF,ZF, PF,AF ?     12-41 13-42 10

neg reg8 SF,ZF,OF,CF,PF,AF F6 2 2 1 1

neg reg16 SF,ZF,OF,CF,PF,AF F7 2 2 1 1

  reg32            

neg mem8 SF,ZF,OF,CF,PF,AF F6 2+ 2 1 1

neg mem16 SF,ZF,OF,CF,PF,AF F7 2+ 2 1 1

  mem32            

not reg8 none F6 2 2 1 1

not reg16 none F7 2 2 1 1

  reg32            

not mem8 none F6 2+ 6 3 3

not mem16 none F7 2+ 6 3 3

  mem32            



or AL,imm8 SF,ZF,OF,CF,PF,AF 0C 2 2 1 1

or AX,imm16 SF,ZF,OF,CF,PF,AF 0D 3 2 1 1

  EAX,imm32     5      

or reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

or reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

  reg32,imm32     6      

or reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

  reg32,imm8            

or mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

or mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

  mem32,imm32     6+      

or mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

  mem32,imm8            

or reg8,reg8 SF,ZF,OF,CF,PF,AF 0A 2 2 1 1

or reg16,reg16 SF,ZF,OF,CF,PF,AF 0B 2 2 1 1

  reg32,reg32            

or reg8,mem8 SF,ZF,OF,CF,PF,AF 0A 2+ 6 2 2

or reg16,mem16 SF,ZF,OF,CF,PF,AF 0B 2+ 6 2 2

  reg32,mem32            

or mem8,reg8 SF,ZF,OF,CF,PF,AF 08 2+ 7 3 3

or mem16,reg16 SF,ZF,OF,CF,PF,AF 09 2+ 7 3 3

  mem32,reg32            

pop AX none 58 1 4 1 1

  EAX            

pop CX none 59 1 4 1 1

  ECX            

pop DX none 5A 1 4 1 1

  EDX            

pop BX none 5B 1 4 1 1

  EBX            

pop SP none 5C 1 4 1 1

  ESP            

pop BP none 5D 1 4 1 1

  EBP            

pop SI none 5E 1 4 1 1

  ESI            

pop DI none 5F 1 4 1 1

  EDI            

pop DS none 1F 1 7 3 3

pop ES none 07 1 7 3 3

pop SS none 17 1 7 3 3

pop FS none 0F A1 2 7 3 3

pop GS none 0F A9 2 7 3 3

pop mem16 none 8F 2+ 5 6 3



  mem32            

popa none none 61 1 24 9 5

popad              

popf none none 9D 1 5 9 4

popfd              

push AX none 50 1 2 1 1

  EAX            

push CX none 51 1 2 1 1

  ECX            

push DX none 52 1 2 1 1

  EDX            

push BX none 53 1 2 1 1

  EBX            

push SP none 54 1 2 1 1

  ESP            

push BP none 55 1 2 1 1

  EBP            

push SI none 56 1 2 1 1

  ESI            

push DI none 57 1 2 1 1

  EDI            

push CS none 0E 1 2 3 1

push DS none 1E 1 2 3 1

push ES none 06 1 2 3 1

push SS none 16 1 2 3 1

push FS none 0F A0 2 2 3 1

push GS none 0F A8 2 2 3 1

push mem16 none FF 2+ 5 4 2

  mem32            

push imm8 none 6A 2 2 1 1

push imm16 none 68 3 2 1 1

  imm32     5      

pusha none none 60 1 18 11 5

pushad              

pushf none none 9C 1 4 4 3

pushfd              

rep none none F3 1      

repz (string instruction            

repe prefix)            

rep none none F3 A4 2 7+4n 12+3n 13+4n

movsb              

rep none none F3 A5 2 7+4n 12+3n 13+4n

movsw              

rep              



movsd              

rep stosb none none F3 A6 2 5+5n 7+4n 9n

rep stosw none none F3 A7 2 5+5n 7+4n 9n

rep stosd              

repe none none F3 A6 2 5+9n 7+7n 9+4n

cmpsb              

repe none none F3 A7 2 5+9n 7+7n 9+4n

cmpsw              

repe              

cmpsd              

repe none none F3 AE 2 5+8n 7+5n 9+4n

scasb              

repe none none F3 AF 2 5+8n 7+5n 9+4n

scasw              

repe              

scasd              

repne none none F2 A6 2 5+9n 7+7n 9+4n

cmpsb              

repne none none F2 A7 2 5+9n 7+7n 9+4n

cmpsw              

repne              

cmpsd              

repne none none F2 AE 2 5+8n 7+5n 9+4n

scasb              

repne none none F2 AF 2 5+8n 7+5n 9+4n

scasw              

repne              

scasd              

repnz none none F2 1      

repne (string instruction
prefix)

           

ret (far) none none CB 1 18+ 13 4

ret (far) imm16 none CA 3 18+ 14 4

ret (near) none none C3 1 10+ 5 2

ret (near) imm16 none C2 3 10+ 5 3

rol reg8 SF,ZF,OF,CF,PF D0 2 3 3 1

ror   AF ?          

rol reg16 SF,ZF,OF,CF,PF D1 2 3 3 1

ror reg32 AF ?          

rol mem8 SF,ZF,OF,CF,PF D0 2+ 7 4 3

ror   AF ?          

rol reg16 SF,ZF,OF,CF,PF D1 2+ 7 4 3

ror reg32 AF ?        

rol reg8, imm8 SF,ZF,OF,CF,PF C0 3 3 2 1



ror   AF ?          

rol reg16,imm8 SF,ZF,OF,CF,PF C1 3 3 2 1

ror reg32,imm8 AF ?          

rol mem8, imm8 SF,ZF,OF,CF,PF C0 3+ 7 4 3

ror   AF ?          

rol mem16,imm8 SF,ZF,OF,CF,PF C1 3+ 7 4 3

ror mem32,imm8 AF ?          

rol reg8, CL SF,ZF,OF,CF,PF D2 2 3 2 1

ror   AF ?          

rol reg16,CL SF,ZF,OF,CF,PF D3 2 3 2 1

ror reg32,CL AF ?          

rol mem8, CL SF,ZF,OF,CF,PF D2 2+ 7 4 4

ror   AF ?          

rol mem16,CL SF,ZF,OF,CF,PF D3 2+ 7 4 4

ror mem32,CL AF ?          

sbb AL,imm8 SF,ZF,OF,CF,PF,AF 1C 2 2 1 1

sbb AX,imm16 SF,ZF,OF,CF,PF,AF 1D 3 2 1 1

  EAX,imm32     5      

sbb reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

sbb reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

  reg32,imm32     6      

sbb reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

  reg32,imm8            

sbb mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

sbb mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

  mem32,imm32     6+      

sbb mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

  mem32,imm8            

sbb reg8,reg8 SF,ZF,OF,CF,PF,AF 1A 2 2 1 1

sbb reg16,reg16 SF,ZF,OF,CF,PF,AF 1B 2 2 1 1

  reg32,reg32            

sbb reg8,mem8 SF,ZF,OF,CF,PF,AF 1A 2+ 6 2 2

sbb reg16,mem16 SF,ZF,OF,CF,PF,AF 1B 2+ 6 2 2

  reg32,mem32            

sbb mem8,reg8 SF,ZF,OF,CF,PF,AF 18 2+ 7 3 3

sbb mem16,reg16 SF,ZF,OF,CF,PF,AF 19 2+ 7 3 3

  mem32,reg32            

scasb none none AE 1 7 6 4

scasw none none AE 1 7 6 4

scasd              

shl/sal reg8 SF,ZF,OF,CF,PF D0 2 3 3 1

shr   AF ?          

sar              

shl/sal reg16 SF,ZF,OF,CF,PF D1 2 3 3 1



shr reg32 AF ?          

sar              

shl/sal mem8 SF,ZF,OF,CF,PF D0 2+ 7 4 3

shr AF ?            

sar              

shl/sal reg16 SF,ZF,OF,CF,PF D1 2+ 7 4 3

shr reg32 AF ?          

sar              

shl/sal reg8, imm8 SF,ZF,OF,CF,PF C0 3 3 2 1

shr AF ?            

sar              

shl/sal reg16,imm8 SF,ZF,OF,CF,PF C1 3 3 2 1

shr reg32,imm8 AF ?          

sar              

shl/sal mem8, imm8 SF,ZF,OF,CF,PF C0 3+ 7 4 3

shr AF ?            

sar              

shl/sal mem16,imm8 SF,ZF,OF,CF,PF C1 3+ 7 4 3

shr mem32,imm8 AF ?          

sar              

shl/sal reg8, CL SF,ZF,OF,CF,PF D2 2 3 2 1

shr AF ?            

sar              

shl/sal reg16,CL SF,ZF,OF,CF,PF D3 2 3 2 1

shr reg32,CL AF ?          

sar              

shl/sal mem8, CL SF,ZF,OF,CF,PF D2 2+ 7 4 4

shr AF ?            

sar              

shl/sal mem16,CL SF,ZF,OF,CF,PF D3 2+ 7 4 4

shr mem32,CL AF ?          

sar              

shld reg16,reg16,imm8 SF,ZF,CF,PF 0F 04 4 3 2 4

  reg32,reg32,imm8 OF,AF ?          

shld mem16,reg16,imm8 SF,ZF,CF,PF 0F 04 4+ 7 4 4

  mem32,reg32,imm8 OF,AF ?          

shld reg16,reg16,CL SF,ZF,CF,PF 0F 05 3 3 3 4

  reg32,reg32,CL OF,AF ?          

shld mem16,reg16,CL SF,ZF,CF,PF 0F 05 3+ 7 4 5

  mem32,reg32,CL OF,AF ?          

shrd reg16,reg16,imm8 SF,ZF,CF,PF 0F AC 4 3 2 4

  reg32,reg32,imm8 OF,AF ?          

shrd mem16,reg16,imm8 SF,ZF,CF,PF 0F AC 4+ 7 4 4

  mem32,reg32,imm8 OF,AF ?          



shrd reg16,reg16,CL SF,ZF,CF,PF 0F AD 3 3 3 4

  reg32,reg32,CL OF,AF ?          

shrd mem16,reg16,CL SF,ZF,CF,PF 0F AD 3+ 7 4 5

  mem32,reg32,CL OF,AF ?          

stc none CF F9 1 2 2 2

std none DF FD 1 2 2 2

stosb none none AA 1 4 5 3

stosw none none AB 1 4 5 3

stosd              

sub AL,imm8 SF,ZF,OF,CF,PF,AF 2C 2 2 1 1

sub AX,imm16 SF,ZF,OF,CF,PF,AF 2D 3 2 1 1

  EAX,imm32     5      

sub reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

sub reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

  reg32,imm32     6      

sub reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

  reg32,imm8            

sub mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

sub mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

  mem32,imm32     6+      

sub mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

  mem32,imm8            

sub reg8,reg8 SF,ZF,OF,CF,PF,AF 2A 2 2 1 1

sub reg16,reg16 SF,ZF,OF,CF,PF,AF 2B 2 2 1 1

  reg32,reg32            

sub reg8,mem8 SF,ZF,OF,CF,PF,AF 2A 2+ 6 2 2

sub reg16,mem16 SF,ZF,OF,CF,PF,AF 2B 2+ 6 2 2

  reg32,mem32            

sub mem8,reg8 SF,ZF,OF,CF,PF,AF 28 2+ 7 3 3

sub mem16,reg16 SF,ZF,OF,CF,PF,AF 29 2+ 7 3 3

  mem32,reg32            

test AL,imm8 SF,ZF,OF,CF,PF,AF A8 2 2 1 1

test AX,imm16 SF,ZF,OF,CF,PF,AF A9 3 2 1 1

  EAX,imm32     5      

test reg8,imm8 SF,ZF,OF,CF,PF,AF F6 3 2 1 1

test reg16,imm16 SF,ZF,OF,CF,PF,AF F7 4 2 1 1

  reg32,imm32     6      

test mem8,imm8 SF,ZF,OF,CF,PF,AF F6 3+ 5 2 2

test mem16,imm16 SF,ZF,OF,CF,PF,AF F7 4+ 5 2 2

  mem32,imm32     6+      

test reg8,reg8 SF,ZF,OF,CF,PF,AF 84 2 2 1 1

test reg16,reg16 SF,ZF,OF,CF,PF,AF 85 2 2 1 1

  reg32,reg32            

test mem8,reg8 SF,ZF,OF,CF,PF,AF 84 2+ 5 2 2



test mem16,reg16 SF,ZF,OF,CF,PF,AF 85 2+ 5 2 2

  mem32,reg32            

xchg AX, CX none 91 1 3 3 2

  EAX, ECX            

xchg AX, DX none 92 1 3 3 2

  EAX, EDX            

xchg AX, BX none 93 1 3 3 2

  EAX, EBX            

xchg AX, SP none 94 1 3 3 2

  EAX, ESP            

xchg AX, BP none 95 1 3 3 2

  EAX, EBP            

xchg AX, SI none 96 1 3 3 2

  EAX, ESI            

xchg AX, DI none 97 1 3 3 2

  EAX, EDI            

xchg reg8,reg8 none 86 2 3 3 3

xchg reg8,mem8 none 86 2+ 5 5 3

xchg reg16,reg16 none 87 2 3 3 3

xchg reg16,mem16 none 87 2+ 5 5 3

xlat none none D7 1 5 4 4

xor AL,imm8 SF,ZF,OF,CF,PF,AF 34 2 2 1 1

xor AX,imm16 SF,ZF,OF,CF,PF,AF 35 3 2 1 1

  EAX,imm32     5      

xor reg8,imm8 SF,ZF,OF,CF,PF,AF 80 3 2 1 1

xor reg16,imm16 SF,ZF,OF,CF,PF,AF 81 4 2 1 1

  reg32,imm32     6      

xor reg16,imm8 SF,ZF,OF,CF,PF,AF 83 3 2 1 1

  reg32,imm8            

xor mem8,imm8 SF,ZF,OF,CF,PF,AF 80 3+ 7 3 3

xor mem16,imm16 SF,ZF,OF,CF,PF,AF 81 4+ 7 3 3

  mem32,imm32     6+      

xor mem16,imm8 SF,ZF,OF,CF,PF,AF 83 3+ 7 3 3

  mem32,imm8            

xor reg8,reg8 SF,ZF,OF,CF,PF,AF 32 2 2 1 1

xor reg16,reg16 SF,ZF,OF,CF,PF,AF 33 2 2 1 1

  reg32,reg32            

xor reg8,mem8 SF,ZF,OF,CF,PF,AF 32 2+ 6 2 2

xor reg16,mem16 SF,ZF,OF,CF,PF,AF 33 2+ 6 2 2

  reg32,mem32            

xor mem8,reg8 SF,ZF,OF,CF,PF,AF 30 2+ 7 3 3

xor mem16,reg16 SF,ZF,OF,CF,PF,AF 31 2+ 7 3 3

  mem32,reg32            

[*]timing varies





Appendix E: 80x86 Instructions (by Opcode)

Opcode Mnemonic Operand(s) Flags affected Number
of bytes

Timing
386

Timing
486

Timing
Pentium

00 add mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

01 add mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

    mem32,reg32          

02 add reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

02 add reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

03 add reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

03 add reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          

04 add AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

05 add AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

06 push ES none 1 2 3 1

07 pop ES none 1 7 3 3

08 or mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

09 or mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

    mem32,reg32          

0A or reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

0A or reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

0B or reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

0B or reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          

0C or AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

0D or AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

0E push CS none 1 2 3 1

0F 04 shld reg16,reg16,imm8 SF,ZF,CF,PF 4 3 2 4

    reg32,reg32,imm8 OF,AF ?        

0F 04 shld mem16,reg16,imm8 SF,ZF,CF,PF 4+ 7 4 4

    mem32,reg32,imm8 OF,AF ?        

0F 05 shld reg16,reg16,CL SF,ZF,CF,PF 3 3 3 4

    reg32,reg32,CL OF,AF ?        

0F 05 shld mem16,reg16,CL SF,ZF,CF,PF 3+ 7 4 5

    mem32,reg32,CL OF,AF ?        

0F 80 jo rel32 none 7+,3 3,1 1 6

0F 81 jno rel32 none 7+,3 3,1 1 6

0F 82 jb rel32 none 7+,3 3,1 1 6

  jnae            

0F 82 jc rel32 none 7+,3 3,1 1 6



0F 83 jae rel32 none 7+,3 3,1 1 6

  jnb            

0F 83 jnc rel32 none 7+,3 3,1 1 6

0F 84 je rel32 none 7+,3 3,1 1 6

  jz            

0F 85 jne rel32 none 7+,3 3,1 1 6

  jnz            

0F 86 jbe rel32 none 7+,3 3,1 1 6

  jna            

0F 87 ja rel32 none 7+,3 3,1 1 6

  jnbe            

0F 88 js rel32 none 7+,3 3,1 1 6

0F 89 jns rel32 none 7+,3 3,1 1 6

0F 8A jp rel32 none 7+,3 3,1 1 6

  jpe            

0F 8B jnp rel32 none 7+,3 3,1 1 6

  jpo            

0F 8C jl rel32 none 7+,3 3,1 1 6

  jnge            

0F 8D jge rel32 none 7+,3 3,1 1 6

  jnl            

0F 8E jle rel32 none 7+,3 3,1 1 6

  jng            

0F 8F jg rel32 none 7+,3 3,1 1 6

  jnle            

0F A0 push FS none 2 2 3 1

0F A1 pop FS none 2 7 3 3

0F A8 push GS none 2 2 3 1

0F A9 pop GS none 2 7 3 3

0F AC shrd reg16,reg16,imm8 SF,ZF,CF,PF 4 3 2 4

    reg32,reg32,imm8 OF,AF ?        

0F AC shrd mem16,reg16,imm8 SF,ZF,CF,PF 4+ 7 4 4

    mem32,reg32,imm8 OF,AF ?        

0F AD shrd reg16,reg16,CL SF,ZF,CF,PF 3 3 3 4

    reg32,reg32,CL OF,AF ?        

0F AD shrd mem16,reg16,CL SF,ZF,CF,PF 3+ 7 4 5

    mem32,reg32,CL OF,AF ?        

0F AF imul reg16,reg16 OF,CF 3 9-22 13-26 11

    reg32,reg32 SF,ZF, PF,AF ?   9-38 13-42 10

0F AF imul reg16,mem16 OF,CF 3+ 12-25 13-26 11

    reg32,mem32 SF,ZF, PF,AF ?   12-41 13-42 10

0F B6 movzx reg16,reg8 none 3 3 3 3

    reg32,reg8          

0F B6 movzx reg16,mem8 none 3+ 6 3 3



    reg32,mem8          

0F B7 movzx reg32,reg16 none 3 3 3 3

0F B7 movzx reg32,mem16 none 3+ 6 3 3

0F BE movsx reg16,reg8 none 3 3 3 3

    reg32,reg8          

0F BE movsx reg16,mem8 none 3+ 6 3 3

    reg32,mem8          

0F BF movsx reg32,reg16 none 3 3 3 3

0F BF movsx reg32,mem16 none 3+ 6 3 3

10 adc mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

11 adc mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

    mem32,reg32          

12 adc reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

12 adc reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

13 adc reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

13 adc reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          

14 adc AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

15 adc AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

16 push SS none 1 2 3 1

17 pop SS none 1 7 3 3

18 sbb mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

19 sbb mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

    mem32,reg32          

1A sbb reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

1A sbb reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

1B sbb reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

1B sbb reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          

1C sbb AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

1D sbb AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

1E push DS none 1 2 3 1

1F pop DS none 1 7 3 3

20 and mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

21 and mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

    mem32,reg32          

22 and reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

22 and reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

23 and reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          



23 and reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          

24 and AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

25 and AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

27 daa none SF,ZF,PF,AF 1 4 2 3

      OF ?        

28 sub mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

29 sub mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

    mem32,reg32          

2A sub reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

2A sub reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

2B sub reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

2B sub reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          

2C sub AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

2D sub AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

2F das none SF,ZF,PF,AF 1 4 2 3

      OF ?        

30 xor mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

31 xor mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 7 3 3

    mem32,reg32          

32 xor reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

32 xor reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

33 xor reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

33 xor reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          

34 xor AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

35 xor AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

37 aaa none AF,CF 1 4 3 3

      SF,ZF,OF,PF ?        

38 cmp reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

38 cmp mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

39 cmp mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

    mem32,reg32          

3A cmp reg8,mem8 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

3B cmp reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

3B cmp reg16,mem16 SF,ZF,OF,CF,PF,AF 2+ 6 2 2

    reg32,mem32          



3C cmp AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

3D cmp AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

3F aas none AF,CF 1 4 3 3

      SF,ZF,OF,PF ?        

40 inc AX SF,ZF,OF,PF,AF 1 2 1 1

    EAX          

41 inc CX SF,ZF,OF,PF,AF 1 2 1 1

    ECX          

42 inc DX SF,ZF,OF,PF,AF 1 2 1 1

    EDX          

43 inc BX SF,ZF,OF,PF,AF 1 2 1 1

    EBX          

44 inc SP SF,ZF,OF,PF,AF 1 2 1 1

    ESP          

45 inc BP SF,ZF,OF,PF,AF 1 2 1 1

    EBP          

47 inc SI SF,ZF,OF,PF,AF 1 2 1 1

    ESI          

48 dec AX SF,ZF,OF,PF,AF 1 2 1 1

    EAX          

48 inc DI SF,ZF,OF,PF,AF 1 2 1 1

    EDI          

49 dec CX SF,ZF,OF,PF,AF 1 2 1 1

    ECX          

4A dec DX SF,ZF,OF,PF,AF 1 2 1 1

    EDX          

4B dec BX SF,ZF,OF,PF,AF 1 2 1 1

    EBX          

4C dec SP SF,ZF,OF,PF,AF 1 2 1 1

    ESP          

4D dec BP SF,ZF,OF,PF,AF 1 2 1 1

    EBP          

4E dec SI SF,ZF,OF,PF,AF 1 2 1 1

    ESI          

4F dec DI SF,ZF,OF,PF,AF 1 2 1 1

    EDI          

50 push AX none 1 2 1 1

    EAX          

51 push CX none 1 2 1 1

    ECX          

52 push DX none 1 2 1 1

    EDX          

53 push BX none 1 2 1 1



    EBX          

54 push SP none 1 2 1 1

    ESP          

55 push BP none 1 2 1 1

    EBP          

56 push SI none 1 2 1 1

    ESI          

57 push DI none 1 2 1 1

    EDI          

58 pop AX none 1 4 1 1

    EAX          

59 pop CX none 1 4 1 1

    ECX          

5A pop DX none 1 4 1 1

    EDX          

5B pop BX none 1 4 1 1

    EBX          

5C pop SP none 1 4 1 1

    ESP          

5D pop BP none 1 4 1 1

    EBP          

5E pop SI none 1 4 1 1

    ESI          

5F pop DI none 1 4 1 1

    EDI          

60 pusha none none 1 18 11 5

  pushad            

61 popa none none 1 24 9 5

  popad            

68 push imm16 none 3 2 1 1

    imm32   5      

69 imul reg16,reg16,imm16 OF,CF 4 9-22 13-26 10

    reg32,reg32,imm32 SF,ZF, PF,AF ? 6 9-38 13-42 10

69 imul reg16,mem16,imm16 OF,CF 4+ 12-25 13-26 10

    reg32,mem32,imm32 SF,ZF, PF,AF ? 6+ 12-41 13-42 10

6A push imm8 none 2 2 1 1

6B imul reg16,imm8 OF,CF 3 9-14 13-18 10

    reg32,imm8 SF,ZF, PF,AF ?        

6B imul reg16,reg16,imm8 OF,CF 3 9-14 13-18 10

    reg32,reg32,imm8 SF,ZF, PF,AF ?        

6B imul reg16,mem16,imm8 OF,CF 3+ 9-17 13-18 10

    reg32,mem32,imm8 SF,ZF, PF,AF ?        

70 jo rel8 none 7+,3 3,1 1 2

71 jno rel8 none 7+,3 3,1 1 2



72 jb rel8 none 7+,3 3,1 1 2

  jnae            

72 jc rel8 none 7+,3 3,1 1 2

73 jae rel8 none 7+,3 3,1 1 2

  jnb            

73 jnc rel8 none 7+,3 3,1 1 2

74 je rel8 none 7+,3 3,1 1 2

  jz            

75 jne rel8 none 7+,3 3,1 1 2

  jnz            

76 jbe rel8 none 7+,3 3,1 1 2

  jna            

77 ja rel8 none 7+,3 3,1 1 2

  jnbe            

78 js rel8 none 7+,3 3,1 1 2

79 jns rel8 none 7+,3 3,1 1 2

7A jp rel8 none 7+,3 3,1 1 2

  jpe            

7B jnp rel8 none 7+,3 3,1 1 2

  jpo            

7C jl rel8 none 7+,3 3,1 1 2

  jnge            

7D jge rel8 none 7+,3 3,1 1 2

  jnl            

7E jle rel8 none 7+,3 3,1 1 2

  jng            

7F jg rel8 none 7+,3 3,1 1 2

  jnle            

80 adc reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 adc mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 add reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 add mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 and reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 and mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 cmp reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 cmp mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 5 2 2

80 or reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 or mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 sbb reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 sbb mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 sub reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 sub mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

80 xor reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

80 xor mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3



81 adc reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 adc mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

    mem32,imm32   6+      

81 add reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 add mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

    mem32,imm32   6+      

81 and reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 and mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

    mem32,imm32   6+      

81 cmp reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 cmp mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 5 2 2

    mem32,imm32   6+      

81 or reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 or mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

    mem32,imm32   6+      

81 sbb reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 sbb mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

    mem32,imm32   6+      

81 sub reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 sub mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

    mem32,imm32   6+      

81 xor reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

81 xor mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 7 3 3

    mem32,imm32   6+      

83 adc reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 adc mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

    mem32,imm8          

83 add reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 add mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

    mem32,imm8          

83 and reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 and mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

    mem32,imm8          



83 cmp reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 cmp mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 5 2 2

    mem32,imm8          

83 or reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 or mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

    mem32,imm8          

83 sbb reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 sbb mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

    mem32,imm8          

83 sub reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 sub mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

    mem32,imm8          

83 xor reg16,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

    reg32,imm8          

83 xor mem16,imm8 SF,ZF,OF,CF,PF,AF 3+ 7 3 3

    mem32,imm8          

84 test reg8,reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

84 test mem8,reg8 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

85 test reg16,reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32,reg32          

85 test mem16,reg16 SF,ZF,OF,CF,PF,AF 2+ 5 2 2

    mem32,reg32          

86 xchg reg8,reg8 none 2 3 3 3

86 xchg reg8,mem8 none 2+ 5 5 3

87 xchg reg16,reg16 none 2 3 3 3

87 xchg reg16,mem16 none 2+ 5 5 3

88 mov mem8,reg8 none 2+ 2 1 1

89 mov mem16,reg16 none 2+ 2 1 1

    mem32,reg32          

8A mov reg8,reg8 none 2 2 1 1

8A mov reg8,mem8 none 2+ 4 1 1

8B mov reg16,reg16 none 2 2 1 1

    reg32,reg32          

8B mov reg16,mem16 none 2+ 4 1 1

    reg32,mem32          

8C mov reg16, sreg none 2 2 3 1

8C mov mem16,sreg none 2+ 2 3 1

8D lea reg32,mem32 none 2+ 2 1 1

8E mov sreg, reg16 none 2 2 3 1

8E mov sreg,mem16 none 2+ 2 3[*] 2[*]



8F pop mem16 none 2+ 5 6 3

    mem32          

91 xchg AX, CX none 1 3 3 2

    EAX, ECX          

92 xchg AX, DX none 1 3 3 2

    EAX, EDX          

93 xchg AX, BX none 1 3 3 2

    EAX, EBX          

94 xchg AX, SP none 1 3 3 2

    EAX, ESP          

95 xchg AX, BP none 1 3 3 2

    EAX, EBP          

96 xchg AX, SI none 1 3 3 2

    EAX, ESI          

97 xchg AX, DI none 1 3 3 2

    EAX, EDI          

98 cbw none none 1 3 3 3

98 cwde none none 1 3 3 3

99 cdq none none 1 2 3 2

99 cwd none none 1 2 3 2

9A call far direct none 7 17+ 18 4

9C pushf none none 1 4 4 3

  pushfd            

9D popf none none 1 5 9 4

  popfd            

A0 mov AL, direct none 5 4 1 1

A1 mov AX, direct none 5 4 1 1

    EAX, direct          

A2 mov direct ,AL none 5 2 1 1

A3 mov direct, AX none 5 2 1 1

    direct, EAX          

A4 movsb none none 1 7 7 4

A5 movsw none none 1 7 7 4

  movsd            

A6 cmpsb none none 1 10 8 5

A7 cmpsw none none 1 10 8 5

  cmpsd            

A8 test AL,imm8 SF,ZF,OF,CF,PF,AF 2 2 1 1

A9 test AX,imm16 SF,ZF,OF,CF,PF,AF 3 2 1 1

    EAX,imm32   5      

AA stosb none none 1 4 5 3

AB stosw none none 1 4 5 3

  stosd            

AC lodsb none none 1 5 5 2



AD lodsw none none 1 5 5 2

  lodsd            

AE scasb none none 1 7 6 4

AE scasw none none 1 7 6 4

  scasd            

B0 mov AL, imm8 none 2 2 1 1

B1 mov CL, imm8 none 2 2 1 1

B2 mov DL, imm8 none 2 2 1 1

B3 mov BL, imm8 none 2 2 1 1

B4 mov AH, imm8 none 2 2 1 1

B5 mov CH, imm8 none 2 2 1 1

B6 mov DH, imm8 none 2 2 1 1

B7 mov BH, imm8 none 2 2 1 1

B8 mov AX, imm16 none 3 2 1 1

    EAX, imm32   5      

B9 mov CX, imm16 none 3 2 1 1

    ECX, imm32   5      

BA mov DX, imm16 none 3 2 1 1

    EDX, imm32   5      

BB mov BX, imm16 none 3 2 1 1

    EBX, imm32   5      

BC mov SP, imm16 none 3 2 1 1

    ESP, imm32   5      

BD mov BP, imm16 none 3 2 1 1

    EPB, imm32   5      

BE mov SI, imm16 none 3 2 1 1

    ESI, imm32   5      

BF mov DI, imm16 none 3 2 1 1

    EDI, imm32   5      

C0 rol reg8, imm8 SF,ZF,OF,CF,PF 3 3 2 1

  ror   AF ?        

C0 rol mem8, imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

  ror   AF ?        

C0 shl/sal reg8, imm8 SF,ZF,OF,CF,PF 3 3 2 1

  shr   AF ?        

  sar            

C0 shl/sal mem8, imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

  shr   AF ?        

  sar            

C1 rol reg16,imm8 SF,ZF,OF,CF,PF 3 3 2 1

  ror reg32,imm8 AF ?        

C1 rol mem16,imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

  ror mem32,imm8 AF ?        

C1 shl/sal reg16,imm8 SF,ZF,OF,CF,PF 3 3 2 1



  shr reg32,imm8 AF ?        

  sar            

C1 shl/sal mem16,imm8 SF,ZF,OF,CF,PF 3+ 7 4 3

  shr mem32,imm8 AF ?        

  sar            

C2 ret (near) imm16 none 3 10+ 5 3

C3 ret (near) none none 1 10+ 5 2

C6 mov mem8, imm8 none 3+ 2 1 1

C7 mov mem16,imm16 none 4+ 2 1 1

    mem32,imm32 6+        

CA ret (far) imm16 none 3 18+ 14 4

CB ret (far) none none 1 18+ 13 4

D0 rol reg8 SF,ZF,OF,CF,PF 2 3 3 1

  ror   AF ?        

D0 rol mem8 SF,ZF,OF,CF,PF 2+ 7 4 3

  ror   AF ?        

D0 shl/sal reg8 SF,ZF,OF,CF,PF 2 3 3 1

  shr   AF ?        

  sar            

D0 shl/sal mem8 SF,ZF,OF,CF,PF 2+ 7 4 3

  shr   AF ?        

  sar            

D1 rol reg16 SF,ZF,OF,CF,PF 2 3 3 1

  ror reg32 AF ?        

D1 rol reg16 SF,ZF,OF,CF,PF 2+ 7 4 3

  ror reg32 AF ?        

D1 shl/sal reg16 SF,ZF,OF,CF,PF 2 3 3 1

  shr reg32 AF ?        

  sar            

D1 shl/sal reg16 SF,ZF,OF,CF,PF 2+ 7 4 3

  shr reg32 AF ?        

  sar            

D2 rol reg8, CL SF,ZF,OF,CF,PF 2 3 2 1

  ror AF ?          

D2 rol mem8, CL SF,ZF,OF,CF,PF 2+ 7 4 4

  ror   AF ?        

D2 shl/sal reg8, CL SF,ZF,OF,CF,PF 2 3 2 1

  shr   AF ?        

  sar            

D2 shl/sal mem8, CL SF,ZF,OF,CF,PF 2+ 7 4 4

  shr   AF ?        

  sar            

D3 rol reg16,CL SF,ZF,OF,CF,PF 2 3 2 1

  ror reg32,CL AF ?        



D3 rol mem16,CL SF,ZF,OF,CF,PF 2+ 7 4 4

  ror mem32,CL AF ?        

D3 shl/sal reg16,CL SF,ZF,OF,CF,PF 2 3 2 1

  shr reg32,CL AF ?        

  sar            

D3 shl/sal mem16,CL SF,ZF,OF,CF,PF 2+ 7 4 4

  shr mem32,CL AF ?        

  sar            

D4 0A aam none SF,ZF,PF 2 17 15 18

      OF,AF,CF ?        

D5 0A aad none SF,ZF,PF 2 19 14 10

      OF,AF,CF ?        

D7 xlat none none 1 5 4 4

E0 loopne none none 11+ 6,9 7,8 2

  loopnz            

E1 loope none none 11+ 6,9 7,8 2

  loopz            

E2 loop none none 11+ 6,7 5,6 2

E3 jecxz rel8 none     6,5 2

E8 call rel32 none 5 7+ 3 1

E9 jmp rel32 none 5 7+ 3 1

EB jmp rel8 none 2 7+ 3 1

F2 repnz none none 1      

  repne (string instruction
prefix)

         

F2 A6 repne none none 2 5+9n 7+7n 9+4n

  cmpsb            

F2 A7 repne none none 2 5+9n 7+7n 9+4n

  cmpsw            

  repne            

  cmpsd            

F2 AE repne none none 2 5+8n 7+5n 9+4n

  scasb            

F2 AF repne none none 2 5+8n 7+5n 9+4n

  scasw            

  repne            

  scasd            

F3 rep none none 1      

  repz repe (string instruction
prefix)

         

F3 A4 rep none none 2 7+4n 12+3n 13+4n

  movsb            

F3 A5 rep none none 2 7+4n 12+3n 13+4n

  movsw            



  rep            

  movsd            

F3 A6 rep stosb none none 2 5+5n 7+4n 9n

F3 A6 repe none none 2 5+9n 7+7n 9+4n

  cmpsb            

F3 A7 rep stosw none none 2 5+5n 7+4n 9n

  rep stosd          

F3 A7 repe none none 2 5+9n 7+7n 9+4n

  cmpsw            

  repe            

  cmpsd            

F3 AE repe none none 2 5+8n 7+5n 9+4n

  scasb            

F3 AF repe none none 2 5+8n 7+5n 9+4n

  scasw            

  repe            

  scasd            

F5 cmc none CF 1 2 2 2

F6 div reg8 SF,ZF,OF,PF,AF ? 2 14 16 17

F6 div mem8 SF,ZF,OF,PF,AF ? 2+ 17 16 17

F6 idiv reg8 SF,ZF,OF,PF,AF ? 2 19 19 22

F6 idiv mem8 SF,ZF,OF,PF,AF ? 2+ 22 20 22

F6 imul reg8 OF,CF 2 9-14 13-18 11

      SF,ZF, PF,AF ?        

F6 imul mem8 OF,CF 2+ 12-17 13-18 11

      SF,ZF, PF,AF ?        

F6 mul reg8 OF,CF 2 9-14 13-18 11

      SF,ZF, PF,AF ?        

F6 mul mem8 OF,CF 2+ 12-17 13-18 11

      SF,ZF, PF,AF ?        

F6 neg reg8 SF,ZF,OF,CF,PF,AF 2 2 1 1

F6 neg mem8 SF,ZF,OF,CF,PF,AF 2+ 2 1 1

F6 not reg8 none 2 2 1 1

F6 not mem8 none 2+ 6 3 3

F6 test reg8,imm8 SF,ZF,OF,CF,PF,AF 3 2 1 1

F6 test mem8,imm8 SF,ZF,OF,CF,PF,AF 3+ 5 2 2

F7 div reg16 SF,ZF,OF,PF,AF ? 2 22 24 25

    reg32     38 40 41

F7 div mem16 SF,ZF,OF,PF,AF ? 2+ 25 24 25

    mem32     41 40 41

F7 idiv reg16 SF,ZF,OF,PF,AF ? 2 27 27 30

    reg32     43 43 48

F7 idiv mem16 SF,ZF,OF,PF,AF ? 2+ 30 28 30

    mem32     46 44 48



F7 imul reg16 OF,CF 2 9-22 13-26 11

    reg32 SF,ZF, PF,AF ?   9-38 13-42 10

F7 imul mem16 OF,CF 2+ 12-25 13-26 11

    mem32 SF,ZF, PF,AF ?   12-41 13-42 10

F7 imul mem16 OF,CF 4 9-22 13-26 11

    mem32 SF,ZF, PF,AF ? 6 9-38 13-42 10

F7 mul reg16 OF,CF 2 9-22 13-26 11

    reg32 SF,ZF, PF,AF ?   9-38 13-42 10

F7 mul mem16 OF,CF 2+ 12-25 13-26 11

    mem32 SF,ZF, PF,AF ?   12-41 13-42 10

F7 neg reg16 SF,ZF,OF,CF,PF,AF 2 2 1 1

    reg32          

F7 neg mem16 SF,ZF,OF,CF,PF,AF 2+ 2 1 1

    mem32          

F7 not reg16 none 2 2 1 1

    reg32          

F7 not mem16 none 2+ 6 3 3

    mem32          

F7 test reg16,imm16 SF,ZF,OF,CF,PF,AF 4 2 1 1

    reg32,imm32   6      

F7 test mem16,imm16 SF,ZF,OF,CF,PF,AF 4+ 5 2 2

    mem32,imm32   6+      

F8 clc none CF 1 2 2 2

F9 stc none CF 1 2 2 2

FC cld none DF 1 2 2 2

FD std none DF 1 2 2 2

FE dec reg8   2 2 1 1

FE dec mem8 SF,ZF,OF,PF,AF 2+ 6 3 3

FE inc reg8 SF,ZF,OF,PF,AF 2 2 1 1

FE inc mem8 SF,ZF,OF,PF,AF 2+ 6 3 3

FF call reg32 (near indirect) none 2 7+ 5 2

FF call mem32 (near
indirect)

none 2+ 10+ 5 2

FF call far indirect none 6 22+ 17 5

FF dec mem16 SF,ZF,OF,PF,AF 2+ 6 3 3

    mem32          

FF inc mem16 SF,ZF,OF,PF,AF 2+ 6 3 3

    mem32          

FF jmp reg32 none 2 10+ 5 2

FF jmp mem32 none 2+ 10+ 5 2

FF push mem16 none 2+ 5 4 2

    mem32          

[*]timing varies
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in assembly language, 44

Auxiliary carry flag
and binary addition for BCD
operands, 396-397

AX register, 32
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B
Backspace, 8

Backward for loops, 173, 176

Backward reference, 140, 306

Based addressing mode, 212

Base pointer register, 32

Bases
conversion between, 2-3

BASIC, 137

Basic language, 38

BCD. See Binary coded decimal

BCD representations. See Binary coded decimal representations

Bell character, 8

Binary addition
for BCD operands, 396

Binary coded decimal, 21, 22, 26

Binary coded decimal representations,23, 387. See also Packed BCD representations/instructions;
Unpacked BCD representations/instructions

Binary integers/numbers, 2,3, 26
converting to hexadecimal format, 4
converting to octal numbers, 5

Binary scientific notation, 24

Binary values
and logical operations, 272

Bit manipulation, 267-300
ASCII string converted to 2's complement integer, 292-297
logical operations, 268-275
logic gates, 298-299
shift and rotate instructions, 278-289

Bit pattern
with packed BCD, 388

Bits, 2, 7, 9, 26

Blank lines
in assembly language code, 45

Blanks
ASCII codes for, 257

Boolean operations, 267, 299

Boolean values, 268, 272

Borrow, 19

Branch and link instruction, 229

Branching, 137

Busy-waiting loop, 438

BX register, 32

BYTE directives, 48, 49, 50, 52, 66, 78, 83
constant operands in, 68, 69, 70

Byte length divisor, 119, 120

Byte(s), 9



and multiplication, 108
prefix, 88, 93
string instruction, 233

Byte-size operands, 308
instructions with, 315
and push instructions, 194
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C
C, 1, 39

C++, 39, 137

Calculators
for conversions, 2-3
for converting negative 2's complement representation to decimal number, 13-14

call instructions, 204,206, 207

Carriage return, 8
character, 48, 58

Carry, 15, 16, 17, 19, 20

Carry flag (CF), 33, 96, 98, 135, 147
and addition/subtraction of larger numbers, 130, 131
and Boolean instructions, 269
control of,132
and imul instructions, 113
and left shifts, 279
and mul instructions, 110
and rotate instructions, 289

Case-insensitivity
with assembly language, 45

Case-sensitivity
with ML switches, 53

Case structures, 137

cbw instructions,123,124, 135

cdq instructions,123,124, 135

Celsius to Fahrenheit temperature conversion program, 125,126, 127

Central processing unit, 27, 30-34, 39, 267
basic operation cycle, 189
and pipelining, 189-190, 191

CF. See Carry flag

Character codes, 6-7

Character controls, 26

Characters
finding, in string,247-248
translation of, 254-257

Character strings, 231

CISC. See Complex instruction set computer designs

clc instructions, 135

cld instructions,233

Clipped points, 277

Clock cycles, 88, 89,199
adc and sbb instructions,131
add and sub instructions,99
and, or, and xor instructions,270
call instructions,206
cld and std instructions,233
cmp instructions,148
cmps instructions,242
for conditional jump instructions,151, 176



div instructions,122
double shift instructions,287
idiv instructions,122
for imul instructions,110
inc and dec instructions,100
loop instructions,174
movsx and movzx instructions,125
neg instructions,102
not instruction,270
pop instructions,197
push all and pop all instructions,200
for push instructions,195
and reduced instruction set
computer designs, 264
rep movs instructions,241
ret instructions,208
scas instructions,247
shift and rotate instructions, 282
stos instructions,249
test instructions,275
xchg instruction,93

Clock speeds, 88

CloseHandle function, 429, 432

cmc instructions, 135

cmp (compare) instructions, 146, 147,148, 190, 191

CMPP instructions, 416

cmps (compare string) instructions, 232

cmps instructions,242, 265

COBOL language, 39
packed decimal types/operations supported by, 417

Code
in-line assembly,384-385, 386
relocatable, 306

.CODE directive, 202

Coding
with floating-point instructions, 359-373

Colons, 43, 138

combine macro,377, 380

Command line, 40

Command line interface, 37

Commas, 43
in macro calls, 320, 323

Comments, 42
assembly language, 82
for assembly language program, 45, 48

Compilers, 38, 39

Complementing the number, 11-12

Complex circuits, 298

Complex instruction set computer designs, 265
reduced instruction set
computer designs versus, 264

Computer system parts, 27-40
CPU, 30-34



input/output devices, 36-37
language translators and linker, 38-39
memory, 28-29
operating system, 37-38
text editors, 38

Conditional assembly, 326-333, 338
directives, 329

Conditional if statements
and Boolean values, 268

Conditional jump instructions, 144,149, 176, 190, 191, 356
timing and size of,151

Console I/O
using kernel32 functions,421,422-424
using Kernel32 library, 420-428

Constant operands, 68-71

Continuation condition, 159

Control characters, 7, 8

Control word, floating-point unit, 341

Conversion
between bases, 2-3. See also ASCII

Copying
data, 85, 86-94
fixed number of characters of string,240

Counter
and dollar sign symbol, 256

count, 140

count operands, 207
double shift instructions,287
shift and rotate instructions, 282
versions of, 279

CPU. See Central processing unit

CR. See Carriage return

CreateFileA function, 429, 431, 432

CREATE_NEW, 432

CS register, 32

cwde instructions,123,124

cwd instructions,123,124, 135

CX register, 32
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D
daa (decimal adjust after addition) instructions, 396, 397, 417

das (decimal adjust after subtraction) instructions, 396, 398, 417

Data
changing size of, 92
copying, 85, 86-94

.DATA directive, 48, 219

Data registers, 30

Data representation in computer, 1-26
addition/subtraction of 2's complement numbers, 15-20
binary and hexadecimal numbers, 2-5
character codes, 6-8
other systems for representing numbers, 21-25
2's complement representation for signed integers, 9-14

Debuggers, 39, 40

dec idi instructions, 248

Decimal arithmetic, 387-417
packed BCD instructions, 396-403
packed BCD representations, 388-394
unpacked BCD representations and instructions, 404-412
VAX packed decimal instructions, 416-417

Decimal numbers,3, 26
binary numbers converted to, 4
converting to hex equivalent, 4
converting to IEEE single format, 23-24, 25
converting to octal numbers, 5
converting 2's complement representation to, 12

dec instructions, 95,100, 134
execution of,101

Delete, 8

Destination index, 32

Destination operands, 79
adc and sbb instructions,131
add and sub instructions,99
additional mov instructions,90
and, or, and xor instructions,270
cmp instructions,148
double shift instructions,287
immediate-to-memory mov
instructions,89
immediate-to-register mov
instructions,87
imul instructions,110
inc and dec instructions,100
neg instructions,102
not instructions,270
shift and rotate instructions,282
test instructions,275

Destination strings, 232

DI. See Destination index

Digital computers



and logic gates, 298, 300

Direction bit, 315

Direction flag (DF)
EDI register, 265
and string processing, 233

Directives, 42, 43, 82
for assembly language program, 45
for macros/statements in .LST
files, 325
for reserving storage, 71
strings defined with, 232

Direct memory addressing, 312
mode,74, 83

Direct operands, 89

Disk drives, 27, 36

Disk operating system, 37

Displacement bytes, 312

Displacement doubleword, 312

Displacement field, 308

Displacements
and jump instructions, 141

Display devices, 27

Dividend, 119

div instructions,122, 411, 417

Division
errors, 122
floating-point instructions,354
of larger numbers, 132
of unpacked BCD numbers,413

Division instructions, 118-127, 134, 135
operands/results for 80x86,119

Divisor, 119

div operations, 119

DIVP instructions, 416

Dollar sign symbol ($), 44, 256, 306

DOS. See Disk operating system

Double-length dividend, 118, 119, 134-135

Double operands
instructions with, 315

Double shift instructions,286,287, 300

Doubleword, 10, 11

Doubleword integer conversion
ASCII to,293-295

Double-word length divisor, 119, 120

Doublewords
in assembly language program, 49
multiplication of, 108

Doubleword-size dividend, 123

Double-word strings, 233

DS register, 32



DT directive, 388-389

dtoa macro, 51, 79, 83, 231, 259
in file IO.H, 337

DUP directive, 191

DwExitCode, 46, 52

DWORD directives, 48, 61, 83
constant operands in, 68, 69, 70

DX register, 32
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E
EAX register, 30, 31, 34, 39, 43, 51, 67, 75, 91

EBCDIC. See Extended Binary Coded Decimal Information Code

EBP base pointer
for register indirect addressing, 75

EBX register, 30, 31, 32
in program using array, 182
for register indirect addressing, 75

ECX register, 30, 31, 32
and loop instruction, 191
for register indirect addressing, 75

EDI register
for register indirect addressing, 75
and strcopy procedure, 236
and string elements, 232, 265

Edit, 38, 53

EDIT instructions, 416

EDX register, 30, 31, 32
for register indirect addressing, 75

EFLAGS bits,34

EFLAGS register, 88, 190
flag updating in, 96

80x86. See Intel 80x86

EIP register, 204

ELSE directive, 329, 330, 332, 338

ELSEIF directive, 329

elseIfZero, 145, 146

endBalanceCheck, 146

END directive, 52

ENDIF directive, 329, 332, 338

endif, 190

ENDM directive, 338

ENDP directive, 202

endWhile, 159, 160

E-notation, 386
floating point parameter converted to, 365

enter instruction
syntax for, 221

Entry code, for procedure, 215,218

EQU directives, 48, 61

.ERR directive, 332, 337, 338

Errors
and assemblers, 305
and assembly listing file, 60-61
division, 122, 135
and .ERR directive, 332

ESC. See Extra services control



ESI register
for register indirect addressing, 75
and strcopy procedure, 236
and string elements, 232, 265

ESP register
and push instructions, 195, 196

ESP stack pointer
for register indirect addressing, 75

ES register, 32

EXAMPLE.EXE execution of,54

EXAMPLE.LST listing file,62-65

Examples
decimal-to-hex algorithm, 4-5
80x86 instruction, 314
logical instructions, 271
pop instructions, 198
push instructions, 195-196
shift instructions execution,280-281
word-length 2's complement number, 13
word-length 2's complement
representation, 11-12. See also Programs

Exceptions, 122

exclusive or instruction, 272

exclusive or operation, 267, 268, 269

Exit code
for procedure,218

exit loop, 166-167

EXITM directive, 329, 330, 332, 338

ExitProcess function, 46

ExitProcess procedure, 52, 221

expand macro, 375,376

Extended Binary Coded Decimal Information Code, 8

External procedures code,209

Extra services control, 7

EXTRN directives, 208, 306, 333



Index

F
faddp instructions, 349

fAddProc procedure,381-382

Fahrenheit temperature, Celsius conversion to, 125,126, 127

Far calls, 206
direct and indirect, 207

Far procedures, 206

Far return, 206

Fetching instructions, 33

Fields
80x86 instruction,308

File creation
from console input,433-435

finit instructions, 345

Flag registers, 33, 79, 190
and conditional jump instructions, 144
setting, 92

Flags, 144,147
and Boolean instructions, 269
and instructions, 88
and packed BCD instructions, 396-400
and status word, 356
and unpacked BCD instructions, 406-407, 409, 411, 412
updating in EFLAGS register, 96

Flag values, 144, 190, 191
and ASCII to 2's complement
integer, 296-297
and cmp instructions, 146-147
and conditional jump instructions, 176

Flat memory model, 28, 40, 204

Flat memory model programming
and string instructions, 232

fld (floating load) instructions, 340

Floating point, 21
to ASCII conversion algorithm,366-367
to ASCII conversion procedure,369-372
ASCII to, conversion, 386

Floating-point algorithm
ASCII to,361-363, 364

Floating-point arithmetic, 339-386
80x86 floating-point architecture, 340-356
floating-point and in-line assembly, 384-385
floating-point emulation, 374-383
programming with floating-point instructions, 359-373

Floating-point computations,359-360

Floating-point emulation, 374-383, 386

Floating point execution
Windbg view of,346

Floating point format, 26



Floating-point instructions, 342
addition,349
comparison,355
data store,346
division,354
load,341
miscellaneous,355,356
multiplication,354
programming with, 359-373
registers, 341
schemes, 23-24
stacks, 342-345, 347-349, 350-351
subtraction,352

Floating point parameter
converting to "E notation," 365

Floating-point representation
normalizing, 378

Floating-point unit, 340, 386

fMultProc procedure,379-380

Forced errors, 332, 337, 338

forever loops, 166, 244
program with,139-140

for loops, 137, 159, 164, 191
in assembly language, 173-178
implementing, 176, 256

Form feed, 8

Fortran, 39

Forward for loops, 173

Forward reference, 141
code with,304

FPU. See Floating-point unit

Fractions, normalizing, 377

FS register, 32

ftst instructions, 372

Functions, 202, 223. See also Procedures
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G
Game program,155-156

design for,154

General BCD procedures
addition, 402,403
subtraction, 402, 404

General registers, 30, 32, 229

GENERIC_WRITE, 432

GetStandardHandle, 420

GetStdHandle call, 420

goto statements, 137, 190

GPRs. See General purpose registers

Graphical user interface, 37, 40

Greatest common divisor procedure, 215,216

GS register, 32



Index

H
Half adder circuit, 298,299

Hardware, 27, 28-37, 40
CPU, 30-34
input/output devices, 36-37
memory, 28-29

Hardware level
logic gates, 298-299

Hardware stack, 193
procedures without, 228-229, 230

Hexadecimal digits/numbers, 2,3, 26
addition/subtraction of, 12
decimal numbers converted to, 4
program for displaying integer in,283-284
and rotate instruction, 288-289

Hexadecimal values
and logical operations, 272

Hex calculators, 11, 26
shift operations with, 280

Higher-level I/O, 437

High-level languages, 1, 190
and Boolean type variables, 268
go-to statements in, 137
and in-line assembly code, 384
input/output of data in, 77
level of abstraction for, 133, 135
procedure in, 201

"Holes," in pipeline, 190

Horizontal tab, 8
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I
IBM PC, 27

memory in, 28

Icons, 37

ICs. See Integrated circuits

idiv instructions,122, 134

idiv operations, 119

IEEE. See Institute of Electrical and Electronics Engineers

IEEE single format, 339
decimal number converted to, 23-24, 25
floating-point values manipulated in, 374

IFB (if blank) directive, 329, 337, 338

IFDEF directive, 329, 338

IF directive, 338

IFE directive, 329, 338

IFNB (if not blank) directive, 326, 327, 337, 338

IFNDEF directive, 329, 338

if statements, 137, 190

if structures, 144
implementation of, 152-153

if-then-else structures, 137, 190

if-then structures, 137

Illegal statements
macro calls expanded to, 327-329

Immediate mode, 73, 74, 83

Immediate-to-memory mov instructions,89

Immediate-to-register moves, 89

Immediate-to-register operation, 310

Imul instructions, 1-8, 134, 296
example,112

inc instructions, 95,100, 134, 304, 315
execution of,101

INCLUDE directive, 48, 61, 208, 333

INCLUDE io.h directive, 46, 48

inc statement, 306

Indexes
for arrays, 185

Index registers, 32

Indirect addressing register,75

in instructions, 437

Initialize procedure, 202

In-line assembly code,384-385, 386

In-line assembly language
and floating-point instructions, 384-385

in-out parameters, 211, 212



inproc procedure, 427, 428

input macro, 50, 79, 80, 83, 419
in file IO.H, 337
and kernel32 functions, 422

Input/output (I/O), 40, 419-440
console, using Kernel32 library, 420-428
devices, 36-37
lower-level, 437-439
macros in IO.H, 77-80
procedures in IO.ASM,425-427
sequential file, using Kernel32 library, 428-435

Institute of Electrical and Electronics Engineers, 24

Instruction operands, 73-76, 83

Instruction pointer register updates, 92

Instructions, 42, 43, 82, 85-135
addition/subtraction of larger numbers, 130-132
constants in, 68
copying data, 86-94
division, 118-127
integer addition/subtraction, 95-106
and levels of abstraction, 133-134
microcode, 133, 134
multiplication, 108-115
operands for, 73
in pipeline,189

Integer square root
finding, 208,210

Integer values
representing, 26

Integrated circuits, 28

Integrated development environments, 39

Intel 80x86, 264
CPU, 27
instruction encodings,311-312
instruction fields,308
instructions, 265, 267, 269, 274
machine language description, 307-314
microprocessor assembly, 301
operands and results for division instructions,119
register codes,310
repeat prefixes in string instructions, 239
stacks, 194-200

Intel 80x86 architecture, 228, 230
floating-point, 340-356
and lower-level input/output, 437-439
procedure call and return, 204-208
recursive procedure with, 223-227
stack, 194-200
string in, 232

Intel 80x86 instructions, 267, 269
and bit manipulation, 299
for strings, 231, 232

Intel 80x86 processors
add and sub instructions, 95, 96, 98,99, 100, 101, 102
addressing modes,73
floating point formats used in, 24



and mov instructions, 86,87

Intel 80x86 registers,35, 243

Interpreters, 38, 39

Interrupt, 438, 439, 440
handler, 122, 439
procedure, 438, 439

Interrupt-driven I/O, 419, 438, 440

Intersegment jumps, 141

int instruction, 439

into instruction, 439

Intrasegment jumps, 141

INVOKE, 221

IO.ASM
file, 77
input/output procedures in,425-427

IO.H file, 301,334-336, 338
input/output macros defined in, 77-80

IO.OBJ
and atodproc, 292

IO.OBJ file
and input/output macros, 83

itoa macro, 80, 83, 259, 265
in file IO.H, 337
and larger numbers, 132

itoaproc, 259, 260, 265



Index

J
jcxz instructions, 176

jecxz instructions, 191, 239
conditional jump, 176

jmp instructions, 141,142, 190, 304

jmp statements, 138

jnle instructions, 304

jnle statements, 306



Index

K
kernel32 library, 439

console I/O using, 420-428
sequential file I/O using, 428-435

kernel32 service, 140

Keyboard, 27, 36
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L
Labels, 44, 146, 152

for loop, 175

Language translators, 38

lea (load effective address) instructions, 191, 246

leave instructions, 221

Left shifts, 278, 279, 283
single-bit, 282

Length operand, 79

Line feed, 8
character, 48, 58

LINK command, 53, 54, 208

Linkers, 39, 40, 53-54, 74, 306

Lisp language, 38

.LISTALL directive, 221

.LIST directive, 48, 61, 325, 333

Load effective address (lea) instructions, 184

Loaders, 74

LOCAL directive, 324

Local variables
and parameters, 211-221
procedure storage in data
segment, 219
space for, on stack, 215, 230
stack usage with,217

Location counter
and assembler, 303, 304, 305

LOCK prefix, 307

lods (load string) instructions, 232, 249,250, 265

Logical instructions, 300
uses of, 272-273

Logical operations, 268-275
definitions of,268
example, 271
and logic gates, 298

Logical shifts, 278
left, 279
right, 280

Logic gates, 267,298, 300

Looping, 137

loop instructions,174, 191

loopnz instructions, 178

Loops, 190
and arrays, 180

loop statement
loop implemented by, 176

Loop structures
implementing, 159-167



loopz instructions, 178

Lowercase letters, 44
ASCII code for, 274
and ASCII code translation, 257
codes for, 7

Lowercase source code, 45

Lower-level input/output, 437-439

Lower levels of abstraction, 134



Index

M
Machine-language level of abstraction, 134, 135

Macro calls, 320, 321, 322-323
expanding to illegal statements, 327-329

Macro definitions
and conditional assembly, 326
formats of, 320
in file IO.H, 333

MACRO directive, 324, 338
parameters in, 320

Macro(s), 42, 43, 82
to add two integers,321
in assembly language program, 50
definition and expansion, 319-325
in IO.H,78, 83, 301, 333-337
for smaller of two memory words,324
to swap two memory words,323

Mantissa, 24

Maps
and relocatable code, 306

Mask, 272, 279

MASM. See Microsoft Macro Assembler

Memory, 39, 40
in assembly language program, 104
circuits, 27
logical picture of,28
referencing, 73

Memory addresses
and CISC machines, 264
80x86 architecture, 437, 438
two 80x86 modes,74

Memory-mapped I/O, 36, 419, 438, 440

Memory mode, 73
formats,74, 83
operands, 83

Memory operands
and add and sub instructions, 98

Microcode level, 133, 134, 135

Microcomputers, 1, 27
and clock speeds, 88

Microsoft Macro Assembler, 41, 42, 44, 53, 82, 207, 301, 302, 305
and conditional assembly, 326, 329
and DT directive, 388-389
PROC directive with, 202
and string instructions, 232

Microsoft Visual C++
in-line assembly code, 384, 385, 386

Microsoft Windows
graphical user interfaces, 37-38
Notepad, 38



Minimum procedure
calling code for, 219

min2 macro, 332
improved,331

Minus character (-), 262

Mixed-case code, 45

ML assembler, 53, 60

Mnemonics, 43, 44
cmps instructions,242
for conditional jump instructions,149-150
80x86 mov instructions, 86
floating point, 341-342
floating-point addition
instructions,349
floating-point comparison
instructions,355
floating-point data store
instructions,346
floating-point division
instructions,354
floating-point load instructions,341
floating-point multiplication instructions,354
floating-point subtraction instructions,352
loop instructions,174
miscellaneous floating-point instructions,355, 356
multiplication instructions, 108
push and pop flag registers, 199
for push instruction, 194
repeat prefixes, 240-241
rep movs instructions,241
scan instructions, 246
shift instructions, 278
stos instructions,249
string instructions, 233
unpacked BCD instructions,406

.MODEL FLAT directives, 208

Modem, 27

mod field, 310, 313

Mod reg r/m format, 309-310, 312-314, 337

mod values, 312

Monitor, 27, 36

Motorola 680x0
and CISC design, 264
with memory-mapped I/O, 438

Mouse, 27, 36

mov instructions, 86,87, 96, 134, 202
additional,90
immediate-to-memory,89

MOVP instructions, 416

movsb instructions, 233, 234

movsd instructions, 234

movs instructions, 232, 233, 237, 265
ESI and EDI,234
rep prefix used with, 240



movsw instructions, 233, 234

movsx instructions,125

movzx instructions, 124,125

MS-DOS, 37

mul instructions, 108
example,109-110

MULP instructions, 416

Multiple-bit shifts, 280, 300

Multiplication
floating-point instructions,354
of floating-point numbers, 374, 379
in floating-point routines, 340
instructions, 108-115, 134, 135, 281
of larger numbers, 132
of unpacked BCD numbers, 409,410

MulUnp1 procedure, 409,410, 411



Index

N
Name field, 43

Names
in assembly language, 44

NaN (not a number), 375

NEAR32 attribute, 202

near call instructions, 204

Near conditional jumps, 151

Near indirect calls, 207

Near procedures, 206

Near relative procedures, 206

NEAR32 procedure, 215, 225

Negative numbers
representation for, 10, 11

neg instructions, 96,102, 134

nestingLevel, 221

.NOLIST directive, 48, 61, 325

.NOLISTMACRO directive, 325, 333

Non-negative packed BCD numbers
adding, 398,399
subtracting, 400,401

Nonrecursive procedures, 230

normalize macro,378

Notepad, 38, 53

not instructions,270, 299

not operations, 267
and 80x86, 269
and logic gates, 298

Null bytes, 394

Null character, 78

Numbers
character codes for representing, 7

Number systems
suffixes used in, 68



Index

O
Object code (machine code), 42, 301

and assembler, 302
relocatable, 306

.OBJ file, 208

Octal number system, 5

OF. See Overflow flag

Offset, 29

One-pass assembler, 302

1's complement numbers, 26

1's complement system, 21, 22

Opcodes (operation codes), 39, 66, 67,199, 337
adc and sbb instructions,131
additional mov instructions,90
and, or, and xor instructions,270
and byte-size operands, 308
call instructions,206
cld and std instructions,233
cmp instructions,148
cmps instructions,242
conditional jump instructions,149-150
div instructions,122
double shift instructions,287
idiv instructions,122
immediate-to-memory mov
instructions,89
immediate-to-register mov
instructions,87
imul instructions,110
inc and dec instructions,100
loop instructions,174
movsx and movzx instructions,125
neg instructions,102
not instructions,270
pop instructions,197
push all and pop all instructions,200
push instructions,195
reg field for specified,309
rep movs instructions,241
ret instructions,208
shift and rotate instructions,282
stos instructions,249
sub instructions, 314
test instructions,275
xchg instructions, 92,93

Open code, 326

Operand(s)
call instructions,206
constant, 68-71
instruction, 73-76
pop instructions,197
push instructions,195
size byte, 308



Operating system, 37-38, 40

or circuit, 298

or instructions,270, 272, 274, 285, 299

or operations, 267, 268, 274
and 80x86, 269
and logic gates, 298

or operator, 161, 162

Outcode (region code), 277

out instructions, 437

outproc procedure, 427

output macro, 78, 79, 83, 391, 419
in file IO.H, 337
and kernel32 functions, 422

Overflow, 15, 18, 20

in addition,17

Overflow flag (OF), 33, 80, 96, 98, 147, 279, 439
and Boolean instructions, 269
and imul instructions, 113
and mul instructions, 110
and rotate instructions, 288, 289

Overflow interrupt handler, 439



Index

P
Packed BCD representations, 388-394, 417

to ASCII conversion,390

Packed decimal conversions
and VAX architecture, 416

Paging mechanism, 29

Parallel printer port (LPT1), 437

Parameter address list, 229

Parameter passing, 193
and procedures without stacks, 229

Parameters
address,220
and local variables, 211-221
locating in stack,214
passing, 211-212

Parameter values
accessing from stack, 212
using those passed on stack,213

Parity flag (PF), 34
and Boolean instructions, 269
and left shifts, 279

Pascal, 1, 39, 137

Pass-by-location parameters, 211

Pass-by-value parameters, 211

pause macro,320, 321

PC-DOS, 37

PCs
floating-point arithmetic done with, 339

Pentium processors, 27, 30
and mov instructions, 86,87

Pentium systems
and floating point format, 339

PF flag, 96

Physical address, 28

Pipeline instructions,189

Pipelining, 33, 189-191

Polling, 438, 440

popad instructions, 199, 219

pop all instructions,200

popfd instructions, 199

popf instructions,199, 292

Pop instructions, 194,197, 199, 292, 337
example, 198
and exit code for procedure, 218

Popping, 194, 228

Port addresses, 437, 438, 440

Ports, 36



Positive numbers
addition of, 16

Prefix bytes, 88, 93, 337

Prefixes
segment override,315

Printable characters, 7

PROC directive, 202, 206, 207

Procedure calls, 48
state prior to and after,205

Procedure Root, 209, 210

Procedures, 193-230
with address parameters,220
arrays passed to, 219
body, call and return, 201-210
calling, 204
80x86 stack, 194-200
entry and exit codes, 215,218
greatest common divisor, 215,216
integer to ASCII conversion,260-261
parameters and local variables, 211-221
procedure body, call and return, 201-210
recursive, 223-226
without stacks, 228-229
strcopy,234-235, 236
structure for,203

Processors
clock speeds of, 88
limitations with, 115

Programming
with floating-point instructions, 359-373
in high-level languages, 1

Programs
area of rectangle,114
on arrays,182-184
assembling, linking, running, 53-58
assembly language, 45-46,47,104-106
with forever loop,139-140
game,154-156
integer displayed in hex,283-284
for locating character in string,247-248
string copy,234-235
string search,244-246
temperature conversion,126
translation,255-256. See also Assembly language program; Examples

Prompts, 37

PROTO directive, 46

Pseudocode, 4
for Towers of Hanoi solution,224

ptoaProc procedure, 389, 391

PTR operator, 76

PUBLIC directive, 208

pushad instructions,200

push all instructions,200

pushfd instructions, 199



pushf instructions,199

Pushing, 194, 228

push instructions,195, 199, 337
examples, 195-196
source code syntax for, 194

pushw mnemonic
and Towers of Hanoi, 225



Index

Q
Quadword, 10, 11

Quadword size dividend, 123

Question mark (?), 44

Quick sort algorithm, 318

Quotient, 119

QWORD directive, 71
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R
Random access memory (RAM), 28

rcl (rotate through carry left) instructions, 289

rcr (rotate through carry right) instructions, 289

ReadFile call, 420, 427, 432

Read-only memory, 28

REAL4 directive, 71, 374

REAL8 directive, 71

REAL10 directive, 71

Rectangle
program for finding area of, 113,114

Recursion, 193, 223-227

Recursive procedures, 230

Reduced instruction set computer designs, 265, 266
complex instruction set computer designs versus, 264

reg field, 313
for specified opcodes,309

Region code, 277

Register indirect, 83

Register indirect addressing, 191, 236, 262, 313
and arrays, 182, 185
and jump instructions, 142
and passing array to procedure, 219
and string instructions, 232

Register indirect memory addressing mode,74, 83

Register indirect operands, 89

Register mode, 73, 74, 83

Registers, 30, 39
in assembly language program, 104
base, 212
in 80x86 floating-point unit, 386
floating-point, 341
general purpose, 229
indirect addressing,75
and reduced instruction set computer designs, 264
saving on stack, 198
and string instructions, 265

Register save area, 229, 230

Register-to-register operations, 310

Relocatable address, 67

Relocatable object code, 306

Remainder, 119

Repeat prefix, 265, 307
with cmps instructions, 242
and string instructions, 239-249

repe cmpsb instructions, 244

repe (repeat while equal) prefix, 240, 242, 265

rep movs instructions,241



repne (repeat while not equal) prefix, 240, 265

repnz (repeat while not zero) prefix, 240, 241

rep prefix, 240, 265

repz (repeat while zero), 240, 241

Reserved identifiers, 44

reset a flag, 146

retf (return far) mnemonics, 207

ret instructions, 204,208, 218

retn (return near) mnemonics, 207

ret (return) instructions, 207, 230

Right shifts, 278
arithmetic and logic, 280
single-bit, 282

RISC designs. See Reduced instruction set computer designs

rol (rotate left) instructions, 288

ROM. See Read-only memory

ror (rotate right) instructions, 288

rotate instructions, 267, 278,282, 287-289, 300
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S
sbb instructions, 130,131, 135

Scale values, 310

Scaling, 313, 314

scasb instructions, 244

scasd instructions, 244

scas (scan string) instructions, 232, 244,247, 265

scasw instructions, 244

Scratchpad registers, 134

Segment descriptor, 88

Segmented memory model, 28, 40, 204
programming and string instructions, 232

Segment number, 29

Segment override prefixes,315

Segment registers, 32

Self-modifying code, 74n2

Semicolons, 42, 82

Sequential file input
using kernel32 functions,429-431

Sequential file input/output
using Kernel32 library, 428-435

Serial input/output (SIO) chip, 438

Serial ports, 438

set a flag, 146

Shift instructions, 267,279,282, 300
double,286,287, 300
execution of,280-281

shld instructions, 286

Short conditional jumps, 151

shrd instructions, 286
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SI. See Source index

SIB byte, 310, 314

Signed division,121, 123

Signed integers/numbers, 147, 148
and conditional jumps, 151
2's complement representation for, 9-14

Signed values
decimal range of, 69

Sign-extended operands, 99

Sign flag (SF), 96, 98, 147, 164, 279

Sign position, 17

Simple circuits, 298

Single-bit right/left shifts, 282

Single-bit rotate instructions, 288



Single-bit shifts, 300

Single byte instructions, 315

Single-length divisor, 118, 135

Single-length quotient, 118, 135

Single-length remainder, 118, 135

16-bit segmented programming, 206

Size bit, 315

Software, 27, 37-39, 40
language translators and linkers, 38-39
operating system, 37-38
stack, 228
text editors, 38

Sound card, 27

Source code
and assembler, 302

Source index, 32

Source operand, 78
adc and sbb instructions,131
Source operands
add and sub instructions,99
additional mov instructions,90
and, or, and xor instructions,270
cmp instructions,148
immediate-to-memory mov instructions,89
immediate-to-register mov instructions,87
test instructions,275

Source strings, 79, 232

Space efficiency, 87, 91

"Spaghetti code," 204

Special characters
in assembly language, 44

SqRt, 210

Square bracket notation ([]), 75

SS register, 32

.STACK directive, 48, 194

Stacks, 32, 212, 230, 340
floating-point, 342-345, 347-349, 350-351
local variables usage,217
parameters located in,214
parameter values accessed in, 212
parameter values passed on,213
parameter values removed from, 212
pointers, 32
procedures without, 228-229, 230
register contents saved on, 198
space for local variables in, 215

starSlash, 237

Statements, 82
assembly language, 42-45

Status bit, 308

Status flags, 33

Status word, 355, 356, 386



Status word bits, 341

stc instructions, 135

std instructions,233

Storage, 30
and assemblers, 304-305

Stos (store string) instruction, 232, 240,249, 265

String copy program,234-235, 236

String elements
scanning for, 244

String instructions, 265

repeat prefixes and, 239-249

using, 232-237

String operations, 231-266
character translation, 254-257
CISC versus RISC designs, 264
repeat prefixes and string
instructions, 239-249
string instructions, 232-237
2's complement integer
converted to ASCII string, 259-262

Strings, 265
copying fixed number of characters of,240
embedded within, 242-243
program for finding character in,247-248

String search program,244-246

strlen procedure, 246

ST (stack top), 341
and floating-point instructions, 359
in floating-point registers, 342-345, 347-353

sub instructions, 95,96-97, 98,99, 100, 134, 148, 269, 407

SUBP instructions, 416

Subprograms, 201, 202, 218

Subscripts, 3

Subtraction
floating-point instructions,352
of hex digits, 12
instructions, 135, 352-353
of larger numbers, 130-132
of non-negative packed BCD
numbers, 400,401
of packed BCD numbers, 396
of 2's complement numbers, 19-20, 26

Suffixes
in numeric operands, 68
for string instructions, 233

sum, 140, 180, 181

Switches, ML, 53

Symbol table, 302, 303, 305, 337

Syntax
80x86 call statement, 206
for enter instruction, 221
PUBLIC directive, 208
source code for push instruction, 194



System/360 (S/360) architecture, 229

System software, 27
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T
"Taking the complement," 11

"Taking the 2's complement," 11-12

TBYTE directive, 71

Temperature conversion program, 125,126

Ten-byte floating point format, 340

test instructions, 274,275, 297, 299

Text editors, 38, 40

32-bit flat memory model programming, 206

32-bit memory addresses, 307

Three-bit base register field, 310

Three-bit index register field, 310

Time efficiency, 86-87

Towers of Hanoi
pseudocode for solution,224
puzzle, 223,224
solution,225-227

Translation
of ASCII codes, 257
character, 254-257

Translation program,255-256
output from,257

Two-bit scaling field, 310

Two-pass assembler, 302, 337

2's complement integer
ASCII string converted to, 292-297
converting to ASCII string, 259-262

2's complement numbers, 339
addition of, 15-18, 26
subtraction of, 19-20, 26

2's complement representation
for signed integers, 9-14
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U
Unconditional jumps, 138-143

Underscore (_), 44

Unpacked BCD/ASCII conversions, 406

Unpacked BCD instructions,406, 417

Unpacked BCD numbers
division of,413

Unpacked BCD representations, 388, 417

Unsigned division,121, 123

Unsigned numbers, 10, 16
and conditional jumps, 151
strict inequality for, 147, 148

Unsigned values
decimal range of, 69

until loops, 4, 137, 155-156, 159,

165-166, 191

Uppercase letters, 7, 257, 274

Uppercase source code, 45
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V
Variable parameters, 211-212

Variables, 1

VAX packed decimal instructions, 416-417, 417
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W
Wait states, 91

while loops, 137, 156, 159, 191, 240, 394

while structure, 164

Windbg (Microsoft), 54, 83, 204
opening screen,55
before program termination,58
ready for tracing a program,56
tracing a program,57
view of floating point execution,346

Windows 95, 27, 37-38

Windows NT, 27

WORD directive, 83
constant operands in, 68, 69, 70

Word-length binary representation, 10

Word length divisor, 120

Word multiplication, 108

Word processors, 38

Word size, 10

Word-size operands
push instructions for, 194

Word-size parameter
retrieving, 229

Word strings
moving, 233

WriteFile call, 420
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X-Y
xchg instructions, 92,93, 94, 96, 134

xlat instructions, 254, 265

xor instructions,270, 274, 299

xor operations
and logic gates, 298



Index

Z
Zero flag (ZF), 33, 96, 98, 147, 178

and Boolean instructions, 269
and left shifts, 279
and repeat prefixes, 241



List of Figures

Chapter 1: Representing Data in a Computer

Figure 1.1: Decimal, hexadecimal, and binary numbers

Figure 1.2: Overflow in addition

Figure 1.3: Binary coded decimal representation

Chapter 2: Parts of a Computer System

Figure 2.1: Logical picture of PC memory

Figure 2.2: Selected EFLAGS bits

Figure 2.3: 80×86 registers

Chapter 3: Elements of Assembly Language

Figure 3.1: A complete assembly language program

Figure 3.2: Execution of EXAMPLE.EXE

Figure 3.3: Windbg opening screen

Figure 3.4: Windbg ready for tracing a program

Figure 3.5: Windbg tracing a program

Figure 3.6: Windbg before program termination

Figure 3.7: EXAMPLE.LST listing file

Figure 3.8: 80×86 addressing modes

Figure 3.9: Two 80×86 memory addressing modes

Figure 3.10: Register indirect addressing

Figure 3.11: Macros in IO.H

Chapter 4: Basic Instructions

Figure 4.1: Immediate-to-register mov instructions

Figure 4.2: Immediate-to-memory mov instructions

Figure 4.3: Additional mov instructions

Figure 4.4: xchg instructions

Figure 4.5: add and sub instructions

Figure 4.6: inc and dec instructions

Figure 4.7: neg instructions

Figure 4.8: Program to evaluate -  (x + y -  2z + 1)

Figure 4.9: Sample run of program

Figure 4.10: mul instructions



Figure 4.11: imul instructions (single-operand format)

Figure 4.12: imul instructions (two-operand format)

Figure 4.13: imul Instructions (three-operand format)

Figure 4.14: Program to find the area of a rectangle

Figure 4.15: Operands and results for 80×86 division instructions

Figure 4.16: idiv instructions

Figure 4.17: div instructions

Figure 4.18: cbw and cwd instructions

Figure 4.19: movsx and movzx instructions

Figure 4.20: Convert Celsius temperature to Fahrenheit

Figure 4.21: adc and sbb instructions

Figure 4.22: Control of carry flag CF

Chapter 5: Branching and Looping

Figure 5.1: Program with forever loop

Figure 5.2: Sample run of program

Figure 5.3: jmp instructions

Figure 5.4: cmp instructions

Figure 5.5: Conditional jump instructions

Figure 5.6: Timing and size of conditional jump instructions

Figure 5.7: Design for game program

Figure 5.8: Game program

Figure 5.9: loop instructions

Figure 5.10: Program using array

Figure 5.11: Instructions in a pipeline

Chapter 6: Procedures

Figure 6.1: push instructions

Figure 6.2: pop instructions

Figure 6.3: pushf and popf instructions

Figure 6.4: Push all and pop all instructions

Figure 6.5: Procedure structure

Figure 6.6: State prior to procedure call

Figure 6.7: State after procedure call

Figure 6.8: call instructions



Figure 6.9: ret instructions

Figure 6.10: Code for external procedures

Figure 6.11: Procedure to find integer square root

Figure 6.12: Using parameter values passed on stack

Figure 6.13: Locating parameters in the stack

Figure 6.14: Greatest common divisor procedure

Figure 6.15: Stack usage with local variables

Figure 6.16: Typical procedure entry and exit code

Figure 6.17: Procedure using address parameters

Figure 6.18: Towers of Hanoi puzzle

Figure 6.19: Pseudocode for Towers of Hanoi Solution

Figure 6.20: Towers of Hanoi solution

Chapter 7: String Operations

Figure 7.1: cld and std instructions

Figure 7.2: movs instructions (use ESI and EDI)

Figure 7.3: String copy program

Figure 7.4: Copying a fixed number of characters of a string

Figure 7.5: Repeat prefixes

Figure 7.6: rep movs instructions

Figure 7.7: cmps instructions

Figure 7.8: String search program

Figure 7.9: scas instructions (use EDI)

Figure 7.10: Program to find character in string

Figure 7.11: stos instructions (use EDI)

Figure 7.12: lods instructions (use ESI)

Figure 7.13: Translation program

Figure 7.14: Output from translation program

Figure 7.15: Integer to ASCII conversion procedure

Chapter 8: Bit Manipulation

Figure 8.1: Definitions of logical operations

Figure 8.2: and, or, and xor instructions

Figure 8.3: not instruction

Figure 8.4: test instructions

Figure 8.5: Shift instructions



Figure 8.6: Shift and rotate instructions

Figure 8.7: Program to display an integer in hex

Figure 8.8: Double shift instructions

Figure 8.9: ASCII to doubleword integer conversion

Figure 8.10: Logic Gates

Figure 8.11: Half adder circuit

Chapter 9: The Assembly Process

Figure 9.1: Code with forward reference

Figure 9.2: 80x86 instruction fields

Figure 9.3: reg field for specified opcodes

Figure 9.4: 80x86 register codes

Figure 9.5: 80x86 instruction encodings

Figure 9.6: Segment override prefixes

Figure 9.7: pause macro

Figure 9.8: Macro to add two integers

Figure 9.9: Macro to swap two memory words

Figure 9.10: Macro to find smaller of two memory words

Figure 9.11: addAll macro using conditional assembly

Figure 9.12: Improved min2 macro

Figure 9.13: IO.H

Chapter 10: Floating-Point Arithmetic

Figure 10.1: Floating-point load instructions

Figure 10.2: Windbg view of floating point execution

Figure 10.3: Floating-point data store instructions

Figure 10.4: Floating-point addition instructions

Figure 10.5: Floating-point subtraction instructions

Figure 10.6: Floating-point multiplication instructions

Figure 10.7: Floating-point division instructions

Figure 10.8: Additional floating-point instructions

Figure 10.9: Floating-point comparison instructions

Figure 10.10: Miscellaneous floating-point instructions

Figure 10.11: Floating-point computations

Figure 10.12: Execution of floating-point example



Figure 10.13: ASCII to floating-point algorithm

Figure 10.14: ASCII to floating-point conversion

Figure 10.15: Test driver for atofproc

Figure 10.16: Floating-point to ASCII conversion algorithm

Figure 10.17: Floating point to ASCII conversion procedure

Figure 10.18: expand macro

Figure 10.19: combine macro

Figure 10.20: normalize macro

Figure 10.21: fMultProc procedure

Figure 10.22: fAddProc procedure

Figure 10.23: In-line assembly code

Chapter 11: Decimal Arithmetic

Figure 11.1: Packed BCD to ASCII conversion

Figure 11.2: ASCII to packed BCD conversion

Figure 11.3: Addition of non-negative packed BCD numbers

Figure 11.4: Subtraction of non-negative packed BCD numbers

Figure 11.5: General BCD addition procedure

Figure 11.6: Unpacked BCD instructions

Figure 11.7: Addition of two 8-byte unpacked BCD numbers

Figure 11.8: Multiplication of unpacked BCD numbers

Figure 11.9: Division of unpacked BCD numbers

Chapter 12: Input/Output

Figure 12.1: Console output using kernel32 functions

Figure 12.2: Standard device numbers

Figure 12.3: Console I/O using kernel32 functions

Figure 12.4: Input/output procedures in IO.ASM

Figure 12.5: Sequential file input using kernel32 functions

Figure 12.6: Create a file from console input



List of Exercises

Chapter 1: Representing Data in a Computer

Example

Exercises 1.1

Exercises 1.2

Example

Example

Exercises 1.3

Exercises 1.4

Exercises 1.5

Chapter 2: Parts of a Computer System

Exercises 2.1

Exercises 2.2

Exercises 2.3

Chapter 3: Elements of Assembly Language

Exercises 3.1

Exercises 3.2

Exercises 3.3

Programming Exercises 3.3

Exercises 3.4

Exercises 3.5

Exercises 3.6

Exercises 3.7

Chapter 4: Basic Instructions

Exercises 4.1

Exercises 4.2

Programming Exercises 4.2

Exercises 4.3

Programming Exercises 4.3

Exercises 4.4

Programming Exercises 4.4



Exercises 4.5

Chapter 5: Branching and Looping

Exercises 5.1

Programming Exercise 5.1

Exercises 5.2

Programming Exercises 5.2

Exercises 5.3

Programming Exercise 5.3

Exercises 5.4

Programming Exercise 5.4

Exercises 5.5

Programming Exercises 5.5

Chapter 6: Procedures

Example Example

Exercises 6.1

Exercises 6.2

Programming Exercises 6.2

Exercises 6.3

Programming Exercises 6.3

Exercises 6.4

Programming Exercises 6.4

Exercises 6.5

Chapter 7: String Operations

Exercises 7.1

Programming Exercises 7.1

Exercises 7.2

Programming Exercises 7.2

Exercises 7.3

Programming Exercises 7.3

Exercises 7.4

Programming Exercises 7.4

Chapter 8: Bit Manipulation



Exercises 8.1

Programming Exercises 8.1

Exercises 8.2

Programming Exercises 8.2

Exercises 8.3

Programming Exercises 8.3

Exercises 8.4

Chapter 9: The Assembly Process

Exercises 9.1

Exercises 9.2

Programming Exercises 9.2

Exercises 9.3

Programming Exercises 9.3

Exercises 9.4

Programming Exercises 9.4

Exercises 9.5

Chapter 10: Floating-Point Arithmetic

Exercises 10.1

Programming Exercises 10.2

Programming Exercises 10.3

Programming Exercises 10.4

Chapter 11: Decimal Arithmetic

Exercises 11.1

Programming Exercises 11.1

Exercises 11.2

Programming Exercises 11.2

Exercises 11.3

Programming Exercises 11.3

Chapter 12: Input/Output

Programming Exercises 12.1

Exercises 12.2

Programming Exercises 12.2



Exercises 12.3


	Introduction to 80x86 Assembly Language and Computer Architecture
	Table of Contents
	BackCover
	Introduction to 80X86 Assembly Language and Computer Architecture
	Preface
	Style and Pedagogy
	Software Environment
	Instructor's Support
	Acknowledgments

	Chapter 1: Representing Data in a Computer
	1.2 Character Codes
	1.3 2's Complement Representation for Signed Integers
	1.4 Addition and Subtraction of 2's Complement Numbers
	1.5 Other Systems for Representing Numbers
	Chapter Summary

	Chapter 2: Parts of a Computer System
	2.2 PC Hardware: The CPU
	2.3 PC Hardware: Input/Output Devices
	2.4 PC Software
	Chapter Summary

	Chapter 3: Elements of Assembly Language
	3.2 A Complete Example
	3.3 How to Assemble, Link, and Run a Program
	3.4 The Assembler Listing File
	3.5 Constant Operands
	3.6 Instruction Operands
	3.7 Input/Output Using Macros Defined in IO.H
	Chapter Summary

	Chapter 4: Basic Instructions
	4.2 Integer Addition and Subtraction Instructions
	4.3 Multiplication Instructions
	4.4 Division Instructions
	4.5 Addition and Subtraction of Larger Numbers
	4.6 Something Extra: Levels of Abstraction and Microcode
	Chapter Summary

	Chapter 5: Branching and Looping
	5.1 Unconditional Jumps
	5.2 Conditional Jumps, Compare Instructions, and if Structures
	5.3 Implementing Loop Structures
	5.4 for Loops in Assembly Language
	5.5 Arrays
	5.6 Something Extra: Pipelining
	Chapter Summary

	Chapter 6: Procedures
	6.2 Procedure Body, Call and Return
	6.3 Parameters and Local Variables
	6.4 Recursion
	6.5 Other Architectures: Procedures Without a Stack
	Chapter Summary

	Chapter 7: String Operations
	7.2 Repeat Prefixes and More String Instructions
	7.3 Character Translation
	7.4 Converting a 2's Complement Integer to an ASCII String
	7.5 Other Architectures: CISC versus RISC Designs
	Chapter Summary

	Chapter 8: Bit Manipulation
	8.2 Shift and Rotate Instructions
	8.3 Converting an ASCII String to a 2's Complement Integer
	8.4 The Hardware Level-Logic Gates
	Chapter Summary

	Chapter 9: The Assembly Process
	9.2 80x86 Instruction Coding
	9.3 Macro Definition and Expansion
	9.4 Conditional Assembly
	9.5 Macros in IO.H
	Chapter Summary

	Chapter 10: Floating-Point Arithmetic
	10.1 80x86 Floating-Point Architecture
	10.2 Programming with Floating-Point Instructions
	10.3 Floating-Point Emulation
	10.4 Floating-Point and In-line Assembly
	Chapter Summary

	Chapter 11: Decimal Arithmetic
	11.2 Packed BCD Instructions
	11.3 Unpacked BCD Representations and Instructions
	11.4 Other Architectures: VAX Packed Decimal Instructions
	Chapter Summary

	Chapter 12: Input/Output
	12.2 Sequential File I/O Using the Kernel32 Library
	12.3 Lower-Level Input/Output
	Chapter Summary

	Appendix A: Hexadecimal/ASCII conversion
	Appendix B: Useful MS-DOS Commands
	Appendix C: MASM 6.11 Reserved Words
	Appendix D: 80x86 Instructions (by Mnemonic)
	Appendix E: 80x86 Instructions (by Opcode)
	Index
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X-Y
	Index_Z

	List of Figures
	List of Exercises
	Team DDU

